1,443,701 research outputs found

    Wait-Freedom with Advice

    Full text link
    We motivate and propose a new way of thinking about failure detectors which allows us to define, quite surprisingly, what it means to solve a distributed task \emph{wait-free} \emph{using a failure detector}. In our model, the system is composed of \emph{computation} processes that obtain inputs and are supposed to output in a finite number of steps and \emph{synchronization} processes that are subject to failures and can query a failure detector. We assume that, under the condition that \emph{correct} synchronization processes take sufficiently many steps, they provide the computation processes with enough \emph{advice} to solve the given task wait-free: every computation process outputs in a finite number of its own steps, regardless of the behavior of other computation processes. Every task can thus be characterized by the \emph{weakest} failure detector that allows for solving it, and we show that every such failure detector captures a form of set agreement. We then obtain a complete classification of tasks, including ones that evaded comprehensible characterization so far, such as renaming or weak symmetry breaking

    Fatigability and Recovery of Arm Muscles with Advanced Age for Dynamic and Isometric Contractions

    Get PDF
    This study determined whether age-related mechanisms can increase fatigue of arm muscles during maximal velocity dynamic contractions, as it occurs in the lower limb. We compared elbow flexor fatigue of young (n = 10, 20.8 ± 2.7 years) and old men (n = 16, 73.8 ± 6.1 years) during and in recovery from a dynamic and an isometric postural fatiguing task. Each task was maintained until failure while supporting a load equivalent to 20% of maximal voluntary isometric contraction (MVIC) torque. Transcranial magnetic stimulation (TMS) was used to assess supraspinal fatigue (superimposed twitch, SIT) and muscle relaxation. Time to failure was longer for the old men than for the young men for the isometric task (9.5 ± 3.1 vs. 17.2 ± 7.0 min, P = 0.01) but similar for the dynamic task (6.3 ± 2.4 min vs. 6.0 ± 2.0 min, P = 0.73). Initial peak rate of relaxation was slower for the old men than for the young men, and was associated with a longer time to failure for both tasks (P \u3c 0.05). Low initial power during elbow flexion was associated with the greatest difference (reduction) in time to failure between the isometric task and the dynamic task (r = − 0.54, P = 0.015). SIT declined after both fatigue tasks similarly with age, although the recovery of SIT was associated with MVIC recovery for the old (both sessions) but not for the young men. Biceps brachii and brachioradialis EMG activity (% MVIC) of the old men were greater than that of the young men during the dynamic fatiguing task (P \u3c 0.05), but were similar during the isometric task. Muscular mechanisms and greater relative muscle activity (EMG activity) explain the greater fatigue during the dynamic task for the old men compared with the young men in the elbow flexor muscles. Recovery of MVC torque however relies more on the recovery of supraspinal fatigue among the old men than among the young men

    What does the so-called False Belief Task actually check?

    Get PDF
    There is currently a theoretical tension between young children’s failure in False Belief Tasks (FBTs) and their success in a variety of other tasks that also seem to require the ability to ascribe false beliefs to agents. We try to explain this tension by the hypothesis that in the FBT, children think they are asked what the agent should do in the circumstances and not what the agent will do. We explain why this hypothesis is plausible. We examined the hypothesis in two experiments, each involving a new task. In the first task, the hypothesised misunderstanding of the question leads to failure without the need to ascribe a false belief, and we show that failure in this new task is correlated with failure in the FBT. In the second task, passing which requires ascribing a false belief to an agent, and for which we have partial yet encouraging results, the children are asked a question which is unlikely to be misunderstood. Children pass this task much more often than they do a standard FBT. The mentioned tension is thus resolved. We conclude that the so-called False Belief Task probably does not check the ability to ascribe false beliefs but rather linguistic development

    Stressor-Induced Increase in Muscle Fatigability of Young Men and Women is Predicted by Strength but Not Voluntary Activation

    Get PDF
    This study investigated mechanisms for the stressor-induced changes in muscle fatigability in men and women. Participants performed an isometric-fatiguing contraction at 20% maximal voluntary contraction (MVC) until failure with the elbow flexor muscles. Study one (n = 55; 29 women) involved two experimental sessions: 1) a high-stressor session that required a difficult mental-math task before and during a fatiguing contraction and 2) a control session with no mental math. For some participants (n = 28; 14 women), cortical stimulation was used to examine mechanisms that contributed to muscle fatigability during the high-stressor and control sessions. Study two (n = 23; nine women) determined the influence of a low stressor, i.e., a simple mental-math task, on muscle fatigability. In study one, the time-to-task failure was less for the high-stressor session than control (P \u3c 0.05) for women (19.4%) and men (9.5%): the sex difference response disappeared when covaried for initial strength (MVC). MVC force, voluntary activation, and peak-twitch amplitude decreased similarly for the control and high-stressor sessions (P \u3c 0.05). In study two, the time-to-task failure of men or women was not influenced by the low stressor (P \u3e 0.05). The greater fatigability, when exposed to a high stressor during a low-force task, was not exclusive to women but involved a strength-related mechanism in both weaker men and women that accelerated declines in voluntary activation and slowing of contractile properties

    Stressor-Induced Increase in Muscle Fatigability of Young Men and Women is Predicted by Strength but Not Voluntary Activation

    Get PDF
    This study investigated mechanisms for the stressor-induced changes in muscle fatigability in men and women. Participants performed an isometric-fatiguing contraction at 20% maximal voluntary contraction (MVC) until failure with the elbow flexor muscles. Study one (n = 55; 29 women) involved two experimental sessions: 1) a high-stressor session that required a difficult mental-math task before and during a fatiguing contraction and 2) a control session with no mental math. For some participants (n = 28; 14 women), cortical stimulation was used to examine mechanisms that contributed to muscle fatigability during the high-stressor and control sessions. Study two (n = 23; nine women) determined the influence of a low stressor, i.e., a simple mental-math task, on muscle fatigability. In study one, the time-to-task failure was less for the high-stressor session than control (P \u3c 0.05) for women (19.4%) and men (9.5%): the sex difference response disappeared when covaried for initial strength (MVC). MVC force, voluntary activation, and peak-twitch amplitude decreased similarly for the control and high-stressor sessions (P \u3c 0.05). In study two, the time-to-task failure of men or women was not influenced by the low stressor (P \u3e 0.05). The greater fatigability, when exposed to a high stressor during a low-force task, was not exclusive to women but involved a strength-related mechanism in both weaker men and women that accelerated declines in voluntary activation and slowing of contractile properties

    System for Anomaly and Failure Detection (SAFD) system development

    Get PDF
    This task specified developing the hardware and software necessary to implement the System for Anomaly and Failure Detection (SAFD) algorithm, developed under Technology Test Bed (TTB) Task 21, on the TTB engine stand. This effort involved building two units; one unit to be installed in the Block II Space Shuttle Main Engine (SSME) Hardware Simulation Lab (HSL) at Marshall Space Flight Center (MSFC), and one unit to be installed at the TTB engine stand. Rocketdyne personnel from the HSL performed the task. The SAFD algorithm was developed as an improvement over the current redline system used in the Space Shuttle Main Engine Controller (SSMEC). Simulation tests and execution against previous hot fire tests demonstrated that the SAFD algorithm can detect engine failure as much as tens of seconds before the redline system recognized the failure. Although the current algorithm only operates during steady state conditions (engine not throttling), work is underway to expand the algorithm to work during transient condition

    POPCORN: a Supervisory Control Simulation for Workload and Performance Research

    Get PDF
    A multi-task simulation of a semi-automatic supervisory control system was developed to provide an environment in which training, operator strategy development, failure detection and resolution, levels of automation, and operator workload can be investigated. The goal was to develop a well-defined, but realistically complex, task that would lend itself to model-based analysis. The name of the task (POPCORN) reflects the visual display that depicts different task elements milling around waiting to be released and pop out to be performed. The operator's task was to complete each of 100 task elements that ere represented by different symbols, by selecting a target task and entering the desired a command. The simulated automatic system then completed the selected function automatically. Highly significant differences in performance, strategy, and rated workload were found as a function of all experimental manipulations (except reward/penalty)
    • …
    corecore