23,194 research outputs found

    Collective force generation by groups of migrating bacteria

    Full text link
    From biofilm and colony formation in bacteria to wound healing and embryonic development in multicellular organisms, groups of living cells must often move collectively. While considerable study has probed the biophysical mechanisms of how eukaryotic cells generate forces during migration, little such study has been devoted to bacteria, in particular with regard to the question of how bacteria generate and coordinate forces during collective motion. This question is addressed here for the first time using traction force microscopy. We study two distinct motility mechanisms of Myxococcus xanthus, namely twitching and gliding. For twitching, powered by type-IV pilus retraction, we find that individual cells exert local traction in small hotspots with forces on the order of 50 pN. Twitching of bacterial groups also produces traction hotspots, however with amplified forces around 100 pN. Although twitching groups migrate slowly as a whole, traction fluctuates rapidly on timescales <1.5 min. Gliding, the second motility mechanism, is driven by lateral transport of substrate adhesions. When cells are isolated, gliding produces low average traction on the order of 1 Pa. However, traction is amplified in groups by a factor of ~5. Since advancing protrusions of gliding cells push on average in the direction of motion, we infer a long-range compressive load sharing among sub-leading cells. Together, these results show that the forces generated during twitching and gliding have complementary characters and both forces are collectively amplified in groups

    Type IV Pili Can Mediate Bacterial Motility within Epithelial Cells.

    Get PDF
    Pseudomonas aeruginosa is among bacterial pathogens capable of twitching motility, a form of surface-associated movement dependent on type IV pili (T4P). Previously, we showed that T4P and twitching were required for P. aeruginosa to cause disease in a murine model of corneal infection, to traverse human corneal epithelial multilayers, and to efficiently exit invaded epithelial cells. Here, we used live wide-field fluorescent imaging combined with quantitative image analysis to explore how twitching contributes to epithelial cell egress. Results using time-lapse imaging of cells infected with wild-type PAO1 showed that cytoplasmic bacteria slowly disseminated throughout the cytosol at a median speed of &gt;0.05 μm s-1 while dividing intracellularly. Similar results were obtained with flagellin (fliC) and flagellum assembly (flhA) mutants, thereby excluding swimming, swarming, and sliding as mechanisms. In contrast, pilA mutants (lacking T4P) and pilT mutants (twitching motility defective) appeared stationary and accumulated in expanding aggregates during intracellular division. Transmission electron microscopy confirmed that these mutants were not trapped within membrane-bound cytosolic compartments. For the wild type, dissemination in the cytosol was not prevented by the depolymerization of actin filaments using latrunculin A and/or the disruption of microtubules using nocodazole. Together, these findings illustrate a novel form of intracellular bacterial motility differing from previously described mechanisms in being directly driven by bacterial motility appendages (T4P) and not depending on polymerized host actin or microtubules.IMPORTANCE Host cell invasion can contribute to disease pathogenesis by the opportunistic pathogen Pseudomonas aeruginosa Previously, we showed that the type III secretion system (T3SS) of invasive P. aeruginosa strains modulates cell entry and subsequent escape from vacuolar trafficking to host lysosomes. However, we also showed that mutants lacking either type IV pili (T4P) or T4P-dependent twitching motility (i) were defective in traversing cell multilayers, (ii) caused less pathology in vivo, and (iii) had a reduced capacity to exit invaded cells. Here, we report that after vacuolar escape, intracellular P. aeruginosa can use T4P-dependent twitching motility to disseminate throughout the host cell cytoplasm. We further show that this strategy for intracellular dissemination does not depend on flagellin and resists both host actin and host microtubule disruption. This differs from mechanisms used by previously studied pathogens that utilize either host actin or microtubules for intracellular dissemination independently of microbe motility appendages

    A two-component regulatory system modulates twitching motility in Dichelobacter nodosus

    Full text link
    © 2015 Elsevier B.V. All rights reserved. Dichelobacter nodosus is the essential causative agent of footrot in sheep and type IV fimbriae-mediated twitching motility has been shownto be essential for virulence.Wehave identified a two-component signal transduction system (TwmSR) that shows similarity to chemosensory systems from other bacteria. Insertional inactivation of the gene encoding the response regulator, TwmR, led to a twitching motility defect, with the mutant having a reduced rate of twitching motility when compared to the wild-type and a mutant complemented with the wild-type twmR gene. The reduced rate of twitching motility was not a consequence of a reduced growth rate or decreased production of surface located fimbriae, but video microscopy indicated that it appeared to result from an overall loss of twitching directionality. These results suggest that a chemotactic response to environmental factors may play an important role in the D. nodosus-mediated disease process

    Targeted mutagenesis in a human-parasitic nematode.

    Get PDF
    Parasitic nematodes infect over 1 billion people worldwide and cause some of the most common neglected tropical diseases. Despite their prevalence, our understanding of the biology of parasitic nematodes has been limited by the lack of tools for genetic intervention. In particular, it has not yet been possible to generate targeted gene disruptions and mutant phenotypes in any parasitic nematode. Here, we report the development of a method for introducing CRISPR-Cas9-mediated gene disruptions in the human-parasitic threadworm Strongyloides stercoralis. We disrupted the S. stercoralis twitchin gene unc-22, resulting in nematodes with severe motility defects. Ss-unc-22 mutations were resolved by homology-directed repair when a repair template was provided. Omission of a repair template resulted in deletions at the target locus. Ss-unc-22 mutations were heritable; we passed Ss-unc-22 mutants through a host and successfully recovered mutant progeny. Using a similar approach, we also disrupted the unc-22 gene of the rat-parasitic nematode Strongyloides ratti. Our results demonstrate the applicability of CRISPR-Cas9 to parasitic nematodes, and thereby enable future studies of gene function in these medically relevant but previously genetically intractable parasites

    Development of Twitching in Sleeping Infant Mice Depends on Sensory Experience

    Get PDF
    SummaryMyoclonic twitches are jerky movements that occur exclusively and abundantly during active (or REM) sleep in mammals, especially in early development [1–4]. In rat pups, limb twitches exhibit a complex spatiotemporal structure that changes across early development [5]. However, it is not known whether this developmental change is influenced by sensory experience, which is a prerequisite to the notion that sensory feedback from twitches not only activates sensorimotor circuits but modifies them [4]. Here, we investigated the contributions of proprioception to twitching in newborn ErbB2 conditional knockout mice that lack muscle spindles and grow up to exhibit dysfunctional proprioception [6–8]. High-speed videography of forelimb twitches unexpectedly revealed a category of reflex-like twitching—comprising an agonist twitch followed immediately by an antagonist twitch—that developed postnatally in wild-types/heterozygotes, but not in knockouts. Contrary to evidence from adults that spinal reflexes are inhibited during twitching [9–11], this finding suggests that twitches trigger the monosynaptic stretch reflex and, by doing so, contribute to its activity-dependent development [12–14]. Next, we assessed developmental changes in the frequency and organization (i.e., entropy) of more-complex, multi-joint patterns of twitching; again, wild-types/heterozygotes exhibited developmental changes in twitch patterning that were not seen in knockouts. Thus, targeted deletion of a peripheral sensor alters the normal development of local and global features of twitching, demonstrating that twitching is shaped by sensory experience. These results also highlight the potential use of twitching as a uniquely informative diagnostic tool for assessing the functional status of spinal and supraspinal circuits

    The role of small molecule signalling in biofilm migration of Pseudomonas aeruginosa

    Full text link
    University of Technology, Sydney. Faculty of Science.Pseudomonas aeruginosa is a Gram-negative pathogen which exploits damaged epithelium to cause acute and chronic infections in a range of immunocompromised individuals. The chronic nature of infections caused by P. aeruginosa is often associated with the formation of biofilms. Extension and retraction of type IV pili (tfp) mediates a form of surface translocation, termed twitching motility, which is involved in active biofilm expansion and sessile biofilm formation. In P. aeruginosa the biogenesis, assembly and twitching motility function of tfp is controlled by a number of complex regulatory systems, however the signals that these systems respond to are not well characterised. The aim of this Thesis was to understand how intracellular and extracellular signals control P. aeruginosa twitching motility-mediated biofilm expansion. In this Thesis five independent fimL mutants, that had presumably acquired extragenic suppressor mutations which restored twitching motility ability, were characterised. All fimL revertants were found to have increased levels of intracellular cyclic AMP (icAMP). While an extragenic suppressor mutation in the cAMP phosphodiesterase CpdA was shown to be responsible for the increase in icAMP levels and restoration of twitching motility in one fimL revertant, the site of suppressor mutation(s) in the remaining four revertants was not identified. These results suggest that twitching motility reversion in fimL mutants occurs via at least two mechanisms and that an increase in icAMP levels is correlated with twitching motility. Extracellular ATP (eATP) is released by damaged epithelial cells which acts as a “danger” signal to recruit host immune system factors to repair the damage. As P. aeruginosa has a propensity for damaged epithelia the effect of eATP on P. aeruginosa biofilm expansion and formation was investigated. The results presented in this Thesis demonstrate that eATP inhibits P. aeruginosa twitching motility-mediated biofilm expansion and stimulates sessile biofilm formation, which may provide a potential advantage for P. aeruginosa within an infection setting. Additionally, our results suggest that high levels of endogenously-produced bacterial eATP acts to coordinate P. aeruginosa multicellular behaviours. This Thesis also reports the identification of a novel extracellular signal N-acetylglucosamine, which stimulates P. aeruginosa twitching motility. Additionally, the twitching motility response of P. aeruginosa to the host derived signals serum albumin, mucin and oligopeptides was characterised in detail. These analyses implicated the CheW-homolog, ChpC which is a component of the Chp chemosensory system, in this response. Overall the results presented in this Thesis provide insight into the regulation P. aeruginosa twitching motility by a number of intracellular and extracellular signals. Our results suggest that the adaptive response of P. aeruginosa to these signals is likely to have significant implications in the success of this pathogen within an infection setting

    Neuropathophysiological potential of Guillain-Barré syndrome anti-ganglioside-complex antibodies at mouse motor nerve terminals

    Get PDF
    Objectives:  Anti-ganglioside antibodies are present in approximately half of Guillain–Barré syndrome (GBS) patients. Recently, it has been shown that a considerable proportion of these patients has serum antibodies against antigenic epitopes formed by a complex of two different gangliosides. However, direct experimental evidence for neuropathogenicity of this special category of antibodies is currently lacking. Here, we explored a series of GBS and GBS-variant sera with anti-ganglioside-complex antibodies for their ability to induce complement-dependent deleterious effects at the living neuronal membrane. Methods:  The neuropathophysiological potential of 31 GBS sera containing either anti-GM1/GD1a- or anti-GM1/GQ1b-ganglioside-complex antibodies was studied at motor nerve terminal presynaptic membranes in the mouse phrenic nerve/diaphragm muscle ex vivo experimental model. With electrophysiological measurements and confocal fluorescence microscopy, we assessed and quantified the damaging effect on neuronal membranes by anti-ganglioside-complex antibodies. Results:  We show that anti-GM1/GD1a- and anti-GM1/GQ1b-ganglioside-complex positive sera can induce complement-mediated functional and morphological injury at mouse motor nerve terminals ex vivo. Of the 31 investigated anti-ganglioside-complex patient sera, 17 sera induced increases in miniature end-plate potential frequency in this experimental model, mostly associated with muscle fibre twitches. Variability in potency was observed, with the anti-GM1/GD1a-complex sera inducing the most outspoken effects.&lt;b&gt;&lt;/b&gt; Conclusions:  The present study shows the presence of ganglioside-complexes as available antigens in living neuronal membranes and supplies proof-of-principle that anti-ganglioside-complex antibodies in sera from GBS patients can induce complement-mediated damage. This strongly supports the hypothesis that autoimmune targeting of ganglioside-complexes is of pathogenic relevance in a proportion of GBS patients

    Mucosal Fluid Glycoprotein DMBT1 Suppresses Twitching Motility and Virulence of the Opportunistic Pathogen Pseudomonas Aeruginosa

    Get PDF
    It is generally thought that mucosal fluids protect underlying epithelial surfaces against opportunistic infection via their antimicrobial activity. However, our published data show that human tear fluid can protect against the major opportunistic pathogen Pseudomonas aeruginosa independently of bacteriostatic activity. Here, we explored the mechanisms for tear protection, focusing on impacts of tear fluid on bacterial virulence factor expression. Results showed that tear fluid suppressed twitching motility, a type of surface-associated movement conferred by pili. Previously, we showed that twitching is critical for P. aeruginosa traversal of corneal epithelia, exit from epithelial cells after internalization, and corneal virulence. Inhibition of twitching by tear fluid was dose-dependent with dilutions to 6.25% retaining activity. Purified lactoferrin, lysozyme, and contrived tears containing these, and many other, tear components lacked the activity. Systematic protein fractionation, mass spectrometry, and immunoprecipitation identified the glycoprotein DMBT1 (Deleted in Malignant Brain Tumors 1) in tear fluid as required. DMBT1 purified from human saliva also inhibited twitching, as well as P. aeruginosa traversal of human corneal epithelial cells in vitro, and reduced disease pathology in a murine model of corneal infection. DMBT1 did not affect PilA expression, nor bacterial intracellular cyclicAMP levels, and suppressed twitching motility of P. aeruginosachemotaxis mutants (chpB, pilK), and an adenylate cyclase mutant (cyaB). However, dot-immunoblot assays showed purified DMBT1 binding of pili extracted from PAO1 suggesting that twitching inhibition may involve a direct interaction with pili. The latter could affect extension or retraction of pili, their interactions with biotic or abiotic surfaces, or cause their aggregation. Together, the data suggest that DMBT1 inhibition of twitching motility contributes to the mechanisms by which mucosal fluids protect against P. aeruginosa infection. This study also advances our understanding of how mucosal fluids protect against infection, and suggests directions for novel biocompatible strategies to protect our surface epithelia against a major opportunistic pathogen
    • …
    corecore