43,529 research outputs found

    Identification of excitons, trions and biexcitons in single-layer WS2

    Get PDF
    Single-layer WS2_2 is a direct-gap semiconductor showing strong excitonic photoluminescence features in the visible spectral range. Here, we present temperature-dependent photoluminescence measurements on mechanically exfoliated single-layer WS2_2, revealing the existence of neutral and charged excitons at low temperatures as well as at room temperature. By applying a gate voltage, we can electrically control the ratio of excitons and trions and assert a residual n-type doping of our samples. At high excitation densities and low temperatures, an additional peak at energies below the trion dominates the photoluminescence, which we identify as biexciton emission.Comment: 6 pages, 5 figure

    The role of quantum-confined excitons vs defects in the visible luminescence of SiO2 films containing Ge nanocrystals

    Get PDF
    Synthesis of Ge nanocrystals in SiO2 films is carried out by precipitation from a supersaturated solid solution of Ge in SiO2 made by Ge ion implantation. The films exhibit strong room-temperature visible photoluminescence. The measured photoluminescence peak energy and lifetimes show poor correlations with nanocrystal size compared to calculations involving radiative recombination of quantum-confined excitons in Ge quantum dots. In addition, the photoluminescence spectra and lifetime measurements show only a weak temperature dependence. These observations strongly suggest that the observed visible luminescence in our samples is not due to the radiative recombination of quantum-confined excitons in Ge nanocrystals. Instead, observations of similar luminescence in Xe+ -implanted samples and reversible PL quenching by hydrogen or deuterium suggest that radiative defect centers in the SiO2 matrix are responsible for the observed luminescence

    Lasing in Single Cadmium Sulfide Nanowire Optical Cavities

    Full text link
    The mechanism of lasing in single cadmium sulfide (CdS) nanowire cavities was elucidated by temperature-dependent and time-resolved photoluminescence (PL) measurements. Temperature-dependent PL studies reveal rich spectral features and show that an exciton-exciton interaction is critical to lasing up to 75 K, while an exciton-phonon process dominates at higher temperatures. These measurements together with temperature and intensity dependent life-time and threshold studies suggest that lasing is due to formation of excitons, and moreover, have implications for the design of efficient, low-threshold nanowire lasers.Comment: 4 figure

    Anisotropic interactions of a single spin and dark-spin spectroscopy in diamond

    Full text link
    The nitrogen-vacancy (N-V) center in diamond is a promising atomic-scale system for solid-state quantum information processing. Its spin-dependent photoluminescence has enabled sensitive measurements on single N-V centers, such as: electron spin resonance, Rabi oscillations, single-shot spin readout and two-qubit operations with a nearby 13C nuclear spin. Furthermore, room temperature spin coherence times as long as 58 microseconds have been reported for N-V center ensembles. Here, we have developed an angle-resolved magneto-photoluminescence microscopy apparatus to investigate the anisotropic electron spin interactions of single N-V centers at room temperature. We observe negative peaks in the photoluminescence as a function of both magnetic field magnitude and angle that are explained by coherent spin precession and anisotropic relaxation at spin level anti-crossings. In addition, precise field alignment unmasks the resonant coupling to neighboring dark nitrogen spins that are not otherwise detected by photoluminescence. The latter results demonstrate a means of investigating small numbers of dark spins via a single bright spin under ambient conditions.Comment: 13 pages, 4 figure

    Mid-infrared emission and absorption in strained and relaxed direct bandgap GeSn semiconductors

    Get PDF
    By independently engineering strain and composition, this work demonstrates and investigates direct band gap emission in the mid-infrared range from GeSn layers grown on silicon. We extend the room-temperature emission wavelength above ~4.0 {\mu}m upon post-growth strain relaxation in layers with uniform Sn content of 17 at.%. The fundamental mechanisms governing the optical emission are discussed based on temperature-dependent photoluminescence, absorption measurements, and theoretical simulations. Regardless of strain and composition, these analyses confirm that single-peak emission is always observed in the probed temperature range of 4-300 K, ruling out defect- and impurity-related emission. Moreover, carrier losses into thermally-activated non-radiative recombination channels are found to be greatly minimized as a result of strain relaxation. Absorption measurements validate the direct band gap absorption in strained and relaxed samples at energies closely matching photoluminescence data. These results highlight the strong potential of GeSn semiconductors as versatile building blocks for scalable, compact, and silicon-compatible mid-infrared photonics and quantum opto-electronics

    Photoluminescence from In0.5Ga0.5As/GaP quantum dots coupled to photonic crystal cavities

    Full text link
    We demonstrate room temperature visible wavelength photoluminescence from In0.5Ga0.5As quantum dots embedded in a GaP membrane. Time-resolved above band photoluminescence measurements of quantum dot emission show a biexpontential decay with lifetimes of ~200 ps. We fabricate photonic crystal cavities which provide enhanced outcoupling of quantum dot emission, allowing the observation of narrow lines indicative of single quantum dot emission. This materials system is compatible with monolithic integration on Si, and is promising for high efficiency detection of single quantum dot emission as well as optoelectronic devices emitting at visible wavelengths

    Influence of an Sb doping layer in CIGS thin-film solar cells: a photoluminescence study

    Get PDF
    Sb doping of Cu(In,Ga)Se2 (CIGS) solar cells has been reported to exhibit a positive effect on the morphology of the absorber layer, offering a possibility to lower manufacturing cost by lowering the annealing temperatures during the CIGS deposition. In this work electron microscopy, energy-dispersive x-ray spectroscopy and photoluminescence experiments have been performed on cells deposited on soda-lime glass substrates, adding a thin Sb layer onto the Mo back contact prior to the CIGS absorber deposition. The defect structure of CIGS solar cells doped with Sb in this way has been investigated and is compared with that of undoped reference cells. The influence of substrate temperature during absorber growth has also been evaluated. For all samples the photoluminescence results can be explained by considering three donor–acceptor pair recombination processes involving the same defect pairs

    VUV-Vis optical characterization of Tetraphenyl-butadiene films on glass and specular reflector substrates from room to liquid Argon temperature

    Full text link
    The use of efficient wavelength-shifters from the vacuum-ultraviolet to the photosensor's range of sensitivity is a key feature in detectors for Dark Matter search and neutrino physics based on liquid argon scintillation detection. Thin film of Tetraphenyl-butadiene (TPB) deposited onto the surface delimiting the active volume of the detector and/or onto the photosensor optical window is the most common solution in current and planned experiments. Detector design and response can be evaluated and correctly simulated only when the properties of the optical system in use (TPB film + substrate) are fully understood. Characterization of the optical system requires specific, sometimes sophisticated optical methodologies. In this paper the main features of TPB coatings on different, commonly used substrates is reported, as a result of two independent campaigns of measurements at the specialized optical metrology labs of ENEA and University of Tor Vergata. Measured features include TPB emission spectra with lineshape and relative intensity variation recorded as a function of the film thickness and for the first time down to LAr temperature, as well as optical reflectance and transmittance spectra of the TPB coated substrates in the wavelength range of the TPB emission
    • …
    corecore