12,033,295 research outputs found

    Probing New Physics from Top-charm Associated Productions at Linear Colliders

    Full text link
    The top-charm associated productions via e+ee^+ e^-, eγe^- \gamma and γγ\gamma \gamma collisions at linear colliders, which are extremely suppressed in the Standard Model (SM), could be significantly enhanced in some extensions of the SM. In this article we calculate the full contribution of the topcolor-assisted technicolor (TC2) to these productions and then compare the results with the existing predictions of the SM, the general two-Higgs-doublet model and the Minimal Supersymmetric Model. We find that the TC2 model predicts much larger production rates than other models and the largest-rate channel is γγtcˉ\gamma \gamma \to t \bar{c}, which exceeds 10 fb for a large part of the parameter space. From the analysis of the observability of such productions at the future linear colliders, we find that the predictions of the TC2 model can reach the observable level for a large part of the parameter space while the predictions of other models are hardly accessible.Comment: discussions added (version in Eur. Phys. J. C

    Chromospheric explosions

    Get PDF
    Three issues relative to chromospheric explosions were debated. (1) Resolved: The blue-shifted components of x-ray spectral lines are signatures of chromospheric evaporation. It was concluded that the plasma rising with the corona is indeed the primary source of thermal plasma observed in the corona during flares. (2) Resolved: The excess line broading of UV and X-ray lines is accounted for by a convective velocity distribution in evaporation. It is concluded that the hypothesis that convective evaporation produces the observed X-ray line widths in flares is no more than a hypothesis. It is not supported by any self-consistent physical theory. (3) Resolved: Most chromospheric heating is driven by electron beams. Although it is possible to cast doubt on many lines of evidence for electron beams in the chromosphere, a balanced view that debaters on both sides of the question might agree to is that electron beams probably heat the low corona and upper chromosphere, but their direct impact on evaporating the chromosphere is energetically unimportant when compared to conduction. This represents a major departure from the thick-target flare models that were popular before the Workshop

    Power sums and Homfly skein theory

    Full text link
    The Murphy operators in the Hecke algebra H_n of type A are explicit commuting elements, whose symmetric functions are central in H_n. In [Skein theory and the Murphy operators, J. Knot Theory Ramif. 11 (2002), 475-492] I defined geometrically a homomorphism from the Homfly skein C of the annulus to the centre of each algebra H_n, and found an element P_m in C, independent of n, whose image, up to an explicit linear combination with the identity of H_n, is the m-th power sum of the Murphy operators. The aim of this paper is to give simple geometric representatives for the elements P_m, and to discuss their role in a similar construction for central elements of an extended family of algebras H_{n,p}.Comment: Published by Geometry and Topology Monographs at http://www.maths.warwick.ac.uk/gt/GTMon4/paper15.abs.htm

    Phasefield theory for fractional diffusion-reaction equations and applications

    Full text link
    This paper is concerned with diffusion-reaction equations where the classical diffusion term, such as the Laplacian operator, is replaced with a singular integral term, such as the fractional Laplacian operator. As far as the reaction term is concerned, we consider bistable non-linearities. After properly rescaling (in time and space) these integro-differential evolution equations, we show that the limits of their solutions as the scaling parameter goes to zero exhibit interfaces moving by anisotropic mean curvature. The singularity and the unbounded support of the potential at stake are both the novelty and the challenging difficulty of this work.Comment: 41 page

    Do you want to bet? The prevalence of problem gambling amongst athletes in the UK

    Get PDF
    This presentation was given as part of the 2011 London Workshop on Problem Gambling: Theory and (Best) Practice by Dr Daniel Rhind from the Sports Sciences subject area at Brunel University. The workshop was organised by Professor Fernand Gobet and Dr Marvin Schiller and hosted by Brunel University on the 13th September 2011

    Neutrino Nucleosynthesis of radioactive nuclei in supernovae

    Get PDF
    We study the neutrino-induced production of nuclides in explosive supernova nucleosynthesis for progenitor stars with solar metallicity and initial main sequence masses between 15 M_\odot and 40 M_\odot. We improve previous investigations i) by using a global set of partial differential cross sections for neutrino-induced charged- and neutral-current reactions on nuclei with charge numbers Z<76Z < 76 and ii) by considering modern supernova neutrino spectra which have substantially lower average energies compared to those previously adopted in neutrino nucleosynthesis studies. We confirm the production of 7^7Li, 11^{11}B, 138^{138}La, and 180^{180}Ta by neutrino nucleosynthesis, albeit at slightly smaller abundances due to the changed neutrino spectra. We find that for stars with a mass smaller than 20 M_\odot, 19^{19}F is produced mainly by explosive nucleosynthesis while for higher mass stars it is produced by the ν\nu process. We also find that neutrino-induced reactions, either directly or indirectly by providing an enhanced abundance of light particles, noticeably contribute to the production of the radioactive nuclides 22^{22}Na and 26^{26}Al. Both nuclei are prime candidates for gamma-ray astronomy. Other prime targets, 44^{44}Ti and 60^{60}Fe, however, are insignificantly produced by neutrino-induced reactions. We also find a large increase in the production of the long-lived nuclei 92^{92}Nb and 98^{98}Tc due to charged-current neutrino capture.Comment: 6 pages, 2 figures, 2 table

    The chiral condensate in neutron matter

    Get PDF
    We calculate the chiral condensate in neutron matter at zero temperature based on nuclear forces derived within chiral effective field theory. Two-, three- and four-nucleon interactions are included consistently to next-to-next-to-next-to-leading order (N3LO) of the chiral expansion. We find that the interaction contributions lead to a modest increase of the condensate, thus impeding the restoration of chiral symmetry in dense matter and making a chiral phase transition in neutron-rich matter unlikely for densities that are not significantly higher than nuclear saturation density.Comment: published version, 6 pages, 4 figure

    The Theory of Storage and Price Dynamics of Agricultural Commodity Futures: the Case of Corn and Wheat

    Get PDF
    Using a restricted version of the BEKK model it is tested an implication of the theory of storage that supply-and-demand fundamentals affect the price dynamics of agricultural commodities. The commodities under analysis are corn and wheat. An interest-storage-adjusted-spread was used as a proxy variable for supply-and-demand fundamentals to test the aforementioned implication for both commodities. It is also tested the Samuelson hypothesis that spot prices have higher volatility than futures prices. It is found that the interest-storage-adjusted-spread has had a statistically significant positive influence on the spot and futures returns for both commodities. Likewise, the results also show that spot price returns have higher volatility compared to futures price returns which is consistent with the Samuelson hypothesis. The results of the aforementioned tests are consistent with both theories and with the existing literature related to commodity futures.Agricultural commodities, BEKK model, multivariate GARCH, Samuelson hypothesis, theory of storage

    Nucleon-nucleon potentials in phase-space representation

    Get PDF
    A phase-space representation of nuclear interactions, which depends on the distance r\vec{r} and relative momentum p\vec{p} of the nucleons, is presented. A method is developed that permits to extract the interaction V(r,p)V(\vec{r},\vec{p}) from antisymmetrized matrix elements given in a spherical basis with angular momentum quantum numbers, either in momentum or coordinate space representation. This representation visualizes in an intuitive way the non-local behavior introduced by cutoffs in momentum space or renormalization procedures that are used to adapt the interaction to low momentum many-body Hilbert spaces, as done in the unitary correlation operator method or with the similarity renormalization group. It allows to develop intuition about the various interactions and illustrates how the softened interactions reduce the short-range repulsion in favor of non-locality or momentum dependence while keeping the scattering phase shifts invariant. It also reveals that these effective interactions can have undesired complicated momentum dependencies at momenta around and above the Fermi momentum. Properties, similarities and differences of the phase-space representations of the Argonne and the N3LO chiral potential, and their UCOM and SRG derivatives are discussed
    corecore