47,783 research outputs found

    1-D Convolutional Graph Convolutional Networks for Fault Detection in Distributed Energy Systems

    Full text link
    This paper presents a 1-D convolutional graph neural network for fault detection in microgrids. The combination of 1-D convolutional neural networks (1D-CNN) and graph convolutional networks (GCN) helps extract both spatial-temporal correlations from the voltage measurements in microgrids. The fault detection scheme includes fault event detection, fault type and phase classification, and fault location. There are five neural network model training to handle these tasks. Transfer learning and fine-tuning are applied to reduce training efforts. The combined recurrent graph convolutional neural networks (1D-CGCN) is compared with the traditional ANN structure on the Potsdam 13-bus microgrid dataset. The achievable accuracy of 99.27%, 98.1%, 98.75%, and 95.6% for fault detection, fault type classification, fault phase identification, and fault location respectively.Comment: arXiv admin note: text overlap with arXiv:2210.1517

    COCO_TS Dataset: Pixel-level Annotations Based on Weak Supervision for Scene Text Segmentation

    Full text link
    The absence of large scale datasets with pixel-level supervisions is a significant obstacle for the training of deep convolutional networks for scene text segmentation. For this reason, synthetic data generation is normally employed to enlarge the training dataset. Nonetheless, synthetic data cannot reproduce the complexity and variability of natural images. In this paper, a weakly supervised learning approach is used to reduce the shift between training on real and synthetic data. Pixel-level supervisions for a text detection dataset (i.e. where only bounding-box annotations are available) are generated. In particular, the COCO-Text-Segmentation (COCO_TS) dataset, which provides pixel-level supervisions for the COCO-Text dataset, is created and released. The generated annotations are used to train a deep convolutional neural network for semantic segmentation. Experiments show that the proposed dataset can be used instead of synthetic data, allowing us to use only a fraction of the training samples and significantly improving the performances

    WordFences: Text localization and recognition

    Get PDF
    En col·laboració amb la Universitat de Barcelona (UB) i la Universitat Rovira i Virgili (URV)In recent years, text recognition has achieved remarkable success in recognizing scanned document text. However, word recognition in natural images is still an open problem, which generally requires time consuming post-processing steps. We present a novel architecture for individual word detection in scene images based on semantic segmentation. Our contributions are twofold: the concept of WordFence, which detects border areas surrounding each individual word and a unique pixelwise weighted softmax loss function which penalizes background and emphasizes small text regions. WordFence ensures that each word is detected individually, and the new loss function provides a strong training signal to both text and word border localization. The proposed technique avoids intensive post-processing by combining semantic word segmentation with a voting scheme for merging segmentations of multiple scales, producing an end-to-end word detection system. We achieve superior localization recall on common benchmark datasets - 92% recall on ICDAR11 and ICDAR13 and 63% recall on SVT. Furthermore, end-to-end word recognition achieves state-of-the-art 86% F-Score on ICDAR13
    • …
    corecore