86,384 research outputs found

    Improving the Energy Efficiency of the MANTIS Kernel

    Get PDF
    Event-driven operating systems such as TinyOS are the preferred choice for wireless sensor networks. Alternative designs following a classical multi-threaded approach are also available. A popular implementation of such a multi-threaded sensor network operating system is MANTIS. The event-based TinyOS is more energy efficient than the multi-threaded MANTIS system. However, MANTIS is more capable than TinyOS of supporting time critical tasks as task preemption is supported. Thus, timeliness can be traded for energy efficiency by choosing the appropriate operating system. In this paper we present a MANTIS kernel modification that enables MANTIS to be as power efficient as TinyOS. Results from an experimental analysis demonstrate that the modified MANTIS can be used to fit both sensor network design goals of energy efficiency and timeliness

    Document Filtering for Long-tail Entities

    Full text link
    Filtering relevant documents with respect to entities is an essential task in the context of knowledge base construction and maintenance. It entails processing a time-ordered stream of documents that might be relevant to an entity in order to select only those that contain vital information. State-of-the-art approaches to document filtering for popular entities are entity-dependent: they rely on and are also trained on the specifics of differentiating features for each specific entity. Moreover, these approaches tend to use so-called extrinsic information such as Wikipedia page views and related entities which is typically only available only for popular head entities. Entity-dependent approaches based on such signals are therefore ill-suited as filtering methods for long-tail entities. In this paper we propose a document filtering method for long-tail entities that is entity-independent and thus also generalizes to unseen or rarely seen entities. It is based on intrinsic features, i.e., features that are derived from the documents in which the entities are mentioned. We propose a set of features that capture informativeness, entity-saliency, and timeliness. In particular, we introduce features based on entity aspect similarities, relation patterns, and temporal expressions and combine these with standard features for document filtering. Experiments following the TREC KBA 2014 setup on a publicly available dataset show that our model is able to improve the filtering performance for long-tail entities over several baselines. Results of applying the model to unseen entities are promising, indicating that the model is able to learn the general characteristics of a vital document. The overall performance across all entities---i.e., not just long-tail entities---improves upon the state-of-the-art without depending on any entity-specific training data.Comment: CIKM2016, Proceedings of the 25th ACM International Conference on Information and Knowledge Management. 201

    Heidegger’s Distinction between Scientific and Philosophical Judgments

    Get PDF
    Some commentators, such as Jürgen Habermas, think Martin Heidegger is guilty of a performative contradiction, because he uses judgments to situate judgments in a non-judicative context. This paper defends Heidegger by distinguishing two senses of judgment in his thought. Temporality enables two different directions of inquiry and hence two kinds of judgment. Scientific judgments arise when we turn from the temporal horizon toward entities alone; phenomenological judgments arise when we return to the temporal horizon in which such entities are accessible. Consequently, using phenomenological judgments to show the condition for the possibility of scientific judgments is not contradictory

    Towards cross-lingual alerting for bursty epidemic events

    Get PDF
    Background: Online news reports are increasingly becoming a source for event based early warning systems that detect natural disasters. Harnessing the massive volume of information available from multilingual newswire presents as many challenges as opportunities due to the patterns of reporting complex spatiotemporal events. Results: In this article we study the problem of utilising correlated event reports across languages. We track the evolution of 16 disease outbreaks using 5 temporal aberration detection algorithms on text-mined events classified according to disease and outbreak country. Using ProMED reports as a silver standard, comparative analysis of news data for 13 languages over a 129 day trial period showed improved sensitivity, F1 and timeliness across most models using cross-lingual events. We report a detailed case study analysis for Cholera in Angola 2010 which highlights the challenges faced in correlating news events with the silver standard. Conclusions: The results show that automated health surveillance using multilingual text mining has the potential to turn low value news into high value alerts if informed choices are used to govern the selection of models and data sources. An implementation of the C2 alerting algorithm using multilingual news is available at the BioCaster portal http://born.nii.ac.jp/?page=globalroundup

    Quantitative Verification: Formal Guarantees for Timeliness, Reliability and Performance

    Get PDF
    Computerised systems appear in almost all aspects of our daily lives, often in safety-critical scenarios such as embedded control systems in cars and aircraft or medical devices such as pacemakers and sensors. We are thus increasingly reliant on these systems working correctly, despite often operating in unpredictable or unreliable environments. Designers of such devices need ways to guarantee that they will operate in a reliable and efficient manner. Quantitative verification is a technique for analysing quantitative aspects of a system's design, such as timeliness, reliability or performance. It applies formal methods, based on a rigorous analysis of a mathematical model of the system, to automatically prove certain precisely specified properties, e.g. ``the airbag will always deploy within 20 milliseconds after a crash'' or ``the probability of both sensors failing simultaneously is less than 0.001''. The ability to formally guarantee quantitative properties of this kind is beneficial across a wide range of application domains. For example, in safety-critical systems, it may be essential to establish credible bounds on the probability with which certain failures or combinations of failures can occur. In embedded control systems, it is often important to comply with strict constraints on timing or resources. More generally, being able to derive guarantees on precisely specified levels of performance or efficiency is a valuable tool in the design of, for example, wireless networking protocols, robotic systems or power management algorithms, to name but a few. This report gives a short introduction to quantitative verification, focusing in particular on a widely used technique called model checking, and its generalisation to the analysis of quantitative aspects of a system such as timing, probabilistic behaviour or resource usage. The intended audience is industrial designers and developers of systems such as those highlighted above who could benefit from the application of quantitative verification,but lack expertise in formal verification or modelling
    corecore