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Abstract: The link between economic theory and experimental data is much tighter than

is commonly supposed. Many presumed paradoxes arise because the theory is incorrectly

applied. I go through several examples, emphasizing the theory as seen by a theorist. The

main problem with the theory is that in some instances it lacks predictive power – I

highlight where this is the case and current theoretical work designed to remedy the

problem.
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1. Introduction

The relationship between economic theory and experimental evidence is

controversial. One could easily get the impression from reading the experimental

literature that economic theory has little or no significance for explaining experimental

results. The point of this essay is that this is a tremendously misleading impression.

Economic theory makes strong predictions about many situations, and is generally quite

accurate in predicting behavior in the laboratory. Most familiar situations where the

theory is thought to fail, the failure is to properly apply the theory, and not in the theory

failing to explain the evidence.

That said, economic theory still needs to be strengthened to deal with

experimental data: the problem is that in too many applications the theory is correct only

in the sense that it has little to say about what will happen. Rather than speaking of

whether the theory is correct or incorrect, the relevant question turns out to be whether it

is useful or not useful. In many instances it is not useful. It does not predict how players

will play in unfamiliar situations. It buries too much in individual preferences without

attempting to understand how individual preferences are related to particular

environments. This latter failing is especially true when it comes to preferences involving

risk and time, and in preferences involving interpersonal comparisons – altruism, spite

and fairness.

By way of contrast, in many circumstances equilibrium is robust to modest

departures from assumptions about selfish and rational behavior. In these circumstances,

the simplest form of the theory – Nash equilibrium with selfish preferences – explains the

data quite well. As we shall explain – in this case predictions about aggregate behavior

are quite accurate. Predictions about individual behavior are better explained by a

perturbed form of Nash equilibrium – now widely known as Quantal Response

equilibrium.
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2. Equilibrium Theory That Works

The central theory of equilibrium in economics is that of Nash equilibrium. Let us

see how that theory works in a reasonably complex voting situation. The model is

adapted from Palfrey and Rosenthal [1985]. There are .  voters divided into two groups,

supporters of candidate A and candidate B. The number of voters is odd and divisible by

three and can take on the values {3,9,27,51}. Unlike Palfrey and Rosenthal the two

groups are not equal in size, rather group B is larger than group A. In the landslide

treatment, there are twice as many members of B as of A. In the tossup treatment there is

one more voter in group B than in group A. The voters may either vote for their preferred

candidate or abstain, and the rule is simple majority. The members of the winning group

receive a common prize of 105, while those in the losing group receive 5. In case of a tie,

both groups receive 55. Voting is costly: the costs are private information and drawn

independently and randomly on the interval [1,55].  Player are told the rules in a common

setting, and they get to play 50 times.

Computing the Nash equilibrium of this game is sufficiently difficult that it

cannot be done by hand, nor is it possible to prove that there is a unique equilibrium.

However, the equilibrium can be computed numerically, and grid searches show that

there is only one equilibrium. The key to equilibrium is the probability of pivotal events:

the benefit of casting a vote depends on the probability of being pivotal in an election. A

good test of Nash equilibrium then is to compare the theoretical probability of a voter

being pivotal – that is, of a close election, versus the empirical frequency observed in the
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laboratory. The graph above from Levine and Palfrey [2007] plots the theoretical

probability on the horizontal axis and the empirical frequency on the vertical axis. If the

theory worked perfectly, the points should align on the forty-five degree line. They do.

Despite the fact that both theoretically and from observing fifty data points it is no easy

matter to infer the probability of being pivotal – the theory works nearly perfectly.

It deserves emphasis that the when we speak of “theory” here we are speaking

entirely of a theoretical computation. In finding the Nash equilibrium probabilities of

being pivotal no parameters are fit to the data: no estimation is done whatever. A pure

computation is compared to live data, and the fit is nearly perfect.

The other central theory in economics besides Nash equilibrium is the competitive

equilibrium of a market. In modern theory, this can be viewed as the Nash equilibrium of

a mechanism in which traders reveal preferences to a market that then determines the

equilibrium – with the exact details of the market clearing mechanism of no importance.

Experiments on competitive equilibrium – generally in which the market clearing

mechanism is a double-oral auction in real time – have been conducted many times,

dating back at least to the work of Smith [1962]. The results are highly robust:
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competitive equilibrium predicts the outcome of competitive market experiments with a

high degree of accuracy, with experimental markets converging quickly to the

competitive price. One typical picture is the history of bids in an experiment by Plott and

Smith [1978] showing the convergence to the competitive equilibrium at a price of 60.

Again notice that the competitive price of 60 is computed from purely theoretical

considerations – no parameters are fit to the data.

This picture of data the nearly perfectly fits purely theoretical computations is true

for a wide variety of experiments and is very much at odds with the viewpoint that

experimental results somehow prove the theory wrong. Indeed the theory fits much better

than models that must be estimated in order to fit noisy field data.

3. Equilibrium Theory that Does Not Fail

Moving past theory that predicts accurately and well, there are a set of

experiments in which equilibrium – especially the refinement of subgame perfection –

apparently fails badly. One such example is the ultimatum bargaining game. Here one

player proposes a division of $10 in nickels, and the second player may either accept or

reject the proposal. If she accepts then the money is divided as agreed upon. If she rejects

the game ends and neither player receives any money. Subgame perfection predicts that

the second player should accept any positive amount, and so the first mover should get at

least $9.95. The data below from Roth et al [1991] shows that this is scarcely the case.

Nobody offers less than $2.00 and most offers are for $5.00, which is the usual amount

that the first player earns. Superficially, it would be hard to imagine a greater rejection of
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a theory than this. Moreover, like competitive market games, these results have been

replicated many times under many conditions.

Despite appearances, theory is consistent with these results – it is the

misapplication of the theory that leads to the apparent anomaly. First, the computation of

the subgame equilibrium is based on the assumption that players are selfish – that they

care only about their own money income. This assumption – which has nothing to do

with equilibrium theory, but is merely an assertion about the nature of players’ utility

functions – is clearly rejected by the data. A selfish player would not reject a positive

offer – this fact is the basis for calculating the subgame perfect equilibrium. However, the

data clearly shows that five out of twenty-seven positive offers are rejected. The data –

not to speak of common sense – shows that many players find low offers offensive in the

sense that they prefer nothing at all to a small share of the pie. A “theory” based on the

assumption of selfish preferences will naturally fail to explain the data. However, there is

nothing in the logic of rationality, Nash equilibrium, or subgame perfection that requires

players to have selfish preferences.

It is true in the mainstream theory of competitive markets economists typically

assume that people are selfish. This is not because economists believe that people are

selfish – I doubt you could find a single economist who would assert that – but rather

because in competitive markets it does not matter whether or not people are selfish

because they have no opportunity to engage in spiteful or altruistic behavior.

Consequently it is convenient for computational purposes to model people in those

environments as being selfish. That should not be taken to mean that this useful modeling

tool should be ported to other inappropriate environments, such as bargaining situations.

Surprisingly, even the theory of selfish preferences does not do so badly as a

cursory inspection of the data might indicate. Nash equilibrium – as opposed to subgame

perfection – allows any offer to be an equilibrium: it is always possible that any lower

offer than the one the first player makes might be rejected with probability one, while the

current offer is accepted. Nash equilibrium rules out two less obvious features of the data.

It rules out a heterogeneity of offers, and it rules out offers being rejected in equilibrium

(if players are truly selfish). It is a mistaken view of the theory that leads to the

conclusion that this is a large discrepancy. Any theory is an idealization. Players’ exact

preferences, beliefs, and so forth are never going to be known exactly to the modeler. As
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a result, the only meaningful theory of Nash equilibrium is Radner’s [1980] notion of

epsilon equilibrium. This requires only that no player lose more than epsilon compared to

the true optimum – which in practice can never be known by the players. The correct test

of the goodness of fit of Nash equilibrium in experimental data is not whether the results

look like a Nash equilibrium, but rather whether players losses (epsilon) is small relative

to what they might have had.

The correct calculation of the departure of the facts from the theory, in other

words, is to determine how much money a player who had available the experimental

data could have earned, and compare it to how much that player actually earned. To the

extent this is a large amount of money, we conclude the theory fits poorly. To the extent

it is a small amount of money we conclude the theory fits well. This is regardless of

whether the data “appear like” a Nash equilibrium or not. The key point is that allowing a

small epsilon in certain games can result in a large change in equilibrium behavior. That

large change does not contradict the theory of equilibrium – it is predicted by the theory

of equilibrium.

For the ultimatum game, Fudenberg and Levine [1997] calculated the losses

player suffered from playing less than optimal strategies given the true strategies of their

opponents. Out of the $10 on the table, players only lose on average about $1.00 per

game.

This is not the end of the story however. Nash equilibrium, as least as it is

currently viewed, is supposed to be the equilibrium in which players understand their

environment, including how their opponents play. It is supposed to be the outcome of a

dynamic process of learning – indeed, it may accurately be described as a situation where

no further learning is possible. This is important in the games in which the theory

worked: in the voting experiment players played 50 times and so had a great deal of

experience. Similarly, in the double oral auctions players got to participate in many

auctions and equilibrium occurs only after they acquire experience. In the ultimatum

game, players got to play only ten times. More important, in an extensive form game

where players are informed only of the outcomes and not their opponents strategies,

players would have to engage in expensive active learning to achieve a Nash equilibrium,

and without a great deal of repetition and patience, they have no incentive to do so. In

ultimatum bargaining in particular, the first mover can only conjecture what might
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happen if she demanded more – in ten plays there is relatively little incentive or

opportunity to systematically experiment with different offers to see which will be

rejected or accepted. If the game were played 100 times, for example, then it would make

sense to try demanding a lot to see if perhaps the opponent would be willing to accept

bad offers. In 10 repetitions such a learning strategy does not make sense.

A weaker theory than Nash equilibrium – but one more suitable to the ultimatum

bargaining environment – is that of self-confirming equilibrium introduced in Fudenberg

and Levine [1993]. This asserts that players optimize given correct beliefs about the

equilibrium path, but does not require that they know correctly what happens off the

equilibrium path, as they do not necessarily observe that. This makes a difference when

computing the amount of money players “lose” relative to the true optimum. In

ultimatum bargaining as we observed the first movers cannot know what will happen if

they demanded more. So setting making a demand that is too low is not a “knowing”

error, in the sense that the player has no way to know whether it is an error or not. This

leads us to compute not just the losses made by a player relative to the true optimum, but

to compute how much of those losses are “knowing losses” meaning the player might

reasonably know that they are making a loss. Self-confirming equilibrium is a theory that

predicts that knowing losses should be low – but makes no prediction about unknowing

losses.

For the ultimatum game, Fudenberg and Levine [1997] also calculated the

knowing losses. On average players lose only $0.33 per game, and this is due entirely to

second players turning down positive offers – which as we noted has nothing to do with

equilibrium theory at all. It is interesting to compare the impact of preferences (the

spiteful play of the second players) versus that of learning (the mistaken offers of the first

players). Player on average lose $0.33 due to having preferences that are not selfish, and

they lose on average $0.67 due to the fact that they lack adequate opportunity to learn

about their opponents strategies. The losses due to the deviation of preferences from the

assumption of selfish behavior are considerably less than the losses due to incomplete

learning.

The message here is not that theory does well with ultimatum bargaining. Rather

the message is that theory is weak with respect to ultimatum bargaining – very little data

in this game could be inconsistent with the theory. Rather by applying the theory
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inappropriately, the conclusion was reached that the theory is wrong, while the correct

conclusion is that the theory is not useful. Modern efforts in theory are quite rightly

directed towards strengthening the theory – primarily by better modeling the endogenous

attitudes of players towards one another as in Levine [1998], Fehr and Schmidt [1999],

Bolton and Ockenfels [2000], or Gul and Pesendorfer [2004].

Another important effort is to try to capture the insight of epsilon equilibrium –

that when some players deviate a little from equilibrium play, this may greatly change the

incentives of other players – without losing the predictive power of Nash equilibrium.

The most important effort in that direction is what has become known from the work of

McKelvey and Palfrey [1995] as quantal response equilibrium. This allows for the

explicit possibility that player make random errors. Specifically, if we denote by the

utility that a player receives from her own pure strategy IS  and opponents mixed strategy

IT
�

 by � � 	I I IU S T
�

, and let �IM �  be a behavioral parameter, we define the propensity

with which different strategies are played by

� 	 EXP� � � 		I I I I I IP S U SM T
�

� .

Quantal response theory then predicts that the mixed strategies that will be employed are

given by normalizing the propensities to add to one

�

� 	 � 	� � �	
I

I I I I I I
S

S P S P ST � � .

This theory, like Nash equilibrium, makes strong predictions. As IM l d , these

predictions in fact converge to those of Nash equilibrium. One important strength of this

theory is that it allows for substantial heterogeneity at the individual level. This is

important, because experimental data is quite noisy, and individual behavior generally

heterogeneous.
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A good example of this is in the Levine and Palfrey [2007] voting experiment

described in the first section. The aggregate fit of the theory was very good, but at the

individual level, the theory fits poorly. The figure below taken from that paper shows the

empirical probability with which a voter participates as a function of the loss from

participating. If the loss is positive, Nash equilibrium predicts the probability of

participation should be zero; if it is negative, the probability of participation should be

one, and the data should align itself accordingly. The individual data in the form of red

crosses and the aggregated data in the form of blue lines show that this is by no means

true. When losses and gains are small, the probability of participation is relatively

random – near 50%. As the loss from participating increases, the probability of

participating decreases – but it hardly jumps from 1 to 0 as the threshold of indifference

is crossed. However, the gradual decline seen in the data is exactly what is predicted by

quantal response equilibrium. Quantal response predicts that when players are near

indifferent they effectively randomize. As incentives become stronger they play more

optimally. The green line shows the best fit quantal response function where IM  is

estimated from the data. As can be seen, it fits the individual level data quite well.

A key idea here is that in the aggregate quantal response equilibrium may or may

not be sensitive to values of IM  that are only moderately large. In some games, such as



10

the voting game, it makes little difference to aggregate behavior what IM  is, since some

voters over-voting makes it optimal for other voters to under-vote. Similarly in the

market games, individual errors do not matter much at the aggregate level. The important

thing is that we can always compute the quantal response equilibrium and determine how

sensitive the equilibrium is to changes in IM .

We can tell a similar tale of poorly applied subgame perfection in the other

famous “rejection” of theory, the centipede game of McKelvey and Palfrey [1992]. The

extensive form of the game is shown above. There are two players, and each may take

80% of the pot or pass, with the pot doubling at each round. Backwards induction says to

drop out immediately. In fact, as the empirical frequencies in the diagram show, only 8%

of players actually do that. As in ultimatum bargaining, the evidence seems to fly in the

face of the theory. Again, a closer examination shows that this is not the case.

In a sense, this centipede game is the opposite of ultimatum. In ultimatum the

apparent discrepancy with theory was driven by the fact that second movers are spiteful

in the sense of being willing to take a small loss to punish an ungenerous opponent. In

centipede the discrepancy is driven by altruism – by the willingness of a few players to

suffer a small loss to provide a substantial reward to a generous opponent. The crucial

empirical fact is that 18% of players will make a gift to their opponent in the final round.

Notice that it costs them only $1.60 to give a gift worth $5.60. These gifts change the

strategic nature of the game completely. With the presence of gift-givers, the true optimal

strategy for each player is to stay in as long as possible. If you are the first mover stay in

and hope you get lucky in the final round. If you are the second mover and make it to the

final round, go ahead and grab then.

Most of the losses in centipede are actually suffered by players (foolishly

misapplying subgame perfection?) who do not realize that they should stay in as long as

possible, and so drop out too soon. Overall losses were computed by Fudenberg and

1 2 1 2

($0.40,$0.10)($0.20,$0.80)($1.60,$0.40) ($0.80,$3.20)

($6.40,$1.60)

T1[0.08] T2 [0.49] T3[0.75] T4[0.82]

P1
[0.92]

P2
[0.51]

P3
[0.25]

P4
[0.18]
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Levine [1997] to be about $0.15 per player per game. However, if you drop out too soon,

you never discover that there were players giving money away at the end of the game, so

those losses are not knowing losses. The only knowing losses are the gifts by players in

the final round. These amount to only  $0.02 per player per game. Notice that as in

ultimatum, failed learning is responsible for substantially greater losses than deviation in

preferences from the benchmark case of selfishness.

4. What Experiments Have Taught Us

Experimental economics has certainly taught us where the theory needs

strengthening – as well as settling some long-standing methodological issues. For

example, the issue of “why should we expect Nash equilibrium” has always had two

answers. One answer is that players introspectively imagine that they are in the shoes of

the other player, and reason their way to Nash equilibrium. This theory has conceptual

problems, especially when there are multiple equilibria. It also has computational issues –

for example there is a great deal of evidence that the game in which commuters choose

routes to work during rush hour is in equilibrium although individual commuters

certainly do not compute solutions to the game. Never-the-less in principle, players

might, at least in simpler games, employ a procedure such as the Harsanyi and Selten

[1988] tracing procedure. Experimental evidence, however, decisively rejects the

hypothesis that the first time players are exposed to a game they manage to play a Nash

equilibrium. As a result the current view – for example in Fudenberg and Levine [1998] –

is that if equilibrium is reached, it is through learning. For example, the rush hour traffic

game is known from the work of Monderer and Shapley [1996] to be a potential game,

and such games have been shown, for example by Sandholm [2001], to be stable under a

wide variety of learning procedures.

As Nash equilibrium cannot predict the outcome of one-off games, one area of

theoretical research is to investigate models that can. The most promising models are the

type models of Stahl and Wilson [1995]: here players are viewed as having different

levels of strategic sophistication. At the bottom level, players play randomly; more

sophisticated player optimize against random opponents; even more sophisticated players

optimize against opponents who optimize against random opponents, and so forth.

Experimental research, for example by Costa-Gomes et al [2001], shows that these
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models can explain a great deal of first-time play, as well as the details of how players

reason. The greatest lacuna in this literature, is that it has not yet been well tied in to a

theory of learning: we have a reasonable theory of first-time play, and a reasonable

theory of long-term play, but the in-between has not been solidly modeled.

The second area we highlighted above is the area of interpersonal preferences:

altruism and spite. As mentioned, there are a variety of models including Levine [1998],

Fehr and Schmidt [1999], Bolton and Ockenfels [2000], or Gul and Pesendorfer [2004],

that attack this problem, but there is not as yet a settled theory.

There is one “emperor has no clothes” aspect of experimental research. This

involves attitudes towards risk. The standard model of game theory supposes that

players’ preferences can be represented by a cardinal utility function. The deficiency in

this theory was highlighted by Rabin’s [2000] paradox

“Suppose we knew a risk-averse person turns down 50-50 lose $100/gain $105

bets for any lifetime wealth level less than $350,000, but knew nothing about the

degree of her risk aversion for wealth levels above $350,000. Then we know that

from an initial wealth level of $340,000 the person will turn down a 50-50 bet of

losing $4,000 and gaining $635,670.”

The point here is that in the laboratory players routinely turn down 50-50 lose $100/gain

$105 gambles, and even more favorable gambles. Yet this is not only inconsistent with

behavior in the large – it is off by (three!!) orders of magnitude. Roughly, the stakes in

the laboratory are so small, that any reasonable degree of risk aversion implies risk

neutrality for laboratory stakes – something strongly contradicted by the available data.

There are various possible theoretical fixes, ranging from the prospect theory of

Tversky and Kahneman [1974] to the dual self approach of Fudenberg and Levine

[2006], but it is fair to say that there is no settled theory, and that this is an ongoing

important area of research.

5. Conclusion

The idea that experimental economics has somehow overturned years of

theoretical research is ludicrous. A good way to wrap up, perhaps, is with the famous
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prisoner’s dilemma game. No game has been so much studied either theoretically or in

the laboratory. One might summarize the widespread view as: people cooperate in the

laboratory when the theory says they should not. Caveat emptor. The proper antidote to

that view can be found in the careful experiments of Dal Bo [2005]. The proper summary

of that paper is: standard Nash equilibrium theory of selfish players works quite well in

predicting the laboratory behavior of players in prisoner’s dilemma games.

What experimental economics has done very effectively is to highlight where the

theory is weak, and there has been an important feedback loop between improving the

theory – quantal response equilibrium being an outstanding example – and improving the

explanation of experimental facts.
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