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Quasilocalized modes appear in the vibrational spectrum of amorphous solids at low frequency. Though never
formalized, these modes are believed to have a close relationship with other important local excitations, including
shear transformations and two-level systems. We provide a theory for their frequency density, DL (ω) ∼ ωα , that
establishes this link for systems at zero temperature under quasistatic loading. It predicts two regimes depending
on the density of shear transformations P(x) ∼ xθ (with x the additional stress needed to trigger a shear
transformation). If θ > 1/4, then α = 4 and a finite fraction of quasilocalized modes form shear transformations,
whose amplitudes vanish at low frequencies. If θ < 1/4, then α = 3 + 4θ and all quasilocalized modes form
shear transformations with a finite amplitude at vanishing frequencies. We confirm our predictions numerically.

DOI: 10.1103/PhysRevE.99.023003

I. INTRODUCTION

Unlike crystals, amorphous solids do not present topologi-
cal defects due to their lack of long-range order. Instead they
display excitations where a group of particles can rearrange.
These essentially local excitations lead to a dipolar change
of stress in the medium, which can effectively couple them.
An example of local excitations is two-level systems that
govern the low-temperature properties of glasses, for which
the particles’ rearrangement is induced by quantum tunneling
[1–3]. The nature of two-level systems and the role of their
interactions, argued to lead to a pseudogap in their density,
is still debated [4–6]. Another example of local excitations
is shear transformations [7–11], in which a rearrangement,
or plastic event, can occur in the absence of any quantum or
thermal fluctuations by a local increase in stress that triggers
a saddle-node bifurcation [12]. In this case, the important
role of interactions is established: They lead to bursts of
avalanches of many plastic events [13,14]. This behavior is a
necessary consequence [15,16] of the presence of a pseudogap
P(x) ∼ xθ in the density of these excitations [17–21] (where
x is the additional shear stress that must be applied locally
to trigger a new event). Treating the effect of interactions as
a mean-field mechanical noise leads to the prediction that θ

varies nonmonotonically as shear stress is applied [22], as
confirmed numerically [16,23,24].

These local excitations correspond to directions in phase
space with little restoring forces, suggesting that the low-
frequency part of the vibrational spectrum contains informa-
tion on their respective nature. This view is supported by the
early observation that quasilocalized modes are present at low
frequencies [25], leading to a considerable numerical effort to
characterize them. Most studies find that their density follows
DL(ω) ∼ ωα with α = 4 [26–32], although α ≈ 3 has also
been reported [33,34]. Theoretically, it has been argued, for
general bosonic disordered systems, that α = 4 in the ground
state and α = 3 in generic metastable states [35,36]. This
theory, however, neglects interactions between quasilocalized

modes. Its apparent success thus seems to be at odds with the
established role of interactions in determining the properties
of plastic deformation and yielding [13–21].

In this article, we provide a theory for the density of
quasilocalized modes for classical systems at zero tempera-
ture, which takes their interactions into account and clarifies
their relationship with shear transformations. In particular,
we introduce and treat analytically a mesoscopic model of
interacting quasilocalized modes. We predict two distinct
regimes, whereby shear transformations are found to be the
dominant source of quasilocalized modes only in one of them.
We confirm our predictions by independently measuring the
exponents α and θ , using molecular dynamics simulations of
quasistatically sheared glasses obtained at distinctly different
quench rates.

II. MESOSCOPIC MODEL AND THEORETICAL
PREDICTION

We model an amorphous solid as a collection of meso-
scopic blocks whose size is comparable to that of quasilocal-
ized modes. In each block we consider the softest quasilocal-
ized mode. We denote by s the displacement along that mode
and by ui(s) the Taylor expansion of the energy [37] in a block
i:

ui(s) = 1

2!
λis

2 + 1

3!
κis

3 + 1

4!
χis

4 + O(s5). (1)

Numerical measurements of χi have shown that its distribu-
tion is narrow [29], and we thus assume that it does not depend
on i and choose the units of the displacement s so that χ = 1.
Consequently, λi and κi determine the shape the potential.
Note that λi = ω2

i is the smallest eigenvalue of the Hessian
of the block.

The shear stress σi in the block can change either due to
a global applied stress or due to an interaction with another
block in which a rearrangement occurred. A change of shear
stress by δσi tilts the potential ui(s):

ũi(s, δσi ) = ui(s) − s Ciδσi. (2)
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shear

FIG. 1. Illustration of the flow of block parameters in the (λ, κ )
plane, under increasing shear stress. Examples of trajectories are
shown on the left. The shape of the associated potentials u are shown
on the right. The blue line is an example of a passive mode, for which

 < 0. The red line is an example of a shear transformation, for
which 
 > 0. The black line corresponds to the marginal case for
which 
 = 0. The dashed green line marks the appearance of the
second minimum in u, and thus the locations of reinsertion after a
failure.

In this scalar approximation, Ci describes the coupling be-
tween this mode and the shear stress and should depend on
i and possibly on the value of local stress σi. We neglect these
dependencies and impose Ci = 1 through a suitable choice of
the units of stress. Following ideas presented in Ref. [38] we
expand the energy around the new minimum. This changes
λi and κi, and in the limit of infinitesimal δσi we obtain the
following flow:

∂λi

∂σi
= κi

λi
,

∂κi

∂σi
= 1

λi
. (3)

See Appendix A for details. A conserved quantity of this
dynamics is:


i ≡ κ2
i − 2λi. (4)

Thus, we can track the evolution of the energy shape in each
block along the parabolic trajectories in the (λ, κ ) plane. As
we illustrate in Fig. 1, two distinct behaviors, as previously
identified in Ref. [38], are separated by the 
 = 0 parabola
(black line). 
 < 0 (highlighted in blue) corresponds to “pas-
sive” modes that never undergo a saddle-node bifurcation.
For 
 > 0 (in red) shear transformations occur. In that case
a potential with a single minimum (point A) evolves under
increasing stress to a point where a second minimum appears
(point B). As the stress increases, the minima become equally
deep (point C). Eventually, a saddle-node bifurcation occurs
(point D) and the system falls in the other minimum (point
B′). It is straightforward to show that points B and B′ lie on the
parabola κ2 − 8λ/3 = 0 (see Appendix B), indicated using a
dashed green line in Fig. 1.

So far we have described how to track the softest quasilo-
calized mode in each block. However, it may happen that
the tracked mode becomes stiffer than the next softest mode.
This will occur for a typical value of λ that we denote λmin.
To implement this effect in the model, we switch to a new
softest mode if λ reaches λmin. We describe its property by
choosing its 
 randomly from a distribution P0(
). We expect
that P0(
) is a smooth distribution, i.e., that P0(
) > 0 in

the relevant range of 
 (without any singularity, in particular
around 
 = 0).

Following elastoplastic models [39–41], we describe the
change of shear stress on block i as δσi = d� + ηi, where d�

is the increment of globally applied stress, and ηi stems from
the rearrangements (saddle-node bifurcations) of other blocks.
ηi is of zero mean and displays a power-law distribution
[17,22]. During an avalanche of rearrangements, δσi thus
performs a random flight. In the mean-field approximation
where ηi is assumed to be uncorrelated in space and time,
it corresponds to a Lévy flight, and exact calculations are
possible [22]. Our arguments below, however, do not rely on
this approximation.

The spectrum of the Hessian, P(λ), can be calculated as
a marginal distribution of the density of states P(λ, κ ). A
change of variables allows us to express P(λ, κ ) in terms of
�σ and 
:

P(λ, κ ) = 2λ P(�σ,
), (5)

where �σ is the accumulated stress change relative to
an arbitrary reference and the factor 2λ corresponds to
the absolute value of the Jacobian |∂ (�σ,
)/∂ (λ, κ )| (see
Appendix C). We first consider passive modes for which

 < 0 and for convenience chose to define �σ such that
�σ = 0 at κ = 0. If many rearrangements take place in the
system (as expected after a fast quench or after a succession
of avalanches triggered by increasing the stress), then the
flights in each block will lead to a finite distribution for
P(�σ ) at any 
 < 0, independently of the initial conditions,
as long as P0(
) > 0. In particular, P(�σ = 0,
 = 0) > 0,
implying that P(λ, κ ) ∼ λ in the limit of vanishing λ. Thus the
contribution of passive modes to the spectrum of the Hessian
is as follows:

P(λ) =
∫


�0
P(λ, κ )dκ ∼ λ

∫
κ�

√
2λ

dκ ∼ λ3/2. (6)

For a fixed 
 > 0, failure occurs when λ = 0. An example
is shown in Fig. 1 as point D and its mirror image D′. Thus the
dynamics after a fast quench or a big avalanche corresponds
to a stochastic walk with absorbing conditions at these points
and reinsertion in points B′ (B) if failure happened in D (D′).

We then identify x = �σ − �σ |λ=0 as the additional stress
needed to trigger a shear transformation. The density of states
can be shown to display a power law between the absorption
and reinsertion points D and B [42]. From Ref. [22] we know
that P(x,
) ∼ (x/x∗)θ for x < x∗, where x∗ corresponds to
point B. For x � x∗, P(x) will vary smoothly. It is straightfor-
ward to show that x∗ ∼ 
3/2 and that for x 	 x∗, x ∼ λ2/κ

and 
 ∼ κ2 (see Appendix D). Using Eq. (5) we finally
obtain:

P(λ, κ ) ∼ λ2θ+1

κ4θ
for λ 	 κ2. (7)

Equation (7) readily gives the contribution of shear transfor-
mations to the spectrum of the Hessian:

P(λ) =
∫


>0
P(λ, κ )dκ ∼

{
λ2θ+1 θ < 1/4
λ3/2 θ � 1/4

. (8)

Thus if θ < 1/4, then shear transformations dominate the
low-frequency spectrum of the Hessian. Following Eq. (7), the
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integral in Eq. (8) is dominated by large κ , implying that shear
transformations leading to large plastic events are observed as
λ → 0. By contrast, for θ � 1/4 both shear transformations
and passive modes contribute equally. In that case the integral
in Eq. (8) is dominated by small κ ∼ √

λ, implying that low-
frequency shear transformations lead to tiny rearrangements.
Concerning the density of vibrational modes, using ω2 ∼ λ

and Eqs. (6) and (8) we get:

DL(ω) = P(λ)
dλ

dω
∼ ωα, α =

{
4θ + 3 θ < 1/4
4 θ � 1/4 . (9)

Note that in the absence of interactions θ = 0, and, conse-
quently, our result is consistent with the theoretical prediction
for noninteracting modes α = 3 [35,36]. In the presence of
interactions θ will generally be nonzero and will depend on
the system preparation. The latter allows us to test our theory,
which we now do using molecular dynamics simulations for
different preparation protocols.

III. MOLECULAR DYNAMICS

As mentioned in the introduction, mean-field theory pre-
dicts that θ = 1/2 after a quench, then drops and rises again
as a function of the applied shear strain γ [22]. The drop is
expected to be more pronounced for well-annealed glasses
[22], as confirmed numerically [16,23,24]. To test our theory
we thus measure α and θ as a function of γ for glasses
obtained using different preparations. We consider the three-
dimensional bidisperse glass of Ref. [33], composed of N
particles interacting by purely repulsive inverse power-law
potentials, which are continuous up to the third derivatives.
We consider two distinct preparation protocols: (i) a rapid
quench, which results in a poorly annealed glass, obtained
by a steepest descent after instantaneously cooling from a
temperature T = T0 (higher than the glass transition temper-
ature) to T = 0; and (ii) a slow quench, which results in a
better annealed glass, obtained by first cooling it at a low rate
from T = T0 to T = T0/10, followed by a steepest descent to
remove the remaining heat. Details are provided in Appendix
E.

After the glass is prepared, we quasistatically apply a
simple shear using Lees-Edwards periodic boundary condi-
tions [43]. As commonly reported, we find that the stress-
strain curve 〈�(γ )〉 is monotonic after a rapid quench and
displays an overshoot after a slower quench, as shown in
Figs. 2(a,b). The pseudogap exponent θ is readily extracted
using extreme value statistics [18,20], which uses the fact
that 〈xmin〉 ∼ N−1/(1+θ ), where xmin characterizes the shear
transformation closest to an instability. More precisely, it is
the additional stress needed to trigger the next plastic event.
It is proportional to the strain increment between events, γmin,
illustrated in the inset of Fig. 2(a). 〈γmin(N )〉 is reported in
Figs. 2(c,d), from which the exponent θ is extracted via a
power-law fit. The results are reported in Figs. 3(a,b) where
the predicted nonmonotonicity of θ (γ ) is observed. We find
that for the rapidly quenched glass, θ > 1/4 for all γ , leading
to the prediction that α = 4. By contrast, the slowly quenched
glass displays a range of strains for which θ < 1/4, where our
prediction is that α < 4.

FIG. 2. [(a) and (b)] Stress-strain curves averaged over 1000
realizations for different N (see legend). [(c) and (d)] Finite-size
scaling of the mean strain increment between plastic events 〈γmin〉
at three representative applied strains to determine θ (see legend).
[(e) and (f)] Finite-size scaling of the mean lowest frequency is used
at three representative strains γ to determine α (see legend). [(g)
and (h)] Density of quasilocalized modes DL (ω) at low frequencies
ω: (g) 1000 realizations at N = 16000 and (h) 5000 realizations at
N = 32000. Modes with a participation ratio above the threshold
(g) ec = 0.125 and (h) ec = 0.0625 have been removed following
the procedure of Ref. [30]. Insets of (g) and (h) show participation
ratios e and their thresholds ec (solid black lines). The green markers
on the axes of (g) and (h) indicate the fitting range of ω.

To measure the exponent α, we diagonalize the Hessian to
obtain DL(ω). We then determine α in two ways. One way
is to use the fact that the mean lowest frequency scales with
the system size as 〈ωmin〉 ∼ N−1/(1+α). We show this scaling
at three representative values of strain γ in Figs. 2(e,f) and
measured values of α are shown as blue line in Figs. 3(c,d).
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FIG. 3. [(a) and (b)] Exponent θ extracted by finite-size scaling
of 〈γmin〉 at different γ . The employed system sizes are reported in the
legends. [(c) and (d)] Green line: Prediction of α based on measured
θ . Blue line: α extracted by finite-size scaling (FSS) of 〈ωmin〉 at
different γ using system size range N = 2000, 4000, 8000, 16000
and N = 4000, 8000, 16000, 32000. Red line: α obtained from a
direct fit DL (ω) at N = 16000 and N = 32000. Our prediction for
α is indicated using a solid green line. The error bars for θ and α

correspond to 95% confidence intervals for the coefficient estimates
obtained by linear fit on a log-log scale.

The exponent α can also be measured directly from DL(ω),
in contrast to θ , that cannot be obtained directly from the
distribution P(γmin), as we explain in Appendix F. However,
this measurement is challenging as it is polluted by the
influence of plane waves and by finite-size effects at low
frequencies (see Figs. 2(g,h) and Appendix G). In order to
perform this measurement, we follow a protocol [30] that
separates quasilocalized modes from plane waves based on
their participation ratio e ≡ 1/(N

∑
j (�

2
j )

2), where � j is
the eigenmode component on the jth particle. Examples of
participation ratios are shown in insets of Figs. 2(g,h) where
the employed threshold ec is indicated by a horizontal line.
We have verified robustness of our results below by raising
and lowering ec by 20%. α is fit on the “filtered” DL(ω),
whereby the fitting range is bounded on the upper side by the
point where the power-law scaling is clearly interrupted by
the plane waves. A range of lower bounds has been used for
which the measurement of α is robust (see Appendix H for
details). The employed fitting range is indicated using green
bars in Figs. 2(g,h).

The results, in Figs. 3(c,d), show that the two different
measurements of α are in a good qualitative agreement. The
results are consistent with our theoretical prediction for α. In
rapidly quenched systems α = 4, also true in the steady state
(shown in Appendix I), while in slowly quenched systems
we find that α is significantly smaller than 4 precisely in
the range where θ < 1/4. To our knowledge, this is the first
time that such a nonmonotonic behavior of α as a function of

shear has been measured directly from molecular dynamics
simulations.

IV. CONCLUSION

We have provided a theory for the density of localized soft
modes in classical amorphous solids at zero temperature.

Our approach goes beyond previous ones by taking long-
range interactions between these modes into account. We have
found two regimes, one in which modes near a saddle-node
bifurcation are dominant, and one in which they contribute to
a finite fraction of the spectrum (the rest consisting of passive
modes that are irrelevant as far as plasticity and two-level
systems are concerned). The first regime does not appear in
rapidly quenched materials (and is thus presumably absent
in foams and granular materials). By contrast it is expected
to be very pronounced in real glasses which are much more
stable than the “slowly quenched” configurations studied here.
This view is supported by recent measurements in simulated
glasses prepared by a swap algorithm (that are comparable
to experimental cooling rates), which indeed show extremely
small values for θ [24]. Note that our argument appears to be
rather generic and may apply to other disordered systems with
long-range interactions, e.g., in crystals with defects.

Our work is a necessary first step to describe systems at
finite temperatures or shear rates. For example, it is interesting
to reflect on the role of thermal fluctuations in a perturbative
manner if a very small temperature would have been switched
on in the configurations we have described. Modes in which
the high energy well is occupied would eventually switch
states (an effect that is faster for small λ and κ where barriers
are small and activation is fast). In the (λ, κ ) plane this would
lead to a depleted region whose right border corresponds to
a limiting parabola where wells are of equal depth (including
point C and the origin Fig. 1). In time the depleted region
will grow away from the origin and a pseudogap may open
at the limiting parabola [5,44,45]. Away from this region we
expect our described solutions to hold. Measuring the joint
distribution P(λ, κ ) for this kind of protocol, a task for which
recent numerical methods are being designed [33], would
shed light on the nature of bottom of the energy landscape
in glasses.
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APPENDIX A: POTENTIAL SHAPE DYNAMICS

Here we derive Eq. (3) of the main text. Following Eqs. (1)
and (2), the tilted potential under shear stress in a block i is

ũi(s, δσi ) = 1

2!
λis

2 + 1

3!
κis

3 + 1

4!
s4 − sδσi, (A1)
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which can be equivalently expressed as

ũi(s, δσi ) = 1

2!
λ̃i(s − s0)2 + 1

3!
κ̃i(s − s0)3 + 1

4!
(s − s0)4,

(A2)

where s0 is the displacement that corresponds to the new
minimum, and (λ̃i, κ̃i ) are the new Taylor expansion coef-
ficients around s = s0. The relation between (λ̃i, κ̃i, s0) and
(λi, κi, δσi ) reads:

δκi ≡ κ̃i − κi = s0

δλi ≡ λ̃i − λi = κ̃is0 − 1
2 s2

0

δσi = λ̃is0 − 1
2 κ̃is2

0 + 1
6 s3

0.

(A3)

In the limit δσi → 0 we obtain

∂κi

∂σi
≡ lim

δσi→0

δκi

δσi
= 1

λi

∂λi

∂σi
≡ lim

δσi→0

δλi

δσi
= κi

λi
.

(A4)

APPENDIX B: DERIVATION OF THE PARABOLA
κ2 − 8λ/3 = 0 AFTER THE BLOCK FAILS

When the block fails, it drops to a new minimum. The
potential expanded around at the new minimum is

u(s) = 1

2!
λs2 + 1

3!
κs3 + 1

4!
s4. (B1)

At the inflection point, it satisfies:⎧⎪⎪⎨
⎪⎪⎩

du(s)

ds
= 0

d2u(s)

ds2
= 0.

(B2)

We eliminate s and obtain the relation: κ2 − 8λ/3 = 0.

APPENDIX C: DERIVATION OF THE JACOBIAN
|∂(�σ, �)/∂(λ, κ)|

To calculate the Jacobian |∂ (�σ,
)/∂ (λ, κ )| we first ex-
press σ as a function of λ and κ . To this end we substitute
λ = (κ2 − 
)/2 [Eq. (4)] into ∂κ/∂�σ = 1/λ [Eq. (3)]:

(
κ2 − 


2

)
∂κ

∂�σ
= 1, (C1)

so that

1

6

∂ (κ3 − 3
κ )

∂�σ
= 1, (C2)

and therefore

�σ = κ3 − 3λκ

3
+ c0, (C3)

where c0 is an integration constant. Hence, the Jacobian is∥∥∥∥∂ (�σ,
)

∂ (λ, κ )

∥∥∥∥ =
∣∣∣∣∂�σ

∂λ

∂


∂κ
− ∂�σ

∂κ

∂


∂λ

∣∣∣∣ = 2λ. (C4)

APPENDIX D: DISTANCE TO THE INSTABILITY

When 
 > 0 we choose the integration constant c0 in
Eq. (C3) such that x = 0 at λ = 0. We find that

x = λκ − (κ − sign (κ )
√

κ2 − 2λ)(κ2 − 2λ)

3
. (D1)

In the limit λ 	 κ2

x = 1

2

λ2

κ
. (D2)

When a block fails, it is reinserted on the parabola κ2 −
8/3λ = 0 and therefore the distance to instability of the
reinserted block is

x∗ = 1
12κ3 = 2

3
3/2. (D3)

APPENDIX E: SYSTEM PREPARATION PROTOCOL

The glass system that we use is identical to the one in
Ref. [32]. It consists of a binary mixture of point-masses
(“particles”). All details including all parameter-values can be
found in its supplemental material.

We consider glasses obtained by two different system
preparation protocols. Each glass is represented by an en-
semble of 1000 independent realizations. Each realization is
obtained by a temperature quench that starts from a state of
thermal equilibrium at a temperature T = T0 that is higher
than the glass transition temperature. The two quenching
protocols are as follows: (i) an instantaneous quench, referred
to as “rapid quench,” in which fully overdamped dynamics are
used until all the particles’ velocities have converged to zero
(here T0 = ε

kB
, where ε is a microscopic energy scale and kB is

Boltzmann’s constant), and (ii) a continuous quench, referred
to as “slow quench,” in which the system is first solidified at
a cooling rate of Ṫ = 10−3T0/tc until the temperature T =
0.1T0 is reached; overdamped dynamics are then employed
to remove the remaining heat. Here tc ≡

√
md2/ε, m is the

mass of each particle and d is the diameter of the “small”
particles.

APPENDIX F: MEASUREMENT OF γmin

To accurately measure γmin a loading protocol has been
developed in which the applied shear γ is adaptively refined
when an instability. More practically, when an instability is
detected the system is rewound to its last known equilibrium
state before the instability. The instability is then approached
using smaller steps for δγ . This protocol is repeated a number
of times, such that the value of γ at which the instability oc-
curs is characterized with a sufficient accuracy. The instability
is detected by monitoring a quantity Q ≡ max|δ�r ′

i|/(Lδγ ),
where L is the linear system size and max|δ�r ′

i| is the maximal
change in the nonaffine displacement of a particle for the
given increment in applied affine shear δγ . When the response
is elastic, Q is of order one. (Note that the factor 1/L, used
to define a dimensionless Q, changes with the system size.
We do not expect that this size dependence affects our results
because L ∼ N

1
3 changes by a factor of 3.3 between N = 2000

and N = 64000, which is less than the typical fluctuation of
Q in different realizations at fixed N .). However, if there is a
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JI, POPOVIĆ, DE GEUS, LERNER, AND WYART PHYSICAL REVIEW E 99, 023003 (2019)

FIG. 4. Sketch of the protocol to detect the instability. The cyan
curve, the blue curve, and the red curve correspond to shear steps
δγ , δγ /10, δγ /100, respectively. The dashed curves represent the
trial steps. If at some point Q2 > max (Q1, Q3, Qc ) the trial steps are
reversed and the strain step is reduced by a factor 10.

shear transformation, then Q is significantly higher. To detect
the shear transformation we set a threshold Qc to be much
larger than the typical Q in elastic shearing and then monitor
the three successive Q1, Q2, Q3 that results from the strain
history γ1 < γ2 < γ3. If Q2 > Qc and Q1, Q3 < Q2, then we
go back from γ3 to γ1 and set the strain increment δγ /10 (see
Fig. 4). This is repeated until the strain increment is smaller
than 10−6. At this final resolution, we use an additional
condition 100Q3 < Q2 to make sure that Q is discontinuous
which implies that the instability is present. In our simula-
tions, the initial strain increment δγ = 10−4 and Qc = 100.
In the end, we could ensure the error of γmin to be less
than 10−5.

APPENDIX G: FINITE-SIZE EFFECTS IN DL(ω)
AND RELATION TO P(γmin)

We now discuss finite-size effects that affect the distribu-
tion DL(ω) at low frequencies. They stem from the fact that
the states of the glass are sampled at a given value of the
accumulated strain γ (see the inset of Fig. 2(a) in the main
text). As a consequence, there is a finite probability density to
sample a state that is arbitrarily close to the next instability and
therefore we are more likely to sample a shear transformation.
This sampling also prevents us from measuring θ by directly
fitting P(γmin). Namely, as there will be a uniform probability
density of finding a shear transformation close to the instabil-
ity, P(γmin) will be uniform at small values of γmin. Note that
γ = 0 is a special point because the system is always sampled
directly after an avalanche.

To confirm this explanation we measured exponents θ ′ and
α′ defined by P(γmin) ∼ γ θ ′

min and DL(ωmin) ∼ ωα′
min, respec-

tively, where ωmin is the frequency of the softest quasilocal-
ized mode. Figures 5(a,b) compare distributions DL(ω) and
DL(ωmin) at three representative strain γ = 0, 0.02, 0.09. As
observed, α and α′ are clearly different. The distributions
P(γmin) are also shown in Figs. 5(c,d) at the three represen-
tative strain. Also the values of θ ′ are clearly different from θ ,
as displayed in main text in Figs. 3(a,b).

In Figs. 6(a,b) we report values of θ ′ respectively in rapidly
and slowly quenched glasses. In both cases θ ′ is practically
0. This confirms our explanation presented above. The corre-
sponding values of α′ are shown in Figs. 6(c,d), for which a
reasonable agreement is found with the values predicted by
the theory. This confirms our explanation: When a small ωmin

FIG. 5. The left column shows results obtained after a rapid
quench of a system of N = 16000 particles and the right column after
a slow quench for N = 32000. [(a) and (b)] The comparison between
DL (ω) and DL (ωmin ) at three representative γ = 0, 0.02, 0.09 (red,
yellow, blue). The black markers on the axes indicate the fitting
range of DL (ωmin ). The green markers on the axes indicate the same
the fitting range used in the main text [cf. Figs. 2(g) and 2(h)]. [(c)
and (d)] The distribution of P(γmin ) at the same three representative
γ = 0, 0.02, 0.09 (red, yellow, blue).

is measured it almost always corresponds to a system sampled
by chance close to the instability. Therefore, DL(ωmin) is
dominated by shear transformations even if DL(ω) is not. This
can be clearly seen by comparing regions where α = 4 for all
γ (both shear transformations and passive modes contribute
significantly to DL(ω)) but α′ < 4 (shear transformations are
dominant).
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FIG. 6. The left column shows results obtained after a rapid
quench for N = 16000 using 1000 realizations and the right column
results obtained after a slow quench for N = 32000 using 5000 real-
izations. [(a) and (b)] θ ′ is obtained by fitting P(γmin ) at different γ .
[(c) and (d)] Measured values of α′ (red line) are in good agreement
with the theoretical prediction α′ = 4θ ′ + 3 (blue line).
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FIG. 7. α measured at different lower bounds of fitting ranges
after (a) a rapid quench and (b) a slow quench. The results that are
reported in the main text (Figs. 3(c) and 3(d)) correspond to the red
lines.

APPENDIX H: COMPARISON OF α OBTAINED USING
DIFFERENT FITTING RANGES OF ω

To test the robustness of the fit of the exponent α, we
measure it using different lower bounds of the range over
which DL(ω) is fit. Note that at this point plane waves
have been filtered out by the protocol described in the main
text. This has set the upper bound of the fitting range to
be there where the power-law scaling is clearly interrupted
by the plane waves. In Figs. 7(a,b) we show that there is
a range of lower bounds for which the measured values
of α are robust in rapidly and slowly quenched glasses,
respectively.

10-1 100

101

103

2000 8000 32000

10-3

10-2

FIG. 8. (a) θ obtained from finite-size scaling analysis in steady
state. (b) The density of states of quasilocalized vibrational modes
DL (ω) at low frequencies ω for N = 16000 after modes with a
participation ratio above the threshold ec have been removed. The
green markers on the axes indicate the same fitting range that is used
in the main text (cf. Fig. 2(g)).

APPENDIX I: θ AND α IN STEADY STATE IN RAPIDLY
QUENCHED SYSTEMS

In the steady state, θ and α should no longer depend on
the system preparation. In Figs. 8(a,b), we show θ and α

at large strains for the system prepared by a rapid quench.
Clearly, θ converges to a constant larger than 1/4 and
α  4.
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