445,113 research outputs found
Cumulative fatigue damage behavior of MAR M-247
The objective was to examine the room temperature fatigue and nonlinear cumulative fatigue damage behavior of the cast nickel-based superalloy, MAR M-247. The fatigue test matrix consisted of single-level, fully reversed fatigue experiments. Two series of tests were performed: one of the two baseline fatigue LCF (Low-Cycle Fatigue) life levels was used in the first loading block, and the HCF (High-Cycle Fatigue) baseline loading level was used in the second block in each series. For each series, duplicate tests were performed at each applied LCF life fraction
Vibrational dynamics of confined granular material
By means of two-dimensional contact dynamics simulations, we analyze the
vibrational dynamics of a confined granular layer in response to harmonic
forcing. We use irregular polygonal grains allowing for strong variability of
solid fraction. The system involves a jammed state separating passive (loading)
and active (unloading) states. We show that an approximate expression of the
packing resistance force as a function of the displacement of the free
retaining wall from the jamming position provides a good description of the
dynamics. We study in detail the scaling of displacements and velocities with
loading parameters. In particular, we find that, for a wide range of
frequencies, the data collapse by scaling the displacements with the inverse
square of frequency, the inverse of the force amplitude and the square of
gravity. Interestingly, compaction occurs during the extension of the packing,
followed by decompaction in the contraction phase. We show that the mean
compaction rate increases linearly with frequency up to a characteristic
frequency and then it declines in inverse proportion to frequency. The
characteristic frequency is interpreted in terms of the time required for the
relaxation of the packing through collective grain rearrangements between two
equilibrium states
Practical implementation of the double linear damage rule and damage curve approach for treating cumulative fatigue damage
Simple procedures are presented for treating cumulative fatigue damage under complex loading history using either the damage curve concept or the double linear damage rule. A single equation is provided for use with the damage curve approach; each loading event providing a fraction of damage until failure is presumed to occur when the damage sum becomes unity. For the double linear damage rule, analytical expressions are provided for determining the two phases of life. The procedure involves two steps, each similar to the conventional application of the commonly used linear damage rule. When the sum of cycle ratios based on phase 1 lives reaches unity, phase 1 is presumed complete, and further loadings are summed as cycle ratios on phase 2 lives. When the phase 2 sum reaches unity, failure is presumed to occur. No other physical properties or material constants than those normally used in a conventional linear damage rule analysis are required for application of either of the two cumulative damage methods described. Illustrations and comparisons of both methods are discussed
Theory for the density of interacting quasi-localised modes in amorphous solids
Quasi-localised modes appear in the vibrational spectrum of amorphous solids
at low-frequency. Though never formalised, these modes are believed to have a
close relationship with other important local excitations, including shear
transformations and two-level systems. We provide a theory for their frequency
density, , that establishes this link for
systems at zero temperature under quasi-static loading. It predicts two regimes
depending on the density of shear transformations (with
the additional stress needed to trigger a shear transformation). If
, and a finite fraction of quasi-localised modes form
shear transformations, whose amplitudes vanish at low frequencies. If
, and all quasi-localised modes form shear
transformations with a finite amplitude at vanishing frequencies. We confirm
our predictions numerically
Microstructural topology effects on the onset of ductile failure in multi-phase materials - a systematic computational approach
Multi-phase materials are key for modern engineering applications. They are
generally characterized by a high strength and ductility. Many of these
materials fail by ductile fracture of the, generally softer, matrix phase. In
this work we systematically study the influence of the arrangement of the
phases by correlating the microstructure of a two-phase material to the onset
of ductile failure. A single topological feature is identified in which
critical levels of damage are consistently indicated. It consists of a small
region of the matrix phase with particles of the hard phase on both sides in a
direction that depends on the applied deformation. Due to this configuration, a
large tensile hydrostatic stress and plastic strain is observed inside the
matrix, indicating high damage. This topological feature has, to some extent,
been recognized before for certain multi-phase materials. This study however
provides insight in the mechanics involved, including the influence of the
loading conditions and the arrangement of the phases in the material
surrounding the feature. Furthermore, a parameter study is performed to explore
the influence of volume fraction and hardness of the inclusion phase. For the
same macroscopic hardening response, the ductility is predicted to increase if
the volume fraction of the hard phase increases while at the same time its
hardness decreases
Strain amplitude response and the microstructure of PA/clay nanocomposites
Polyamide 6/clay nanocomposites (PAn, where n is the mass fraction of clay) with various clay loading were prepared by melt compounding in a twin screw extruder. Exfoliation of clay in a PA matrix was confirmed by X-ray diffraction. Strain amplitude response of PAn in both melt and solution states has been investigated. In the melt state, critical strain amplitude of PAn is sensitive to strain amplitude response and decrease logarithmically with increasing clay loading. The elastic moduli (G′) of PAn are reversible under frequency loop sweeps. Comparisons of strain amplitude response in both melt and solution states have been conducted. Two different responses have been observed: strain thinning in the melt state and weak strain overshoot in the solution state. FTIR studies show that amide II band of PAn shifts toward high wavenumbers, but amide I band and N–H stretching vibration are independent of clay loading. We suggest that two types of strain amplitude response of PAn can be explained: strain thinning which is dominant in PAn caused by physical adsorption and entanglement of PA chains on nanoclays and weak strain overshoot caused by weak bonds between PA chains and nanoclays
Localization of elastic deformation in strongly anisotropic, porous, linear materials with periodic microstructures: exact solutions and dilute expansions
Exact solutions are derived for the problem of a two-dimensional, infinitely
anisotropic, linear-elastic medium containing a periodic lattice of voids. The
matrix material possesses either one infinitely soft, or one infinitely hard
loading direction, which induces localized (singular) field configurations. The
effective elastic moduli are computed as functions of the porosity in each
case. Their dilute expansions feature half-integer powers of the porosity,
which can be correlated to the localized field patterns. Statistical
characterizations of the fields, such as their first moments and their
histograms are provided, with particular emphasis on the singularities of the
latter. The behavior of the system near the void close packing fraction is also
investigated. The results of this work shed light on corresponding results for
strongly nonlinear porous media, which have been obtained recently by means of
the ``second-order'' homogenization method, and where the dilute estimates also
exhibit fractional powers of the porosity.Comment: 22 pages, 10 figure
- …
