303,799 research outputs found

    The multifocal pattern electroretinogram in chloroquine retinopathy

    Get PDF
    Purpose: Optimal screening for ocular toxicity caused by chloroquine and hydroxychloroquine is still controversial. With the multifocal pattern electroretinogram (mfPERG), a new electrophysiological technique has recently become available to detect early changes of ganglion cells. In this study this new technique is applied to a series of 10 patients seen consecutively receiving long-term chloroquine medication. Methods: In 10 patients receiving chloroquine medication, clinical examination, Amsler visual field testing and computerized color vision testing were performed. If toxicity was suspected, automated perimetry was carried out. In addition, in all patients conventional pattern electroretinogram (PERG) and mfPERG testing were performed. Results: On clinical examination 8 patients showed no chloroquine-associated maculopathy, while 2 patients did. Of these 2, only 1 reported abnormalities when viewing the Amsler chart, while automated perimetry showed typical, ring-like paracentral scotomas in both affected patients and color vision was significantly abnormal. In the normal patients, 4 of 8 had a mild color vision disturbance, which correlated to age-related macular changes. The amplitudes of the PERG and the central (approximately 10degrees) responses of the mfPERG were markedly reduced in chloroquine maculopathy, while the latencies were unchanged. The peripheral rings of mfPERG (ranging to 48degrees) were not affected by chloroquine toxicity. Both PERG and mfPERG were less affected by age-related macular changes. Conclusions: The reduction of PERG and central mfPERG responses in chloroquine maculopathy may help with the early detection of toxicity. Copyright (C) 2004 S. Karger AG, Basel

    Promoting the 3Rs to enhance the OECD fish toxicity testing framework.

    Get PDF
    Fish toxicity testing has been conducted since the 1860's in order to help define safe levels of chemical contaminants in lakes, rivers and coastal waters. The historical emphasis on acute lethality testing of chemicals has more recently focussed on long term sublethal effects of chemicals on fish and their prey species. Fish toxicity testing is now embedded in much environment legislation on chemical safety while it is recognized that animal use should be Replaced, Reduced and Refined (the 3Rs) where possible. The OECD Fish Toxicity Testing Framework provides a useful structure with which to address the needs of environmental safety assessment whilst implementing the 3Rs. This commentary aims to promote the implementation of the recommendations of the OECD Fish Toxicity Testing Framework

    Dictyostelium discoideum: An Alternative Nonanimal Model for Developmental Toxicity Testing

    Get PDF
    A critical aspect of toxicity evaluation is developmental and reproductive toxicity (DART) testing. Traditionally, DART testing has been conducted in vivo in mammalian model systems. New legislation aimed at reducing animal use and the prohibitive costs associated with DART testing, together with a need to understand the genetic pathways underlying developmental toxicity means there is a growing demand for alternative model systems for toxicity evaluation. Here we explore the potential of the eukaryotic social amoeba Dictyostelium discoideum, which is already widely used as a simple model system for cell and developmental biology, as a potential nonanimal model for DART testing. We developed assays for high-throughput screening of toxicity during D. discoideum growth and development. This allowed the toxicity of a broad range of test compounds to be characterized, which revealed that D. discoideum can broadly predict mammalian toxicity. In addition, we show that this system can be used to perform functional genomic screens to compare the molecular modes of action of different compounds. For example, genome-wide screens for mutations that affect lithium and valproic acid toxicity allowed common and unique biological targets and molecular processes mediating their toxicity to be identified. These studies illustrate that D. discoideum could represent a predictive nonanimal model for DART testing due to its amenability to high-throughput approaches and molecular genetic tractability

    Dictyostelium discoideum as a model for the evaluation of teratogenic compounds

    Get PDF
    Before new chemicals can be put on the market, they must be evaluated for toxicological safety. Evaluating the safety of new chemicals, for either medical, cosmetic or environmental application, is tightly regulated by worldwide legislation. A critical aspect of toxicity evaluation is developmental and reproductive toxicity (DART) testing. Traditionally, DART testing has been conducted in vivo in mammalian model systems. In fact, current EU DART testing guidelines accounts for the majority of animals used and the financial costs of new compound compliance testing. Therefore, because of the need to reduce the financial and animal costs associated with DART testing, there is a growing demand for new alternative model systems for toxicity evaluation. Dictyostelium discoideum is a eukaryotic amoeba which due to its unique developmental cycle has the potential to serve as a non-animal alternative model in DART testing. However, for a new alternative model to be proven effective it must allow for high-throughput screening, whilst maintaining biological complexity; allowing developmental toxicity results to be predictive of mammalian systems. To address these concerns, we developed new high-throughput D. discoideum growth and developmental toxicity assays. We use the assays to characterise toxicity across a broad range of test compounds, thereby revealing a significant relationship between D. discoideum and mammalian toxicity values. Our data demonstrates that D. discoideum has the biological complexity necessary to be predictive of mammalian toxicity. We further assess whether D. discoideum could be used to genetically characterise developmentally toxic compounds. Using next generation functional genomic screens, we show how the developmentally toxicity compounds, lithium and VPA can be globally genetically phenotyped. Using this genetic phenotyping approach, we were also able to identify the biological targets and processes that mediate lithium and VPA toxicity. Together, these studies illustrate the potential of D. discoideum to be developed as a new alternative model in DART testing

    Reproductive toxicity: in vivo testing guidelines from OECD

    Get PDF
    The guidelines for testing the reproductive toxicity in vivo developed and validated by Organisation for Economic Cooperation and Development allow for a systematic and internationally accepted testing and assessment of chemicals. Within reproductive toxicity two main categories of guidelines are usually identified: one dedicated to testing developmental toxicity, starting before the gestation period, while the other guidelines test the reproductive toxicity as a whole, therefore including male and female fertility and development. In this chapter, we summarize the guidelines on in vivo reproductive toxicity, by describing the general principles of the studies, the main aspects of the procedure, the endpoints and the observations, data reporting, and the criteria needed for the interpretation of their results

    Functional Toxicogenomics: Mechanism-Centered Toxicology

    Get PDF
    Traditional toxicity testing using animal models is slow, low capacity, expensive and assesses a limited number of endpoints. Such approaches are inadequate to deal with the increasingly large number of compounds found in the environment for which there are no toxicity data. Mechanism-centered high-throughput testing represents an alternative approach to meet this pressing need but is limited by our current understanding of toxicity pathways. Functional toxicogenomics, the global study of the biological function of genes on the modulation of the toxic effect of a compound, can play an important role in identifying the essential cellular components and pathways involved in toxicity response. The combination of the identification of fundamental toxicity pathways and mechanism-centered targeted assays represents an integrated approach to advance molecular toxicology to meet the challenges of toxicity testing in the 21st century
    • …
    corecore