
Improving the Energy E�ieny of theMANTIS KernelCorma Du�y1, Utz Roedig2, John Herbert1, and Corma J. Sreenan1

1 Computer Siene Dept., University College Cork, Cork
2 InfoLab21, Lanaster University, LanasterAbstrat. Event-driven operating systems suh as TinyOS are the pre-ferred hoie for wireless sensor networks. Alternative designs followinga lassial multi-threaded approah are also available. A popular im-plementation of suh a multi-threaded sensor network operating systemis MANTIS. The event-based TinyOS is more energy e�ient than themulti-threaded MANTIS system. However, MANTIS is more apablethan TinyOS of supporting time ritial tasks as task preemption is sup-ported. Thus, timeliness an be traded for energy e�ieny by hoosingthe appropriate operating system. In this paper we present a MANTISkernel modi�ation that enables MANTIS to be as power-e�ient asTinyOS. Results from an experimental analysis demonstrate that themodi�ed MANTIS an be used to �t both sensor network design goals ofenergy e�ieny and timeliness.1 IntrodutionSensor nodes must be designed to be energy e�ient in order to allow long peri-ods of unattended network operation. However, energy e�ieny is not the onlydesign goal in a sensor network. For example, timely proessing and reportingof sensing information is often required as well. This might be needed to guar-antee a maximum delivery time of sensing information from a sensor, througha multi-hop network, to a base-station. To be able to give suh assuranes, net-work omponents with a deterministi behavior will be required. The operatingsystem running on sensor nodes is one suh omponent.Event-based operating systems are onsidered to be the best hoie for build-ing energy e�ient sensor networks as they require little memory and proessingresoures. Hene, the event-based TinyOS [1℄ is urrently the preferred operatingsystem for sensor networks. Event-based operating systems are not very usefulin situations where tasks have strit proessing deadlines. Tasks are proessedsequentially, a prioritization of important tasks to meet proessing deadlinesis not possible. Multi-threaded operating systems are more suitable if suh re-quirements must be ful�lled. Thread preemption and ontext swithing enablessuh systems to prioritize tasks and meet deadlines. The MANTIS [2℄ operatingsystem is the �rst multi-threaded operating system designed spei�ally for wire-less sensor networks. Unfortunately, MANTIS has a relatively high proessing

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Lancaster E-Prints

https://core.ac.uk/display/390246?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

overhead for thread management. This proessing overhead is diretly related toredued energy e�ieny beause of the relative inrease in CPU ativity.This reates the dilemma that both design goals - energy e�ieny and time-liness - an only urrently be optimized independently. One is fored to hoosewhih goal is of higher importane in the onsidered appliation senario. There-fore, it would be good if the dilemma ould be resolved by either making TinyOSmore responsive or MANTIS more energy e�ient. In this paper the later prob-lem is solved: We present a MANTIS kernel modi�ation to inrease power e�-ieny. As the results show, MANTIS an be modi�ed to be as power-e�ient asTinyOS without impating vital kernel funtionality. Thus, the modi�ed MAN-TIS an be used to solve both important sensor network design goals.The next Setion of the paper presents related work. Setion 3 presets pre-liminary researh omparing TinyOS and MANTIS regarding event proessingapabilities and energy onsumption. This omparison motivates the modi�a-tions of the MANTIS kernel for better energy e�ieny. Setion 4 explains indetail the MANTIS kernel. Setion 5 presents and explains the MANTIS kernelmodi�ations. Setion 6 shows an evaluation of the modi�ed kernel. Setion 7onludes the paper.2 Related WorkProblems arise when a sensor network appliations require to be energy e�ientand have to provide timely proessing apabilities at the same time.One example of an operating system that tries to bridge the gap is Contiki[3℄. Contiki is an event-based sensor network operating system that inludes athreaded library that an be optionally ompiled to failitate multi-threadedappliations. Thus multi-threaded apabilities an be seletively designated tospei� proesses, without the proessing and memory overhead in all parts ofthe system.A similar approah an be seen in [4,5℄. In both works the TinyOS operatingsystem is enapsulated in a multi-threaded kernel. The operating system is thensheduled as a thread suh that it an be preempted by omplex threads ifrequired. Thus TinyOS still ahieves preemption without sari�ing the light-weight sheduling harateristis. In summary, the researh fous of [3,4,5℄ is tominimize the proessing overhead of a multi-threaded system, by isolating onlythe proesses that require multi-threaded apabilities. However no e�ort is madeto redue the overhead of the multi-threaded proesses.In [6℄ a programming onept alled �proto-threads� is desribed whih al-lows the programmer to develop a program using a multi-threaded program-ming syntax. It is argued that an event-based system is more power-e�ientbut that programming onurrent (sensor network) appliations with threads,as opposed to event handlers, is easier for the programmer. Proto-threads are,however, merely a thread abstration. They do not provide thread preemption,thus omplex proesses annot easily be multiplexed with high priority taskswithout introduing bloking.

The researh listed above tries to ompromise between power-e�ient event-based shedulers and multi-threaded shedulers. The work presented in this pa-per fous on the redution of proessing overheads in multi threaded sensornetwork operating systems.3 Preliminary ResearhThe preliminary researh investigates the di�erenes of the multi-threaded MAN-TIS [2℄ and the event-based TinyOS [1℄ operating systems. More details on thepreliminary researh an be found in [7℄. The experimental methodology is re-used for the evaluation of the optimized MANTIS presented in Setion 6.3.1 Evaluation GoalsIt is generally assumed that an event-driven operating system is very suitable forsensor networks beause few resoures are needed, resulting in an energy-e�ientsystem. However, the exat �gures are unknown and therefore quanti�ed in thispreliminary researh. On the other hand it is laimed that a multi-threadedoperating system has good event proessing apabilities in terms of meetingproessing deadlines. Again, an in-depth analysis is urrently missing and istherefore onduted. For omparison purposes, the event-based system TinyOSand the multi-threaded system MANTIS exeuting the same sensor networkappliations on the [8℄ are investigated.The following parameters - while the sensor node is exeuting a generi ap-pliation - are evaluated:1. Event Proessing : The average task exeution time Et of a partiular re-ourring sensor task is measured. Average task exeution time and its vari-ane are a measure for the event handling apabilities of the system.2. Energy Consumption: The perentage of experiment time It spent with anidle CPU is measured. CPU idle time an be used to suspend the CPU andthus relates diretly to the energy e�ieny of a system.An appliation senario for the evaluation has to be de�ned, as the parametersof interest are in�uened signi�antly by the senario. It was deided to usea senario of a generi nature so that the results are appliable to a range ofreal-world appliations.3.2 Evaluation SetupIn many ases, a sensor network is used to ollet periodially obtained mea-surement data at a entral point (sink or base-station) for further analysis. Thesensor nodes in suh a network exeute two major tasks. Sensor nodes performthe sensing task and they are used to forward the gathered data to the sink. Ifthe sink is not in diret radio range of a node, other nodes loser to the sink

are used to forward data. The exeution time of the sensing task will dependon the nature of the physial phenomenon monitored and the omplexity of thealgorithm used to analyze it. Therefore, the position of the node in suh a net-work and the omplexity of the sensing task de�ne the operating system load ofthe sensor node. The omplexity of the sensing task is varied in the experimentsand hene the appliation senario is onsidered abstrat, as it an be omparedwith many di�erent real-world deployment senarios.The omplexity of the sensing operation depends on the phenomenon moni-tored, the sensor devie used and the data pre-proessing required. As a result,the operating system an be stressed very di�erently. If, for example, an AT-MEGA128 CPU with a proessing speed of 4Mhz is onsidered (a urrentlypopular hoie for sensor nodes), a simple temperature sensing task proessedthrough the Analogue to Digital Converter an be performed in less than 1ms[9℄. In this ase only a 16bit value has to be transferred from the sensing devieto the CPU. If the same devie is used in onjuntion with a amera, imageproessing might take some time before a deision is made. Depending on am-era resolution and image proessing performed, a sensing task an easily takemore than 100ms [10℄. Other appliation examples doumented in the litera-ture are situated in between these values. Note that a long sensing task an besplit-up into several sub-tasks but in pratie this is not always possible. Theexperimental evaluation spans the task sizes desribed (1ms...100ms).The following paragraphs give an exat spei�ation of the abstrat applia-tion senario used, whih is de�ned by its topology, tra� pattern and sensingpattern. The appliation senario is then implemented using TinyOS and MAN-TIS on the DSYS25[8℄ sensor platform for evaluation.Topology The sensor network is used to forward sensor data towards a singlebase-station in the network. It is assumed that a binary tree topology is formedin the network (see Fig. 1). Depending on the position n in the tree, a sensornode might proess varying amounts of pakets. Nodes loser to the root are moreinvolved in paket forwarding as these nodes have to multiplex paket forwardingoperations with their sensing operations. In the experiments, the behaviour ofa single node at all possible positions n is emulated and measured by applyingthe sensing pattern and network tra� as desribed next.
n=3

n=1

n=2Fig. 1. Binary TreeSensing Pattern A homogeneous ativity in the sensor �eld is assumed for theabstrat appliation senario. Eah sensor gathers data with a �xed frequeny

fs. Thus, every ts = 1/fs a sensing task of the duration ls has to be proessed.As mentioned, the duration ls is variable between ls = 4000 and ls = 400000lok yles depending on the type of sensing task under onsideration (Whihorresponds to 1ms/100ms on a 4MHz CPU).Tra� Pattern Depending on the position n of a node in the tree, varyingamounts of forwarding tasks have to be performed. It is assumed that no timesynhronization among the sensors in the network exists. Thus, even if eah sen-sor produes data with a �xed frequeny, data forwarding tasks are not reatedat �xed points in time. The arrival rate λn of pakets at a node at tree-level nis modeled as a Poisson proess. As the paket forwarding ativity is related tothe sensing ativity in the �eld, λn is given by:
λn = (2n

− 1) · fs (1)This equation is a simpli�ation; queuing e�ets and losses are negleted,but nevertheless provides a good method to sale the proessing performanerequirements of a sensor network appliation. It is assumed that the duration(omplexity) lp of the paket-proessing task, is lp = 4000 lok yles. This isthe e�ort neessary to read a paket from the transeiver, perform routing andre-send the paket over the transeiver. This is a ommon proessing time andwas obtained analyzing the DSYS25 sensor nodes using the Nordi radio [11℄.3.3 Event ProessingIt is assumed that the paket-proessing task within the nodes has priority sothat deadlines regarding paket forwarding an be met. Thus, in the MANTISimplementation, the paket-proessing task has a higher priority than the sensingtask. In the TinyOS implementation, no prioritization is implemented as thisfeature is not provided by the operating system.Task Exeution Time To haraterize proessing performane of the operat-ing system, the average task exeution time Et of the paket forwarding task, ismeasured. During the experiment, J paket-proessing times ej are reorded. Todo so, the task start time estart and the task ompletion time estop are measuredand the paket-proessing time is reorded as e = estop−estart. The average taskexeution time Et is alulated at the end of the experiment as: Et =
∑

ej/J .For eah tree position n, the experiment is run until J = 25000 paket-proessingevents are reorded.Results In the experiment, the average task exeution time Et is determined forTinyOS and MANTIS supporting the abstrat appliation senario (see Fig. 2).Where MANTIS is used, it an be observed that the averagepaket-proessing time is independent of the sensing task exeution time.Furthermore, Et is also independent from the position n of the node in the

 0

 2

 4

 6

 8

 10

 12

 1 2 3 4 5 6 7 8

A
v
e

ra
g

e
 P

ro
c
e

s
s
in

g
 T

im
e

 E
t
(m

s
)

Tree Position [n]

MANTIS Et, ls=1 ms
MANTIS Et, ls=5 ms

MANTIS Et, ls=10 ms
MANTIS Et, ls=25 ms
MANTIS Et, ls=50 ms
MANTIS Et, ls=75 ms

MANTIS Et, ls=100 ms

 0

 2

 4

 6

 8

 10

 12

 1 2 3 4 5 6 7 8

A
v
e

ra
g

e
 P

ro
c
e

s
s
in

g
 T

im
e

 E
t
(m

s
)

Tree Position [n]

TinyOS Et, ls=1 ms
TinyOS Et, ls=5 ms

TinyOS Et, ls=10 ms
TinyOS Et, ls=25 ms
TinyOS Et, ls=50 ms
TinyOS Et, ls=75 ms

TinyOS Et, ls=100 ms

a) MANTIS b) TinyOSFig. 2. Average paket-proessing time Et .tree. The average proessing time inreases slightly, under a heavy load. This isdue to the fat that under heavy load paket forwarding tasks have to bequeued (see Fig. 2 a)).Where TinyOS is used, the average proessing time for the paket forwardingtask Et depends on the length of the sensing ls of the sensing task. In addition,under heavy load the queuing e�ets of the paket forwarding tasks also on-tribute somewhat to the average proessing time (see Fig. 2 b)).The variane in the paket-proessing time Et is also reorded but is notshown due to spae restritions. However, it has to be noted that this varianeis signi�antly smaller in MANTIS than in TinyOS (see [7℄ for details). Thus,MANTIS is better able to support senarios whih require preditable proessingbehaviour.The thread prioritization apability of MANTIS is learly visible in the ex-perimental results. Paket proessing times are independent of the onurrentlyexeuted and lower priority sensing task. In TinyOS, sensing and paket for-warding task delays are oupled, and the in�uene of the sensing ativity on thepaket forwarding ativity is learly visible.3.4 Energy ConsumptionTo evaluate power-e�ieny, This study investigates the available idle time inwhih low-power operations an be sheduled. Thus the omparative e�etivenessof spei� power management poliies an be guaged on the amount of potentiallow-power (idle) time available.Idle time In the experiment, the abstrat appliation senario is exeuted bythe sensor node running TinyOS or MANTIS. The duration of the experiment
T and the duration ik of K idle time periods during the experiment is reorded.
i is de�ned as i = istop − istart . All idle periods ik are summarized and theperentage idle time, It, the perent of experiment time, in whih the proessoris idle, whih is alulated as follows: It = (

∑

ik/T) · 100. Again, for eah tree

position n, the experiment is run until J = 25000 paket-proessing events arereorded.Results In the �rst experiment, the perentage idle time It is determined forTinyOS and MANTIS supporting the abstrat appliation senario. (see Fig. 3).
 40

 50

 60

 70

 80

 90

 100

 1 2 3 4 5 6 7 8

P
e

rc
e

n
ta

g
e

 I
d

le
 T

im
e

 I
t
(%

 o
f

T
)

Tree Position [n]

K
modified

 ls=1ms
K

modified
 ls=5ms

K
modified

 ls=10ms
K

modified
 ls=25ms

K
modified

 ls=50ms
K

modified
 ls=75ms

K
modified

 ls=100ms

 40

 50

 60

 70

 80

 90

 100

 1 2 3 4 5 6 7 8
P

e
rc

e
n

ta
g

e
 I

d
le

 T
im

e
 I

t
(%

 o
f

T
)

Tree Position [n]

TinyOS Ik, ls=1 ms
TinyOS Ik, ls=5 ms

TinyOS Ik, ls=10 ms
TinyOS Ik, ls=25 ms
TinyOS Ik, ls=50 ms
TinyOS Ik, ls=75 ms

TinyOS Ik, ls=100 msa) MANTIS b) TinyOSFig. 3. Perentage idle time It for both operating systems.The time spent in idle mode drops for both operating systems exponentiallywith the inreasing node position in the tree desribed by the parameter n. Thisbehavior is expeted as the number of paket tasks inreases aordingly. Lessobvious is the fat that the available idle time drops faster in MANTIS thanin TinyOS. The fast drop in idle time is aused by the ontext swithes in theMANTIS operating system. The more paket forwarding tasks are reated, themore likely it is that a sensing task is urrently running when a paket interruptours. Subsequently, a ontext swith to the higher prioritized forwarding taskis needed.3.5 FindingsThe experimental results show that MANTIS has a muh more preditive be-havior exeuting the paket-proessing task than TinyOS. More preise, theexeution time in MANTIS has a low variation and is independent of other a-tivity suh as the sensing task. Thus, MANTIS would be preferable in situationsthat need deterministi and timely proessing. However, the MANTIS system isnot as power-e�ient as TinyOS. Thus, TinyOS would seem preferable if energyonsumption is deemed to be of primary importane. If the system is not loaded(leaf node with n = 1 and a sensing task with the size of ls = 1ms) a di�ereneof only 0.1% in idle time is measured. However, if the system is under a heavyload (leaf node with n = 8 and a sensing task with the size of ls = 100ms) a 6.9%di�erene in the idle time is enountered. The biggest di�erene is measured for
n = 8 with a task size of ls = 1ms whih results in a di�erene of 7.6%.

Algorithm 1 Thread struture1: mos_thread_new(thread_A,128, PRIORITY_HIGH)2: thread_A3: while(running)4: ...5: mos_semaphore_wait(A1)6:7: int_A8: ...9: mos_semaphore_post(A1)10: ...
1:dispath_thread()2: PUSH_THREAD_STACK()3: CURRENT_THREAD = readyQ.getThread()4: CURRENT_THREAD.state=RUNNING5: POP_THREAD_STACK()

part A part B4 The MANTIS Kernel ArhitetureThe threaded MANTIS arhiteture implements thread-preemption, allowing theoperating system to interrupt any ative thread to immediately begin proessinga thread of higher priority. As a result, the operating system an respond faster toritial events. In general, the system arhiteture follows the design priniples oflassial multi-threaded operating systems. However, to failitate the neessarypower management requirements, energy saving mehanisms are integrated inthe thread sheduling. The proessing states (e.g. sleeping, waiting) of all threadsare monitored and used to deide whih power saving modes of the CPU shouldbe ativated. Power saving is ativated through a so-alled idle task whih isspeial purpose thread with the lowest possible thread priority, that is sheduledwhen all other threads are inative.4.1 OverviewEah task the operating system must support an be implemented as aseparate MANTIS thread. A simpli�ed view of this thread struture is shownin Alg. 1, part A. A new thread is initialized via the funtion mos_thread_new(line 1). Subsequently the thread proessing, often implemented as anin�nite loop, is started (line 3). Proessing might be halted using thefuntion mos_semaphore_wait when a thread has to wait for a resoure tobeome available (line 5). An interrupt handler (line 7) using the funtionmos_semaphore_post (line 9) is used to signal the waiting thread that theresoure is now available and thread proessing is resumed. While a thread iswaiting on a resoure to beome available, other threads might be ativated orif no other proessing is required, a power saving mode is entered.As an example, a thread might be used to proess inoming pakets from atranseiver hip. In this ase, the mos_semaphore_wait is used to suspend thethread until a new paket arrives at the transeiver. If the transeiver reeives apaket, an interrupt is exeuted and the thread is resumed to read the urrentlyavailable paket and proess it.

4.2 ShedulingThread sheduling is performed within the kernel funtion dispath_threadshown in Alg. 1, part B. This funtion searhes a data struture alled readyQfor the highest prioritized thread and ativates it. The readyQ is an array oflinked lists ontaining pointers to the urrently ative threads. Eah index ofthe array orresponds to a thread priority level.When the dispath_thread funtion is alled, the urrent ative thread issuspended alling PUSH_THREAD_STACK (line 2). Thus, the urrent CPUregister information is saved to the heap memory alloated to the urrent thread.The highest priority thread is then seleted from the readyQ (line 3) and itsregister values are restored by the POP_THREAD_STACK funtion (line 5).The thread an then resume proessing at the exat point it was previouslysuspended.Before the dispath_thread funtion is alled, the readyQ struture is up-dated. Threads that are urrently sleeping or that are waiting on a semaphore areexluded from the readyQ. The sheduling through the dispath_thread funtionan be initiated by two di�erent means: initiation within a semaphore operationor initiation through a time slie timer event.Semaphore A thread uses the funtion mos_semaphore_wait to oordinateaess to a shared resoure. If the resoure is not ready, proessing is suspendeduntil the resoure assoiated with the semaphore beomes available (Alg. 2, partA). If the resoure is not immediately available (, line 3), the urrent threadis suspended and a ontext swith using the previously explained funtion dis-path_thread is performed (line 7). Before the ontext swith is performed, thefuntion update_sleep_ounters is exeuted (line 6). This funtion is used tohek if urrently sleeping threads have to wake up and join the readyQ stru-ture. In the MANTIS operating system, the user has the ability to make athread sleep for a period of time. Thus, suspended threads either wait on asemaphore or they sleep. Pointers to the sleeping threads are stored in a sortedlist, the sleepQ. Sleeping threads are sorted aording to their wakeup time,suh that the earliest thread to wake-up will be at the head of the queue. Thefuntion update_sleep_ounters updates the wakeup times and if threads inthe sleepQ are due, they are moved to the readyQ. Within an interrupt routine,mos_semaphore_post is alled to inform a waiting thread that a resoure is nowavailable for proessing (Alg. 2, part B). If a thread is waiting for the resoure(line 3), the thread is ativated and added to the readyQ struture. Thereafter,the update_sleep_ounters funtion is alled to hek if sleeping threads haveto be ativated as well. Finally, the thread waiting for the semaphore (or ahigher prioritized thread that was moved from the sleepQ) is ativated usingdispath_thread.Time Slie Timer A timer is set to reate an interrupt every 20ms (Alg. 3).This interrupt serves two purposes. First, the interrupt ats as a time slie for

Algorithm 2 Semaphore1: mos_semaphore_wait(Semaphore s)2: s.val--3: if (s.val<0)4: s.addThread(CURRENT_THREAD)5: CURRENT_THREAD.state=BLOCKED6: update_sleep_ounters()7: dispath_thread() 1: mos_semaphore_post(Semaphore s)2: s.val++3: if (s.getThread()!=NULL)4: s.getThread().state=RUNNING5: readyQ.addThread(s.getThread())6: update_sleep_ounters()7: dispath_thread()part A part BAlgorithm 3 Timer Interrupt1: t_slie_int()2: readyQ.addThread(CURRENT_THREAD)3: update_sleep_ounters()4: dispath_thread()the Round Robin sheduler, in whih lengthly tasks are interrupted to give otherequal priority threads a proessing time-slie, thus preventing proess starvation.Seond, the periodi interrupts are used to hek if threads in the sleepQ have towake-up. The update_sleep_ounters funtion is alled from the timer interruptto reativate and reshedule sleeping threads. Obviously, threads sent to sleepusing this mehanism do not expet to sleep with a period less than the periodiinterrupt, 20ms. Finally, dispath_thread is alled to perform the ontext swithto the new thread. In many appliation ases, the new thread will be the sameas the old thread.4.3 Power ManagementIn MANTIS, thread state information is used to determine the level of powermanagement to be initiated. Sensor network proessors have a number of di�er-ent low-power modes, providing a range of energy onserving states, varying inpower-onserving performane and wake-up responsiveness.Thread state information is used in MANTIS to determine if a thread requiresa responsive wake-up, or if more relaxed wake-up times an be aepted. If thethread is BLOCKED (Alg. 2, part A:line 3), it is assumed that fast wake-uptimes are required and an idle power mode with fast wake-up response time ishosen. If all threads reside in a SLEEPING state, then the thread sleep ountersare used to determine the next wakeup period. A timer is set to wakeup theproessor in time for the next thread event. Thus the proessor an be put intoa deep sleep power mode and wakeup early enough to ompensate for the slowproessor wake-up period.Power management in the MANTIS kernel is implemented as a separatethread, the idle thread. The idle thread is assigned the lowest priority and isalways in a ready state. Thus, if no threads are ready to be proessed the idlethread by default will be the next thread to be ativated and the proessor willbe transitioned into a low power state determined as previously explained.

Algorithm 4 Modi�ed semaphore funtions1: mos_semaphore_wait(Semaphore s)2: s.val--3: if (s.val<0)4: if(readyQ.getThread!=NULL)5: if(CURRENT_THREAD.state==BLOCKED_RUNNING)6: CURRENT_THREAD.state==BLOCKED7: s.addThread(CURRENT_THREAD)8: #ifdef MANTIS_SLEEP9: update_sleep_ounters()10: dispath_thread()11: else12: CURRENT_THREAD.state=BLOCKED_RUNNING13: do_power_management()
1: mos_semaphore_post(Semaphore s)2: s.val++3: if (s.thread.state==BLOCKED)4: s.getThread().state=RUNNING5: readyQ.addThread(s.getThread())6: #ifdef MANTIS_SLEEP7: update_sleep_ounters()8: dispath_thread()9: else10: s.getThread().state=RUNNINGpart A part B5 MANTIS Kernel Modi�ationsAs shown in the preliminary researh, MANTIS has the apability of task pre-emption and thus ritial high priority tasks an be exeuted deterministially.However, the power onsumption of a node running MANTIS is onsiderablyhigher than the power onsumption of a node running TinyOS. The high energyonsumption of the MANTIS operating system is aused by the proessing over-head for thread management. This relatively high overhead is mainly aused bythe (i) idle thread, the (ii) time sliing and the ine�ient use of the (iii) kernelqueuing strutures.5.1 Idle ThreadAs previously explained, power management is implemented in MANTIS withinthe idle thread. If no other thread is urrently ative, the idle thread is dispathedwhih subsequently initiates the appropriate power-saving state. This method ofpower management is elegant as all power management ode is ontained in athread but it is also highly ine�ient.When all threads are inative (SLEEPING or BLOCKED), a ontext swithto the idle-thread is performed. Thereafter, as soon as one thread resumes a-tivity, another ontext swith is required. The new ative thread might even bethe same thread that was ative before the idle thread was alled. Thus, for eahsleep ativity two ontext swithes have to be performed whih are in most asesnot neessary on a typial sensor node running a single appliation.To redue the problem, the idle thread onept an be abandoned and threadsinitiate a sleep state diretly. Thus, the kernel thread handling overhead an begreatly redued, espeially in senarios where the same thread has to be ativatedafter a sleep phase, avoiding ontext swithing.In the modi�ed MANTIS kernel, the power-management proedure that wasimplemented as a thread is now implemented as a separate funtion that isinvoked diretly by the kernel when no more threads are available to proess.The optimization requires a modi�ation of the idle loop funtion. In the original

MANTIS kernel the idle loop is initially invoked by the kernel_init funtion toexeute for the duration of operating system operation as a separate thread.In the modi�ed MANTIS kernel, the idle loop is no longer enapsulated as athread, but instead diretly invoked from the kernel bloking proedures, i.e.mos_semaphore_sleep and mos_semaphore_wait (see Alg. 4). A new threadstate is added to the kernel, the BLOCKED_RUNNING state is used to signifyif a thread an be reativated after power management without a thread swith.A thread is �rst transitioned to this state when waiting for a semaphore while noother thread is ative (Alg. 4, part A:line 12). Thereafter, the power managementfuntion is involved (line 13). If the proessor is later reativated and a resoureis then ready, the mos_semaphore_post funtion will be alled and the onditionat Alg. 4 part B:line 3 will be used to determine if the bloked thread was alreadyrunning before the power-management was invoked. If this is the ase, all threadregisters values still reside in the proessor registers and a ontext swith is notneessary. Instead, the thread state is hanged to RUNNING, and the threadresumes proessing.5.2 Time Slie TimerAs mentioned, MANTIS reates a time slie interrupt every 20ms to alternatelyproess threads of equal priority and addtionally update the sleepQ.The periodi exeution of the interrupt routine, and espeially the neessaryupdates to determine whih threads from the sleepQ have to be woken, repre-sents a signi�ant thread management overhead. Additionally, the sleepQ is alsoheked with eah semaphore operation.Round robin exeution of equal priority threads is not really required in asensor node. Either, one thread an wait for the other to �nish exeution or,if starvation is a onern, another priority level an be assigned to the thread.The sleep funtion using the sleepQ an be implemented alternatively using atimer interrupt ombined with a semaphore. Therefore, the time slie timer anbe removed from the MANTIS kernel without losing vital kernel funtionality.In the modi�ed MANTIS kernel, the time sliing funtionality and the assoi-ated sleep funtion using the sleepQ are removed. More spei�ly, this funtion-ality is moved to a separate library that an be inluded in the kernel if needed.Appliations an deide not to inlude the time slie timer and the assoiatedsleep funtionality in favor of more e�ient proessing. Suh appliations antherefor not invoke the mos_thread_sleep funtion to blok a thread and mustinstead all a semaphore and a timer to blok a thread for a prede�ned period oftime. Equally prioritized threads in suh appliations exeute sequentially untilompletion instead of being proessed in a round-robin fashion.To inlude the default MANTIS time slie timer, the user need only speify#de�ne MANTIS_SLEEP in the appliation ode. The MANTIS_SLEEP en-vironment variable is used at part A:lines 8 and part B:6 in Alg. 4 to determine ifthe thread sleep funtionality is required and the thread sleep ounters must beupdated with the update_sleep_ounters funtion. Additionally, the time slietimer is set ative.

5.3 The Kenel QueuesThe MANTIS kernel maintains 3 types of link-list quing strutures. The readyQ,sleepQ and semaphore queue are used to store threads in a READY, SLEEPINGor BLOCKED state respetivly. A thread annot reside in more than one queueat a time, and will therefore frequently swith between the queues as it hangesstate. As MANTIS normally handles a small number of threads (12 is the defaultnumber of threads supported [12℄) simple data strutures and ways of using theman be implemented. For example, all thread pointers an be kept in a simplearray of pointers ordered by thread priority. Thread priority's and the numberof threads normally do not hange while an appliation is running and thus, thestruture an be kept fairly stati. Refrening threads with stati arrays requiresfar less proessing that using a link-list.In the modi�ed MANTIS kernel all linked list strutures are removed fromkernel methods. The readyQ is hanged from being an array of linked lists to asimple array of thread pointers. The thread pointers are kept permanently in thearray while the threads exist. The thread pointers stored in this array are sortedregarding thread priority. Thus, addition and deletion of threads is ostly butshould not be ommon during a node's operation as threads are normally reatedat system startup. This hange simpli�es operations on the readyQ struturewhen semaphore funtions are alled. Threads need not swith between queues,a simple hange of the thread state variable is all that is needed for a thread toswith state. The funtion readyQ.getThread (Alg. 4, part A:line 4) returns the�rst thread pointer in the readyQ array where the thread is in state READY.If a thread is suspended and waits for a semaphore, the thread pointer isadded to the semaphore struture. However, a opy of the thread pointer remainsin the readyQ. The semaphore struture is also modi�ed to point diretly toa single thread rather than a link-list of multiple threads. Thus, the funtions.addThread (Alg. 4, part B:line 5) is redued to a simple pointer opy operation.The �exibility of using a semaphore to blok multiple threads is obviously tradedfor e�ieny.6 Experimental EvaluationThe MANTIS kernel modi�ations are evaluated using exatly the same setupthat was used in the preliminary researh. Again, the average task exeution time
Et and the perentage of experiment time It spent with an idle CPU are mea-sured. Aording to the goals of the kernel modi�ations, the event proessingapabilities of MANTIS should not be shortened and the energy onsumptionshould be improved due to a redution of proessing overhead.6.1 Event ProessingFig. 4 shows the measured average paket-proessing time Et of the original andthe modi�ed MANTIS kernel for sensing tasks of two di�erent sizes.

The results show that the average proessing time of the paket forwardingtask is redued signi�antly. This derease is due to the redued proessing over-head of the modi�ed MANTIS kernel. The proessing time is measured from thepoint the paket arrives to the time the paket is proessed whih inludes possi-ble ontext swithing time (see Setion 3.3). The pure paket-proessing withinthe paket-proessing thread aounts for 1ms. Thus, the operating system annot exeute the paket forwarding faster than 1ms.The trend in the paket-proessing time is due to the fat that the paket-proessing might sometimes preempt an ative sensing task. Additionally, paketqueuing e�ets beome more dominant with inreasing network load (an inreas-ing n).It an be dedued from the measurements that no signi�ant di�erene in thevariane of paket-proessing timesbetween the orignial and modi�ed MANTISkernel(same magnitude of variation in the exeution times). Additionally theproessing speed is inreased as the number of kernel overheads are redued.
 1 2 3 4 5 6 7 8

A
v
e

ra
g

e
 P

ro
c
e

s
s
in

g
 T

im
e

 E
t
(m

s
)

Tree Position [n]

K
original

 ls=1ms
K

modified
 ls=1ms

TinyOS ls=1ms

 10

 20

 1 2 3 4 5 6 7 8

A
v
e

ra
g

e
 P

ro
c
e

s
s
in

g
 T

im
e

 E
t
(m

s
)

Tree Position [n]

K
original

 ls=100ms
K

modified
 ls=100ms

TinyOS ls=100ms

a) 1ms sensing b) 100ms sensingFig. 4. Average paket-proessing time Et.6.2 Energy ConsumptionThe perentage idle time is ompared with the theoretial maximal possibleperentage idle time, Imax
k . Imax

k is alulated by taking only the appliationproessing of the abstrat appliation senario into aount (see.Setion 3.2).Thus, Imax
k represents the perentage running time that the proessor wouldbe idle using an ideal operating system whih would have no operating systemproessing overhead. Imax

k depends on the task durations ls and lp of sensingand paket forwarding task respetively, the frequeny of the sensing task fs,the CPU speed scpu and the position n of the node in the abstrat appliationsenario. Imax
k is alulated using Equation (1):

Imax
k =

(

1 −

fs

scpu

· (ls + lp · (2n
− 1))

)

· 100 (2)

Fig. 5 shows the measured average idle time It of the original and the mod-i�ed MANTIS kernel for sensing tasks of two di�erent sizes. Additionally, themaximum possible idle time Imax
k is shown in the graph.The results show that the available idle time is now very lose to the the-oretial maximum. The di�erene is espeially visible under high network load(high n). The modi�ed MANTIS kernel redues overheads in ontext switheswhih is valuable in ases of a high system load.Compared with the original MANTIS, the kernel modi�ations improve theidle time (by 8% for n = 8 with ls = 100ms). Compared with the TinyOSoperating system, the optimized MANTIS is now even outperforming TinyOSin some ases. For example for ls = 100ms, n = 8, the modi�ed MANTIS is 1%better than TinyOS. If ls = 1ms, n = 8, the modi�ed MANTIS is 0.3% worsethan TinyOS under a heavy load.

 50

 60

 70

 80

 90

 100

 1 2 3 4 5 6 7 8

P
e

rc
e

n
ta

g
e

 I
d

le
 T

im
e

 I
t
(%

 o
f

T
)

Tree Position [n]

K
original

 ls=1ms
K

modified
 ls=1ms

TinyOS ls=1ms
I
max

k ls=1ms
 50

 60

 70

 80

 90

 100

 1 2 3 4 5 6 7 8

P
e

rc
e

n
ta

g
e

 I
d

le
 T

im
e

 I
t
(%

 o
f

T
)

Tree Position [n]

K
original

 ls=100ms
K

modified
 ls=100ms

TinyOS ls=100ms
I
max

k ls=100msa) 1ms sensing b) 100ms sensingFig. 5. Perentage idle time It.7 ConlusionAs it is shown in the paper, it is possible to make a multi-threaded sensornetwork operating system as power-e�ient as an event-based system. Thus, theommonly aepted fat that multi threaded systems are not useful for sensornetworks due to their heigh energy onsumption is invalid. Espeially in senariosthat require timely event proessing, multi threaded systems an be onsidereda useful option.The MANTIS kernel modi�ations redue the proessing overhead neededfor thread management dramatially. This overhead is redued to suh an ex-tent that in usual sensor network appliation senarios MANTIS has a similaroverall performane to TinyOS. As kernel overhead is diretly related to energye�ieny, the energy onsumption of a MANTIS node is now similar to thatof a TinyOS node. After the kernel modi�ations, MANTIS is 1% more energye�ient than TinyOS (in ase of heavy load with n = 8, ls = 100ms). With the

original MANTIS kernel, TinyOS is 6.9% better than MANTIS (in ase of heavyload with n = 8, ls = 100ms).We onlude that multi threaded systems an be used in sensor networks ifdesigned arefully.Referenes1. J. Hill, R. Szewzyk, A. Woo, S. Hollar, D. Culler, and K. Pister, �System ar-hiteture diretions for networked sensors,� in ACM SIGOPS Operating SystemsReview, vol. 34, pp. 93�104, Deember 2000.2. H. Abrah, S. Bhatti, J. Carlson, H. Dai, J. Rose, A. Sheth, B. Shuker, andR. Han, �MANTIS: System support for multimodal networks of in-situ sensors,� in2nd ACM International Workshop on Wireless Sensor Networks and Appliations,pp. 50�59, September 2003.3. A. Dunkels, B. Gronvall, and T. Voigt, �Contiki - a lightweight and �exible op-erating system for tiny networked sensors,� in 29th Annual IEEE InternationalConferene on Loal Computer Networks, pp. 455�462, November 2004.4. E. Trumpler and R. Han., �A systemati framework for evolving TinyOS,� in IEEEWorkshop on Embedded Networked Sensors, pp. 61�65, May 2006.5. J. Regehr, A. Reid, K. Webb, M. Parker, and J. Lepreau, �Evolving real-timesystems using hierarhial sheduling and onurreny analysis,� in 24th IEEEInternation Real-Time Systems Symposium, pp. 25�36, Deember 2003.6. A. Dunkels, O. Shmidt, and T. Voigt, �Using protothreads for sensor node pro-gramming,� in Workshop on Real-World Wireless Sensor Networks, June 2005.7. C. Du�y, U. Roedig, J. Herbert, and C. J. Sreenan, �A performane analysis ofTinyOS and MANTIS,� teh. rep., University College Cork, November 2006.8. A. Barroso, J. Benson, T. Murphy, U. Roedig, C. Sreenan, J. Barton, S. Bellis,B. O'Flynn, and K. Delaney, �Demo abstrat: The DSYS25 sensor platform,� in2nd international onferene on Embedded networked sensor systems, pp. 314�314,November 2004.9. Atmel Corporation, Atmega128 Datasheet, rev n ed., Marh 2006.10. M. Rahimi, R. Baer, O. I. Iroezi, J. C. Garia, J. Warrior, D. Estrin, and M. Sri-vastava., �Cylops: In situ image sensing and interpretation in wireless sensor net-works,� in In pro. 3rd international onferene on Embedded Networked SensorSystems,, pp. 192�204, November 2005.11. Nordi Semiondutor, Datasheet NRF2401, rev 1.1 ed., June 2004.12. S. Bhatti, J. Carlson, H. Dai, J. Deng, J. Rose, A. Sheth, B. Shuker, C. Gru-enwald, A. Torgenson, and R. Han., �MANTIS OS: An embedded multithreadedoperating system for wireless miro sensor platforms,� ACM kluwer Mobile Net-works & Appliations Journal, speial Issue on Wireless Sensor Networks, August2005.

