33,357 research outputs found

    Interdependency of Transmission and Distribution Pricing

    Full text link
    Distribution markets are among the prospect being considered for the future of power systems. They would facilitate integration of distributed energy resources (DERs) and microgrids via a market mechanism and enable them to monetize services they can provide. This paper follows the ongoing work in implementing the distribution market operator (DMO) concept, and its clearing and settlement procedures, and focuses on investigating the pricing conducted by the DMO. The distribution locational marginal prices (D-LMPs) and their relationship with the transmission system locational marginal prices (T-LMPs) are subject of this paper. Numerical simulations on a test distribution system exhibit the benefits and drawbacks of the proposed DMO pricing processes.Comment: Accepted to 2016 IEEE PES Innovative Smart Grid Technologies (ISGT

    Real-time co-simulation of transmission and distribution networks integrated with distributed energy resources for frequency and voltage support

    Get PDF
    This paper proposes a real-time co-simulated framework to experimentally validate the dynamic performance of network-level controllers in power systems. The experiment setup includes the coordinated emulation of a transmission network linked to a distribution feeder and real distributed energy sources, working in a multi-platform and multi-manufacturer environment. The operation of an optimal hierarchical controller for voltage and frequency support of the transmission network, which exploits the power injection from battery energy storage systems (BESS), is investigated to demonstrate the feasibility, accuracy and effectiveness of the proposed setup based on a co-simulation environment. The results of different study cases implemented in the laboratory are presented, where a successful interconnection between real-time emulators and real hardware from different manufacturers was realised. The fast and timely response of the controller to disturbances caused by sudden load changes, three-phase faults and renewable generation losses is experimentally validated. Finally, the robustness of the developed test bench against noise and harmonic distortion of real signals is also demonstrated

    Superconducting DC Power Transmission and Distribution

    Get PDF

    Estimation of transmission and distribution equipment needs

    Get PDF

    Reactive optimization of transmission and distribution networks

    Get PDF
    Some of the challenges associated with the multi-objective optimization on a modern power system were addressed in this work. Optimization of reactive resources was performed in order to simultaneously optimize several criteria: transmission losses, distribution losses, voltage stability, etc. The optimization was performed simultaneously on the entire power system; transmission and distribution subsystems included. The inherent physical complexity of modeling together transmission and distribution systems was considered first. After considering all pros and cons for such a task, a model of the entire power system was successfully developed. The inherent mathematical complexity of high-dimensional optimization space was handled by introducing the decoupling principle. System is first decoupled in several independent models and optimizations were performed on each part of the system. An algorithm is developed that properly combines the independent solutions to reach the overall system optima. The principle of algorithm synthesis is used to reduce the size of the solution space. Deterministic algorithms are used to locate the local optima which are subsequently refined by probabilistic algorithm. The algorithm is applied on a "real-life" test system and it is shown that the obtained solutions outperform the solution obtained with the conventional algorithms.Ph.D.Committee Chair: Begovic, Miroslav; Committee Member: Divan, Deepakraj; Committee Member: Dorsey, John; Committee Member: Ferri, Bonnie; Committee Member: Lambert, Fran

    Transmission and Distribution Co-Simulation and Applications

    Get PDF
    As the penetration of flexible loads and distributed energy resources (DERs) increases in distribution networks, demand dispatch schemes need to consider the effects of large-scale load control on distribution grid reliability. Thus, we need demand dispatch schemes that actively ensure that distribution grid operational constraints are network-admissible and still deliver valuable market services. In this context, this work develops and evaluates the performance of a new network-admissible version of the device-driven demand dispatch scheme called Packetized Energy Management (PEM). Specifically, this work develops and investigates the live grid constraint-based coordinator and metrics for performance evaluation. The effects of grid measurements for a practical-sized, 2,522-bus, unbalanced distribution test feeder with a 3000 flexible kW-scale loads operating under the network-admissible PEM scheme is discussed. The results demonstrate the value of live grid measurements in managing distribution grid operational constraints while PEM can effectively deliver frequency regulation services. Increased penetration of flexible loads and DERs on distribution system (DS) will lead to increased interaction of transmission and distribution (T&D) system operators to ensure reliable operation of the interconnected power grids, as well as the control actions at LV/MV grid in aggregation will have significant impact on the transmission systems (TS). Thus, a need arises to study the coupling of the transmission and distribution (T&D) systems. Therefore, this work develops a co-simulation platform based on decoupled approach to study integrated T&D systems collectively. Additionally, the results of a decoupled method applied for solving T&D power flow co-simulation is benchmarked against the collaborator developed unified solution which proves the accuracy of the decoupled approach. The existing approaches in the literature to study steady-state interaction of TS-DS have several shortcomings including that the existing methods exhibit scalability, solve-time and computational memory usage concerns. In this regard, this work develops comprehensive mathematical models of T&D systems for integrated power flow analysis and brings advancements from the algorithmic perspective to efficiently solve large-scale T&D circuits. Further, the models are implemented in low-cost CPU-GPU hybrid computing platform to further speed up the computational performance. The efficacy of the proposed models, solution algorithms, and their hardware implementation are demonstrated with more than 13,000 nodes using an integrated system that consists of 2383-bus Polish TS and multiple instances of medium voltage part of the IEEE 8,500-node DS. Case studies demonstrate that the proposed approach is scalable and can provide more than tenfold speed up on the solve time of very large-scale integrated T&D systems. Overall, this work develops practically applicable and efficient demand dispatch coordinator able to integrate DERs into DS while ensuring the grid operational constraints are not violated. Additionally, the dynamics introduced in the DS with such integration that travels to TS is also studied collectively using integrated T&D co-simulation and in the final step, a mathematically comprehensive model tackles the scalability, solve-time and computational memory usage concerns for large scale integrated T&D co-simulation and applications
    • …
    corecore