1,432,986 research outputs found

    Brane Cube Realization of Three-dimensional Nonabelian Orbifolds

    Get PDF
    We study D-branes on three-dimensional orbifolds C3/Γ{\bf C}^3/\Gamma where Γ\Gamma are finite subgroups of SU(3). The quiver diagram of \ZnZn \in SU(3) can be expressed in three-dimensional form. According to the correspondence between quiver diagrams and brane configurations, we construct a brane configuration for {\bf C}^3/\ZnZn which has essentially three-dimensional structrue. Brane configurations for nonabelian orbifolds \C^3/\Delta(3n^2) and \C^3/\Delta(6n^2) are obtained from that for \C^3/\ZnZn by certain quotienting procedure.Comment: 19 pages, 14 figure

    Three-dimensional measurements with a novel technique combination of confocal and focus variation with a simultaneous scan

    Get PDF
    The most common optical measurement technologies used today for the three dimensional measurement of technical surfaces are Coherence Scanning Interferometry (CSI), Imaging Confocal Microscopy (IC), and Focus Variation (FV). Each one has its benefits and its drawbacks. FV will be the ideal technology for the measurement of those regions where the slopes are high and where the surface is very rough, while CSI and IC will provide better results for smoother and flatter surface regions. In this work we investigated the benefits and drawbacks of combining Interferometry, Confocal and focus variation to get better measurement of technical surfaces. We investigated a way of using Microdisplay Scanning type of Confocal Microscope to acquire on a simultaneous scan confocal and focus Variation information to reconstruct a three dimensional measurement. Several methods are presented to fuse the optical sectioning properties of both techniques as well as the topographical information. This work shows the benefit of this combination technique on several industrial samples where neither confocal nor focus variation is able to provide optimal results.Postprint (author's final draft

    Three-dimensional Model for Cohesive Sediment Transort in Estuary of Palu River

    Full text link
    Penelitian ini bertujuan untuk mengkaji dinamika transpor sedimen di Estuari Sungai Palu yang memiliki batimetri curam dan perairan yang dangkal di muara. Simulasi model hidrodinamika dan transpor sedimen dilakukan dengan menggunakan model tiga dimensi ECOMSED yang dibangun oleh HydroQual, Inc., (2002). Simulasi dilakukan dengan menggunakan gaya pembangkit debit sungai dan pasang surut. Hasil simulasi pola arus pada penampang horizontal pada setiap kondisi pasang surut dominan bergerak ke luar teluk, pada penampang vertikal, saat elevasi pasang tertinggi arus bergerak memasuki teluk pada lapisan paling bawah dengan kecepatan arus yang relatif kecil. Perhitungan elevasi permukaan dan kecepatan arus pada penampang vertikal memperlihatkan kesesuaian yang baik dengan data sekunder dan DISHIDROS dan observasi arus. Hasil simulasi transpor sedimen menunjukkan bahwa konsentrasi sedimen pada penampang horizontal dan vertikal dominan dipengaruhi oleh debit sungai dibandingkan dengan pengaruh pasang surut

    Three dimensional printed degradable and conductive polymer scaffolds promote chondrogenic differentiation of chondroprogenitor cells

    Get PDF
    Conductive polymers have been used for various biomedical applications including biosensors, tissue engineering and regenerative medicine. However, the poor processability and brittleness of these polymers hinder the fabrication of three-dimensional structures with desirable geometries. Moreover, their application in tissue engineering and regenerative medicine has been so far limited to excitable cells such as neurons and muscle cells. To enable their wider adoption in tissue engineering and regenerative medicine, new materials and formulations that overcome current limitations are required. Herein, a biodegradable conductive block copolymer, tetraaniline-b-polycaprolactone-b-tetraaniline (TPT), is synthesised and 3D printed for the first time into porous scaffolds with defined geometries. Inks are formulated by combining TPT with PCL in solutions which are then directly 3D printed to generate porous scaffolds. TPT and PCL are both biodegradable. The combination of TPT with PCL increases the flexibility of the hybrid material compared to pure TPT, which is critical for applications that need mechanical robustness of the scaffolds. The highest TPT content shows the lowest tensile failure strain. Moreover, the absorption of a cell adhesion-promoting protein (fibronectin) and chondrogenic differentiation of chondroprogenitor cells are found to be dependent on the amount of TPT in the blends. Higher content of TPT in the blends increases both fibronectin adsorption and chondrogenic differentiation, though the highest concentration of TPT in the blends is limited by its solubility in the ink. Despite the contradicting effects of TPT concentration on flexibility and chondrogenic differentiation, a concentration that strikes a balance between the two factors is still available. It is worth noting that the effect on chondrogenic differentiation is found in scaffolds without external electric stimulation. Our work demonstrates the possibility of 3D printing flexible conductive and biodegradable scaffolds and their potential use in cartilage tissue regeneration, and opens up future opportunities in using electric stimulation to control chondrogenesis in these scaffolds

    Global regularity of three-dimensional Ricci limit spaces

    Get PDF
    In their recent work [ST17], Miles Simon and the second author established a local bi-Hölder correspondence between weakly noncollapsed Ricci limit spaces in three dimensions and smooth manifolds. In particular, any open ball of finite radius in such a limit space must be bi-Hölder homeomorphic to some open subset of a complete smooth Riemannian three-manifold. In this work we build on the technology from [ST16, ST17] to improve this local correspondence to a global-local correspondence. That is, we construct a smooth three-manifold M, and prove that the entire (weakly) noncollapsed three-dimensional Ricci limit space is homeomorphic to M via a globally-defined homeomorphism that is bi-Hölder once restricted to any compact subset. Here the bi-Hölder regularity is with respect to the distance dg on M, where g is any smooth complete metric on M. A key step in our proof is the construction of local pyramid Ricci flows, existing on uniform regions of spacetime, that are inspired by Hochard’s partial Ricci flows [Hoc16]. Suppose (M, g0, x0) is a complete smooth pointed Riemannian three-manifold that is (weakly) noncollapsed and satisfies a lower Ricci bound. Then, given any k ∈ N, we construct a smooth Ricci flow g(t) living on a subset of spacetime that contains, for each j ∈ {1, . . . , k}, a cylinder Bg0 (x0, j) × [0, Tj ], where Tj is dependent only on the Ricci lower bound, the (weakly) noncollapsed volume lower bound and the radius j (in particular independent of k) and with the property that g(0) = g0 throughout Bg0 (x0, k).</p

    Three-dimensional coronal slow modes: toward three-dimensional seismology

    Get PDF
    On 2008 January 10, the twin Solar Terrestrial Relations Observatory (STEREO) A and B spacecraft conducted a high time cadence study of the solar corona with the Extreme UltraViolet Imager (EUVI) instruments with the aim of investigating coronal dynamics. Observations of the three-dimensional propagation of waves within active region coronal loops and a measurement of the true coronal slow mode speed are obtained. Intensity oscillations with a period of approximately 12 minutes are observed to propagate outwards from the base of a loop system, consistent with the slow magnetoacoustic mode. A novel analysis technique is applied to measure the wave phase velocity in the observations of the A and B spacecraft. These stereoscopic observations are used to infer the three-dimensional velocity vector of the wave propagation, with an inclination of 37 +- 6 deg to the local normal and a magnitude of 132 +- 9 and 132 +- 11 km s-1, giving the first measurement of the true coronal longitudinal slow mode speed, and an inferred temperature of 0.84 +- 12 MK and 0.84 +- 15 MK

    Three-dimensional active defect loops

    Get PDF
    We describe the flows and morphological dynamics of topological defect lines and loops in three-dimensional active nematics and show, using theory and numerical modeling, that they are governed by the local profile of the orientational order surrounding the defects. Analyzing a continuous span of defect loop profiles, ranging from radial and tangential twist to wedge ± 1 / 2 profiles, we show that the distinct geometries can drive material flow perpendicular or along the local defect loop segment, whose variation around a closed loop can lead to net loop motion, elongation, or compression of shape, or buckling of the loops. We demonstrate a correlation between local curvature and the local orientational profile of the defect loop, indicating dynamic coupling between geometry and topology. To address the general formation of defect loops in three dimensions, we show their creation via bend instability from different initial elastic distortions

    A Three-Dimensional Cell Culture Model To Study Enterovirus Infection of Polarized Intestinal Epithelial Cells

    Get PDF
    abstract: Despite serving as the primary entry portal for coxsackievirus B (CVB), little is known about CVB infection of the intestinal epithelium, owing at least in part to the lack of suitable in vivo models and the inability of cultured cells to recapitulate the complexity and structure associated with the gastrointestinal (GI) tract. Here, we report on the development of a three-dimensional (3-D) organotypic cell culture model of Caco-2 cells to model CVB infection of the gastrointestinal epithelium. We show that Caco-2 cells grown in 3-D using the rotating wall vessel (RWV) bioreactor recapitulate many of the properties of the intestinal epithelium, including the formation of well-developed tight junctions, apical-basolateral polarity, brush borders, and multicellular complexity. In addition, transcriptome analyses using transcriptome sequencing (RNA-Seq) revealed the induction of a number of genes associated with intestinal epithelial differentiation and/or intestinal processes in vivo when Caco-2 cells were cultured in 3-D. Applying this model to CVB infection, we found that although the levels of intracellular virus production were similar in two-dimensional (2-D) and 3-D Caco-2 cell cultures, the release of infectious CVB was enhanced in 3-D cultures at early stages of infection. Unlike CVB, the replication of poliovirus (PV) was significantly reduced in 3-D Caco-2 cell cultures. Collectively, our studies show that Caco-2 cells grown in 3-D using the RWV bioreactor provide a cell culture model that structurally and transcriptionally represents key aspects of cells in the human GI tract and can thus be used to expand our understanding of enterovirus-host interactions in intestinal epithelial cells.The final version of this article, as published in MSphere, can be viewed online at: http://msphere.asm.org/content/1/1/e00030-1
    • …
    corecore