550 research outputs found

    GHz bandwidth electro-optics of a single self-assembled quantum dot in a charge-tunable device

    Get PDF
    The response of a single InGaAs quantum dot, embedded in a miniaturized charge-tunable device, to an applied GHz bandwidth electrical pulse is investigated via its optical response. Quantum dot response times of 1.0 \pm 0.1 ns are characterized via several different measurement techniques, demonstrating GHz bandwidth electrical control. Furthermore a novel optical detection technique based on resonant electron-hole pair generation in the hybridization region is used to map fully the voltage pulse experienced by the quantum dot, showing in this case a simple exponential rise.Comment: 7 pages, 4 figure

    Electro-elastic tuning of single particles in individual self-assembled quantum dots

    Full text link
    We investigate the effect of uniaxial stress on InGaAs quantum dots in a charge tunable device. Using Coulomb blockade and photoluminescence, we observe that significant tuning of single particle energies (~ -0.5 meV/MPa) leads to variable tuning of exciton energies (+18 to -0.9 micro-eV/MPa) under tensile stress. Modest tuning of the permanent dipole, Coulomb interaction and fine-structure splitting energies is also measured. We exploit the variable exciton response to tune multiple quantum dots on the same chip into resonance.Comment: 16 pages, 4 figures, 1 table. Final versio

    Absorption and photoluminescence spectroscopy on a single self-assembled charge-tunable quantum dot

    Get PDF
    We have performed detailed photoluminescence (PL) and absorption spectroscopy on the same single self-assembled quantum dot in a charge-tunable device. The transition from neutral to charged exciton in the PL occurs at a more negative voltage than the corresponding transition in absorption. We have developed a model of the Coulomb blockade to account for this observation. At large negative bias, the absorption broadens as a result of electron and hole tunneling. We observe resonant features in this regime whenever the quantum dot hole level is resonant with two-dimensional hole states located at the capping layer-blocking barrier interface in our structure.Comment: 6 pages, 6 figure

    Resonance fluorescence revival in a voltage-controlled semiconductor quantum dot

    Get PDF
    We demonstrate systematic resonance fluorescence recovery with near-unity emission efficiency in single quantum dots embedded in a charge-tunable device in a wave-guiding geometry. The quantum dot charge state is controlled by a gate voltage, through carrier tunneling from a close-lying Fermi sea, stabilizing the resonantly photocreated electron-hole pair. The electric field cancels out the charging/discharging mechanisms from nearby traps toward the quantum dots, responsible for the usually observed inhibition of the resonant fluorescence. Fourier transform spectroscopy as a function of the applied voltage shows a strong increase of the coherence time though not reaching the radiative limit. These charge controlled quantum dots act as quasi-perfect deterministic single-photon emitters, with one laser pulse converted into one emitted single photon

    Rapidly reconfigurable optical phase encoder-decoders based on fiber Bragg gratings

    No full text
    We demonstrate the capacity for fast dynamic reconfiguration of optical code-division multiple access (OCDMA) phase en/decoders based on fiber Bragg gratings and a thermal phase-tuning technique. The tuning time between two different phase codes is measured to be less than 2 s. An OCDMA system using tunable-phase decoders is compared with a system using fixed-phase decoders and, although the system using fixed-phase decoders exhibits a shorter output autocorrelation pulsewidth and lower sidelobes, the system using tunable-phase decoders has advantages of flexibility and a more relaxed requirement on the input pulsewidth

    Exciton states in monolayer MoSe2 and MoTe2 probed by upconversion spectroscopy

    Full text link
    Transitions metal dichalcogenides (TMDs) are direct semiconductors in the atomic monolayer (ML) limit with fascinating optical and spin-valley properties. The strong optical absorption of up to 20 % for a single ML is governed by excitons, electron-hole pairs bound by Coulomb attraction. Excited exciton states in MoSe2_2 and MoTe2_2 monolayers have so far been elusive due to their low oscillator strength and strong inhomogeneous broadening. Here we show that encapsulation in hexagonal boron nitride results in emission line width of the A:1ss exciton below 1.5 meV and 3 meV in our MoSe2_2 and MoTe2_2 monolayer samples, respectively. This allows us to investigate the excited exciton states by photoluminescence upconversion spectroscopy for both monolayer materials. The excitation laser is tuned into resonance with the A:1ss transition and we observe emission of excited exciton states up to 200 meV above the laser energy. We demonstrate bias control of the efficiency of this non-linear optical process. At the origin of upconversion our model calculations suggest an exciton-exciton (Auger) scattering mechanism specific to TMD MLs involving an excited conduction band thus generating high energy excitons with small wave-vectors. The optical transitions are further investigated by white light reflectivity, photoluminescence excitation and resonant Raman scattering confirming their origin as excited excitonic states in monolayer thin semiconductors.Comment: 14 pages, 7 figures, main text and appendi

    Discrete quantum dot like emitters in monolayer MoSe2: Spatial mapping, Magneto-optics and Charge tuning

    Get PDF
    Transition metal dichalcogenide monolayers such as MoSe2,MoS2 and WSe2 are direct bandgap semiconductors with original optoelectronic and spin-valley properties. Here we report spectrally sharp, spatially localized emission in monolayer MoSe2. We find this quantum dot like emission in samples exfoliated onto gold substrates and also suspended flakes. Spatial mapping shows a correlation between the location of emitters and the existence of wrinkles (strained regions) in the flake. We tune the emission properties in magnetic and electric fields applied perpendicular to the monolayer plane. We extract an exciton g-factor of the discrete emitters close to -4, as for 2D excitons in this material. In a charge tunable sample we record discrete jumps on the meV scale as charges are added to the emitter when changing the applied voltage. The control of the emission properties of these quantum dot like emitters paves the way for further engineering of the light matter interaction in these atomically thin materials.Comment: 5 pages, 2 figure

    Functionalization of two-dimensional tungsten diselenide and MXene for tunable optical property

    Full text link
    Since the discover of graphene in 2004, two-dimensional (2D) materials have gained tremendous attention because of their distinctive properties relative to their bulk form. Particularly, transition metal dichalcogenides (TMDs) and 2D transition metal carbides and nitrides (MXenes) have shown promising applications in flexible electrical and optoelectronic devices. Due to the atomically thin nature, the electronic band structures of these materials are very sensitive to the small changes in the lattice and the surface functionalization, offering a dimension to tune the properties of the materials. In this thesis, approaches to functionalize monolayer WSe2 and MXene were explored. The as-grown chemical vapor deposition (CVD) monolayer WSe2 flakes were treated by plasma assisted doping method. Specifically, Methane plasma was used as carbon dopant source to introduce p-type lattice doping into monolayer WSe2. In addition, chemical reactions between perfluorophenylazides (PFPA) organic molecules and WSe2 flakes were conducted where the PFPA molecules may covalently bonded to the WSe2 surface. Similarly, the PFPA functionalization was applied to MXene, an emerging 2D material with high conductivity. Shifts and intensity change were observed in Raman spectra after the functionalization, indicating structural and electric structure changes might be introduced. Further characterizations of the structures and electric properties will be taken in the near future
    corecore