
Rockwell International

Rocketdyne Division

System for Anomaly and Failure Detection (SAFD)

System Development

Final Report

24 July 1992

Contract NAS8-40000

Task 23

Prepared by

D. O'Reilly

Project Engineer

Approved by

C. K. Kraus

Project Manager

_/
S. L. Stohler

Manager

SSME Technology Support Team

(rJASA-C_-l_4475) SYSTEM cUR

A_ALY A"4[; FAILURI! bET_CTION

(SAFD) SYST_N uEVELOPMLNT Finnl

Report (P,ockwell International

Corp.) _1 o

N93-17856

Unclas

G3/3_ 0135959

https://ntrs.nasa.gov/search.jsp?R=19930008667 2020-03-17T09:21:03+00:00Z

• .;!?.> j .L " !

Rocketdyne Division
Rockwell International Corporation

6633 Canoga Avenue
Canoga Park, California 91303

Telex 698478
ROCKETDYN CNPK

10 August 1992 In Reply refer to 92RC05156

National Aeronautics and Space Administration
3eorge C. Marshall Space Flight Center

Marshall Space Flight Center, AL 35812

Attention: J.L. Moses, ER21

Reference: Transmittal of Final Technical Report, SSME Technology Test Bed

System for Anomaly and Failure Detection (SAFD), Phase IV

(RSS-8825-37)

Gentlemen:

Attached is the Final Technical Report for the subject task being performed as

part of the SSME Technology Test Bed effort (Contract NAS8-40000).

If there are any questions concerning this report, please contact S. L. Stohler at

(818) 710-3078 or D. W. O'Reilly at (205) 544-6974.
.l

Very truly yours,

ROCKWELL INTERNATIONAL CORPORATION

Rocketdyne Division

S
S. L. Stohler

Manager
SSME Technology Support Team

Encl: (1) One copy Final Technical Report, RSS-8825-37.

XC: NASA/George C. Marshall Space Flight Center (1 copy each) Marshall
Space Flight Center, AL 35812

Attention: L. Ingram, EB32
P. Vallely, ED14
V. Yost, EE25

G. Young, EP62
S. Douglas, ED14
H. McConnaughey, EP01

Respository, CN22D
C. Cozelos, EB42
G. Vick, EB44
T. Fox, ED14
S. Richards, HA01
R. Panciera, EB32

SAFD Final Report 24 July, 1992

Table of Contents

Executive Summary ... 1

1 Introduction .. 7

1.1 Document Overview ... 8

1.2 Deliverables .. 8

1.3 Environment ... 8

1.4 System Overview .. 9
2 SAFD Platform ... 11

2.1 SAFD Platform Hardware Description :.. 11

2.1.1 Concurrent 6450 ... 12

2.1.2 VDT interface _.. 13

2.1.3 Facility Interface ... 13
2.1.4 GMT .. 13

2.1.5 Cutoff Logic ... 14

2.2 SAFD Platform Software Description ... 14
2.2.1 SAFD Platform Functions .. 14

2.2.2 SAFD Platform Operation .. 19

2.3 SAFD Platform Development Problems ... 21

2.3.1 Queueing I/O Requests ... 21

2.3.2 Asyncronous System Trap (AST) Processing ... 21

2.3.3 Single Shot Clock Requests :... 22
2.3.4 Clock Resolution _... :. 22

2.3.5 Interrupt Processing Latency ... 22

2.3.6 VMIC Clock/VME Interrupt Logic ... 22

2.3.7 Disabling System Clock ... 23

2.3.8 System Delay ... 23
2.4 Conclusions .. 23

2.5 Outstanding Issues .. 24
2.6 Recommendations ... 25

3 SAFD Algorithm .. 27

3.1 Algorithm Approach ... 27

3.2 Algorithm Parameters ... 29

3.3 Test Experience .. 30
3.3.1 TTB-026 .. 30

3.3.2 TTB-027 .. 31

3.3.3 TTB-028 ... 31

3.3.4 TTB-029 .. 31

3.3.5 TTB-030 .. 31

3.3.6 TTB-031 .. 32

3.3.7 1-FB-032 .. 32

3.4 Conclusions .. 32

3.5 Recommendations ... i 32

4 Other Algorithms .. 34

5 Summary ... 35

6 Acronyms .. 37

page ii
__c._ -%_._S- _ 7

SAFD Final Report 24 July, 1992

List of Tables

Table 1 - Deliverables .. 8

Table 2 - SAFD Platform States and Modes ... 19

Table 3 - SAFD Algorithm Parameters ... 30

List of Figures

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

Figure

1 - SAFD Algorithm Limits ... 2

2 - SAFD TTB Configuration ... 3

3 - SAFD Hardware Configuration ... 3

4 - SAFD System Architecture ... 4

5 - SAFD TTB Configuration ... 9

6 - SAFD System Architecture ... 10

7 - SAFD Block Diagram ... 12
8 - VDT Interface .. 13

9 - Software/Hardware Mapping .. 15

10 - Algorithm Parameter Mapping ... 16

11 - Algorithm Scheduling .. 17

12 - Algorithm Operation ... 28

°.°

page nl

P._K_G-,_ R_2__-_X7

SAFDFinalReport 24 July, 1992

Executive Summary

This task specified developing the hardware and software necessary to

implement the System for Anomaly and Failure Detection (SAFD) algorithm,

developed under Technology Test Bed (TTB) Task 21, on the TTB engine

stand. This effort involved building two units; one unit to be installed in the

Block II Space Shuttle Main Engine (SSME) Hardware Simulation Lab (HSL)

at Marshall Space Flight Center (MSFC), and one unit to be installed at the

TTB engine stand. Rocketdyne personnel from the HSL performed the task.

SAFD operation during TTB-028

The SAFD algorithm was developed as an improvement over the current

redline system used in the Space Shuttle Main Engine Controller (SSMEC).

Simulation tests and execution against previous hot fire tests demonstrated

that the SAFD algorithm can detect engine failures as much as tens of seconds

before the redline system recognized the failure. Although the current

algorithm only operates during steady state conditions (engine not throttling),

work is underway to expand the algorithm to work during transient

conditions.

The algorithm currently includes 22 parameters; 16 from the Vehicle Data

Table (VDT) and 6 from facility. However, only 5 of the facility parameters

are available as the facility is using the available amplifiers for one of the

parameters. The algorithm uses a statistical approach for generating limits for

page 1
R._qK- _t_.a_q- .3 7

SAFD Final Report 24 July, 1992

the parameters based on mean and standard deviation. It calculates a

running average of the last five samples for each parameter and compares

this running average to the limits. If three (adaptation data) parameters are

out of limits at the same time, SAFD requests a cut. Figure 1 illustrates

establishing the limits for a typical parameter.

reach one two second

commanded second calculation

level I delay I interval I
................]] 1_:111111

I -I.. I

precalculated _

mean / I V l
/

/:: iI I

I I

monitor

against
calculated I

limits I

I t

I !

I I

I I

I I

-""--- parameter limits

Figure 1 - SAFD Algorithm Limits

Rocketdyne completed the two systems and installed one in the HSL and one

at the TTB. Figure 2 below illustrates the configuration at the TTB. SAFD

acquires the VDT from a spare output on the Command And Data Simulator

(CADS). This output provides the VDT after CADS has decoded it and

converted it to parallel digital data. The facility provides non-VDT
measurements via the SIU which converts the sensor raw analog signal to a

DC voltage and amplifies it for SAFD use. The facility provides Greenwich

Mean Time to a time code generator in the SAFD which decodes the time

signal and generates the time stamp. SAFD requests cutoff by setting a

discrete relay which is connected to the facility cutoff system.

The SAFD systems are based on Concurrent 6450 general purpose computer

systems running Real Time Unix (RTU) operating system. The selection of

this system was based on trade studies comparing capability and cost.

Peripheral devices were purchased off-the-shelf where possible and custom

built by Rocketdyne when not commercially available. The block diagram in

Figure 3 illustrates the hardware configuration.

SAFD Final Report 24 July, 1992

..-.,..................;.;........w.w.....v.......,.............-.- -...-.-.-...,.....-...-.....-.,.,.-,,,--.,-.'.'.'.'.'.'.'.'.-'.'..-.-.-,

Test Stand : T House

_ VDT(Serial Digital)

Raw Analog

Voltage

i..i

VDT (parallel digital)

(discrete_ MT

Figure 2 - SAFD TTB Configuration

VDT
Ch A & B-_I

Facility _
Analogs

GMT --

Cutoff "

_ Receivers DR11-W(2) (2)

-t 'HzH*DC 'kFilters M PXs

q oa,umH 'noutkTCG Discretes

q c,oHo.,oo,kEnb/Dis Discretes

I '°MBtTape

Disk

V
M
E

B
u
s

F

m

II

t 33 MHZ
68030 (2)

I t i

t 32 MBMemory

Clock I
m

_ Graphics
Interface

Printer IInterface

663 MB
m

Disk

]

::i::i::iii::iii::iiiiiiiiiiiiiiiiiiiiiiiiiiiiii;iiiii::!::::::

iii_!iiiiiiiGraphics _i!!l
_i_iTerrninal_l%iii:#:i::!ii¢:iii_i_iiiii::i::i::ii::::::#@

I 300 DPI/
Laser

| Printer/

Figure 3 - SAFD Hardware Configuration

The software architecture segregates the algorithm software from the

platform software. This approach derived from the fact that NASA and

Rocketdyne were aware that the algorithm was being improved and therefore

would change and that other algorithms were being developed. This

page 3

L.£_q- _'Ea._q-.3"7

SAFD Final Report 24 July, 1992

approach allows easily changing the algorithm software without affecting the

entire system, thus limiting software maintenance and retest. It also allows

faster algorithm development as the algorithm developer doesn't need to

worry about timing, I/O devices, etc. This architecture also provides for

running multiple distinct algorithms so that algorithms from different

organizations can be executed simultaneously and without interaction.

Figure 4 illustrates the architecture.

CPU 1 (BootCPU) CPU 2 (Realtime CPU)

n

User Record VDT Facility GMT Cutoff

File Analog

Figure 4 - SAFD System Architecture

The platform software provides basic functions such as data input and

qualification, timing and scheduling, recording/playback, display, and a

consistent user interface. The operating states of the system include: checkout

functions, test setup and execution, test playback, and test simulation.

The checkout capability provides a confidence test for the various input and

output devices. Data input checkout includes checkout of the VDT and

facility parameters and the GMT. Calibration allows the user to calibrate the

facility parameters. Cutoff checkout verifies the cutoff relay circuitry. Data

recording checkout verifies proper operation of the recording medium.

These checkouts are designed to provide a confidence test only and are not a

substitute for comprehensive diagnostics.

The test setup allows the user to establish a test configuration. The system

allows the user to specify the hardware configuration, the display

page 4

/_ES - [g/S-_37

SAFD Final Report 24 July, 1992

configuration, the default recording mode and time, and the algorithms to be

executed. The parameter map defines the hardware configuration and allows

adding parameters to the system without changing the platform software.

The system includes a graphical display editor that allows the user to actually

build the display to be used for a test. Test execution allows the user to

execute these predefined test configurations.

Playback allows the user to playback a previously recorded test exactly as it was

executed on the stand, and includes the capability to change the display.

Thus, the user can examine parameters that were not displayed during the

test by merely using the graphical display editor to build a different display.

The simulate mode allows the user to configure a test as in test setup mode,

but then allows the user to execute the test configuration against data from a

previously recorded test. This allows examination of the behavior of new or

modified algorithms against previously recorded tests. As in the test mode,

the user can record the simulation run and then view it using playback.

The architecture has proven viable in operation at the TTB and in the HSL.

From December 1991 through April 1992, TTB monitored TTB tests 026

through 032. The flexibility of the display capability has allowed the users to

redefine displays for individual tests and for post test analysis without having

to change the software. In tests 031 and 032, the system executed algorithms

from United Technologies Research Center (UTRC) along with the SAFD

algorithm without software change.

As a result of the development effort, Rocketdyne identified some limitations

and some strengths in vendor's products.

A number of the limitations were related to the operating system and most

concerned timing. Rocketdyne discovered that the Concurrent system takes

about 10ms to queue an I/O request and AST delivery times are in the 3ms

range. These times are much slower than Concurrent's literature indicates.

In addition to having slow response times, the system exhibits a random

delay of up to 80ms that Concurrent has not been able to identify. Based on

experience gained on this project, Rocketdyne concludes that the Concurrent

RTU operating system executing on the Concurrent 6450 hardware is not

appropriate for applications requiring absolute response times in the

millisecond range unless the random delay is fixed and custom drivers are

written. The SAFD project required additional effort in order to work around
the limitations.

An off-the-shelf software package, Data Views from VI Corporation, provides

the display capability for the system. This package proved very cost effective

in that it provided all of the functionality required for display for far less than

page 5

SAFDFinalReport 24July,1992

it would have cost to develop equivalent functionality. Rocketdyne
recommends this package where flexible user display capability is required.

This document discusses the operating system and Data Views in detail in
sections 2.2.1and 2.4.

The algorithm performed well in TTB tests, but the tests emphasized the
importance of having the proper adaptation data for the algorithm. In the
first three tests, some parameters indicated out-of-limits due to the fact that
the adaptation data did not accommodate scheduled mixture ratio changes
and CCV excursions. Not having the correct adaptation data inadvertently
proved the viability of the algorithm in that the algorithm determined that
the engine was operating abnormally. Effort is currently underway to
establish a formal procedure for generating adaptation data for tests.

Operation during the TTB tests also indicated that the algorithm operation
could be improved by establishing limits for time segments during the test
rather than for power levels. This approach allows using closer limits
because factors other than power level can be incorporated in the calculation
of the limits. The software is currently being changed to implement this
approach.

Algorithm testing in the HSL indicates the need for better sensor
qualification. The algorithm is currently sensitive to channel A power
failures. Several approaches have been identified to correct this. Additional
effort is underway to perform testing to determine other areas where the
algorithm might be sensitive to failures from which the SSMEC can recover.
Rocketdyne expects that most, if not all, of these will only affect adaptation
data and will not require changes to the algorithm.

The SAFD effort is now in the maintenance phase. In addition to the three

efforts above, NASA and Rocketdyne are working to identify other tasks that

need to be accomplished.

The SAFD project has been successful in that a versatile platform now exists

for experimenting with various approaches to engine health monitoring in

real time. The SAFD algorithm has been implemented on the platform as

well as an algorithm from UTRC. Other benefits include the lessons learned

during the development and operation of the system. Although problems

were encountered during development, the approaches and architectures

have proven useful concepts that can be applied to future projects.

page 6

__g__ - g gd_'-_3 7

SAFD Final Report 24 July, 1992

1 Introduction

TTB STA 23 specified building the hardware and software to implement

the algorithm being developed under STA 21. The task involved building
two units: one to be installed in the HSL and one to be installed at the

TTB. Rocketdyne personnel at the HSL performed the task.

_£il_liiii!i::_i!iG_:
i_qi!i_!]i:._.:,i

iiiii!_;i'_

Unit 2 at TTB

page 7
I__.qS-_82__-_37

SAFD Final Report 24 July, 1992

1.1 Document Overview

This report relates in detail the approaches taken, the lessons learned, and

recommendation for future efforts. The report is broken down as follows:

Section 1

Section 2

Section 3

Section 4

Section 5

Introduction

The SAFD Platform

The SAFD Algorithm

Other Algorithms

Summary

1.2 Deliverables

The deliverables for the task included the two systems, including the

platform and algorithm software, and appropriate documentation. Table 1
ennumerates these items.

Item ID

Doc RHF-0032-001 Rev A

Doc RHF-0032-005

H W SAFD serial # 1

H W SAFD serial # 2

Doc

S W Platform v2.0

Doc RHF-0032-003

Doc RHF-0032-007

Doc RHF-0032-011

Doc RHF-0032-013

Doc RHF-0032-015

Doc

S W Algorithm vl.0
Doc RHF-0032-020

Doc RHF-0032-021

Doc RHF-0032-022

Doc RHF-0032-023

Doc RHF-0032-024

Doc

Description

System Specification

System Development Plan
SAFD Hardware

SAFD Hardware

SAFD Hardware Drawings
Platform Software

Platform Software Requirements

Platform Software Design
Platform Test Plan

Platform Test Description

Platfrom Test Report

Platform Version Description Doc

Algorithm Software

Algorithm Software Requirements

Algorithm Software Design

Algorithm Test Plan

Algorithm Test Description

Algorithm Test Report

Algorithm Version Description Doc

Table 1 - Deliverables

1.3 Environment

SAFD is designed to operate in the TTB environment. The system obtains

VDT input from a spare VDT output in the CADS, facility measurements

from the facility SIUs, and GMT from the facility GMT lines. It generates a

page 8
-_8 ').5"-37

SAFD Final Report 24 July, 1992

cut signal by closing a relay connected to the facility cutoff panel. Figure 5

illustrates the configuration of SAFD at the TTB.

Test Stand :: T House

(Serial Digital)

Raw Analog VDT (parallel digital)

.. Cutoff I l_

(discrete)_ MT

Figure 5 - SAFD TTB Configuration

1.4 System Overview

During the system definition phase, NASA and Rocketdyne agreed that it

would be cost effective to separate the platform, which included the

system hardware and those software functions not directly associated with

the algorithm, from the algorithm implementation. The reasoning

behind the decision was that the SAFD algorithm was being expanded to

include transients and that at least two other efforts were underway to

develop algorithms. This decision led to a system which allows multiple

algorithms executing simultaneously and allows updating existing

algorithms or creating new algorithms without modification of the

platform software or hardware.

This modular approach led to a system where the platform handles all

input/output, scaling, scheduling, recording/playback, display, and user

interface as these functions are common to all algorithms. Isolating these

function from the algorithms yields a stable platform upon which the

algorithms can be executed. Since the algorithms do not contain generic

functions, only the code directly required to implement a particular

monitoring approach need be contained in the algorithm. The algorithms
are thus isolated from the user and the hardware environment. Since the

developer need not worry about the generic functions handled by the

platform, it is easier to change existing algorithms and to create and

integrate new algorithms. Figure 6 illustrates the concept.

page 9

E_q_K- _g 23-'.3 7

SAFD Final Report 24 July, 1992

CPU 1 (Boot CPU) CPU 2 (Realtime CPU)

User Record V T Facility GMT Cutoff
File Analog

Figure 6 - SAFD System Architecture

SAFD Final Report 24 July, 1992

2 SAFD Platform

Rocketdyne conducted trade studies to choose the basic hardware for the

system. Vendors whose products were considered includes Digital

Equipment Corporation, Intel Corporation, Sun Microsystems, Concurrent

Computer Corporation, and a custom hardware configuration. The

criteria included processing power, response times, and cost. The custom

hardware configuration was eliminated because the consensus was that

the additional software development cost of having to program low level

operating system type functions would exceed the savings on hardware.

Sun Microsystems was eliminated because they only support UNIX which

is a non-deterministic system and therefore not suited for realtime tasks.

Concurrent won the final evaluation based on processor power,

expandability, compatibility, and cost.

Inside of front of cabinet Inside of rear of cabinet

2.1 SAFD Platform Hardware Description

The SAFD platform hardware includes all hardware purchased or

developed under the task. The hardware is built around a Concurrent

6450 computer using off-the-shelf components where available.

page 11
K__" l_ d._¢-_ ?

SAFD Final Report 24 July, 1992

Rocketdyne built custom hardware for those components not available

off-the-shelf. Figure 7 shows a block diagram of the SAFD system.

VDT
Ch A & B._

Facility _

Analogs

GMT --

Cutoff .,4

I

_ Receivers(2)

•1_ 25 HzFilters

q DatumTCG

q C/OEnb/Dis

DR11-W

(2)

HA°os'FMPXs

H,o0u,Discretes

H Output tDiscretes

Tape

I FI°PpY tDisk

V

M
E

B

U

S

P

M
m

I

I 33 MHZ68030 (2)

I I

Memory
m

Clock]

Graphics IInterface

I_ Printer
Interface

663MB IDisk

iiiiiiiii!!ii÷iiii@iiiiiiiiiiiiiiiiiiiiiiiii!i::[
::
i:!;i:iS_ ,, :i:!:!:_

!!iii!i!ii19 Color

iiiiiiilillGraphics _]ill
ili!iiiiiiiTerminal iiiiiiii

I I iiiiii' 'iii-" I

LI 300 DPI|
Laser ---1--1

Printer |

Figure 7- SAFD Block Diagram

The major hardware components include the following:

Concurrent 6450 computer and peripherals
VDT interface

Facility analog interface
GMT TCG and interface

Cutoff logic

2.1.1 Concurrent 6450

The Concurrent 6450 is the basic building block for the SAFD hardware.

includes the following components:

Two Motorola 68030 33MHz processors

32 MB memory
660 MB disk drive

150 MB tape drive

51/4" floppy disk

Programmable clock

It

page 12

SAFD Final Report 24 July, 1992

The two processors are commonly referred to as the boot processor (CPU 1)

and the realtime processor (CPU 2). The SAFD application executes tasks

not having stringent timing requirements on CPU 1 and executes those

with stringent timing requirements on CPU 2.

The programmable clock was added to the system because the line

frequency clocks provided with the system did not have enough
resolution for SAFD use.

2.1.2 VDT interface

The VDT interface uses the spare VDT output from the CADS. It then

duplicates the signal to replace the spare that it used and drives a copy of

the signal through long line drivers to receivers located in the SAFD.

These receivers provide the front end to the DR11-W boards in the SAFD

system. Rocketdyne custom built all of these components except the

DR11-Ws which were purchased from Concurrent. Figure 8 illustrates the

configuration of the VDT interface.

CADS Cabinet

Max 8'

Cables

CADS-] ChA ESpare
VDT

_:, Out -1 ChB E
-

Spare VDT Out

Ch A Ch B

Optically
Isolated
Buffer

I ChA

-1 ChB

: SAFD Cabinet

250'

Cables::::

E SAFD

Line DR11

E Rcvrs m -Ws

Figure 8 - VDT Interface

2.1.3 Facility Interface

The facility analog inputs are filtered by 25 Hz filters before entering the

ADCs. SAFD includes an ADC card and a multiplexer accommodating 40

inputs. The inputs are expandable to 136 parameters. Rocketdyne custom

built the filters and wiring harnesses while the ADC cards and

multiplexers were purchased from Concurrent.

2.1.4 GMT

The GMT time pulse is acquired from the facility GMT coaxial cable by the

time code generator housed in the SAFD system. The time code generator

page 13

SAFDFinal Report 24 July, 1992

decodes the time and converts it to parallel output which is read by the

software through the input discretes.

2.1.5 Cutoff Logic

The cutoff logic enables the software to close a normally open contact to

complete a circuit from the facility cutoff. In order to complete the circuit,

the cutoff must be enabled at a guarded toggle switch on the front panel of
SAFD.

Wiring to rear connector panel

2.2 SAFD Platform Software Description

The SAFD platform software includes all software not directly associated

with an algorithm. Functions not requiring realtime response are

executed on the boot processor (CPU 1). Those requiring realtime response

and the algorithms are executed on the realtime processor (CPU 2). Figure

9 illustrates the software/hardware mapping for the system.

2.2.1 SAFD Platform Functions

The platform software provides the following functions for algorithms:

Parameter input, scaling, and qualification

Cutoff request to facility

Scheduling

Recording / Playback

GMT acquisition

Display
User interface

SAFD Final Report 24 July, 1992

common common common common common
memory memory memory memory memory

rBooI JReaiiime [/_iL
ceu I/ icPu _.n"£_

"" _ realtime _'_

d,
L rec°rd __ L.._.__ _ _ LA_ntr°l] t d

_" _, RTU Operating System IJ//"
AST _ AST '

J

_- customJdriver

V V V V V

graphics I
display

disk

parallel I/OI I parallel I/OI I prog ram-VDT Oh A ! VDT Oh B I mableclock

V

I discretes
(GMT &

CO relay)

Ir
ADCs I
(facility I

Figure 9 - Software/Hardware Mapping

The SAFD platform inputs, scales, and qualifies parameters prior to

sending them to the algorithms. It determines the location, scaling, and
qualification limits for the parameters via the parameter map. The

parameter map is an ASCII file, built by the user, describing the parameters

available to the system.

The SAFD task uses the parameter map in conjunction with the algorithm

map to determine the input and output parameters for algorithms. The

algorithm map tells the SAFD software what inputs and outputs are

required and indicates their order. Any inputs specified in the algorithm

map 'must exist in the parameter map or as an output in another

algorithm's map. The generic main, supplied as part of the SAFD system

software, then sets up the calling parameters for the algorithm routine and

calls the algorithm routine. Figure 10 illustrates the mapping process for

algorithm inputs and outputs.

This approach allows installation of an algorithm without modifying the
software for the platform. If additional parameters are required, the user

simply adds them to the parameter map (if they are not already there) and

includes them in the algorithm map.

page 15
,q_q5. a_ .2__'-3 "7

SAFDFinalReport 24 July, 1992

,VDT

Algorithm Map

rlnputs
Parameter Map / ename status

/ timina reference

/ Pc Reference
/ Vehicle Command 1

fimina / MCC Pc -reference
enaine status / HPOT Radial Accel
MCC Pc / HPOT TDT Ch A
HPOT ISP / HPOT TDT Ch B
HPOT ISP Ch B _.,..-.'t"'__f-.:-_'7"._ / HPFT Radial Accel
HPOT TDT Ch A/-_.._ / _' /OutDuts- --

HPOT TDT_Ch_B/-_// , Cutoff
- - - / ML;L; Pc Ava

/ HPOT Radial Acc Ava
/ HPOT TDT Ch A Ava

_/ehicle Command If I // / HPOT TDT Ch B Ava

Vehicle CommT/ _al_Accel_
Pc_Reference Algorithm Declarations

Facilitv
HPOT Radial Accel Inputs
HPFT Radial Accel enmne status

- - timina reference
Pc Reference
Vehicle Command_l
Parameters[5]

OutDuts
Cutoff
_'arameters[5]

me

Figure 10 - Algorithm Parameter Mapping

SAFD assumes that the first output parameter from the algorithm is the

cutoff request. Thus, when an algorithm detects a cutoff condition, it sets

its first output parameter to non-zero. When the algorithm completes the

current cycle, the SAFD task examines the parameter and, if it is non-zero,

the SAFD task closes the cutoff relay.

The SAFD software allows the use of rate monotonic scheduling to

schedule algorithms. Under this scheme, algorithms with shorter

scheduling intervals are scheduled at a higher priority than those with

longer scheduling intervals. This allows those with longer intervals to

run during the idle periods between executions of those with shorter

intervals. Figure 11 illustrates this concept. In order to provide

maximum flexibility, the SAFD system allows the user to specify the order

of the algorithms. Hence, the user may elect whether or not to use rate

monotonic scheduling.

page 16

SAFD Final Report 24 July, 1992

120ms

80ms

40ms •

SAF?

Oms

120ms algorithm requires 30ms to run

80ms algorithm requires 10ms to run Priorities decrease for tasks from SAFD

(highest) to the120ms interval task (lowest)
40ms algorithm requires 12.5ms to run

1 |i_:_:_:_:_:! liiiiil _i::_:_:_::_i_::_i_i_:_:_::_i_::_:_::_i_;_::_i_::_!_::_::_i_::_i_!_::_i_i_;;:_i::f:_::_i_::_::_i_i_i_:_i_!_::_if_::_::i_I

H I _ [ii!!i!lI

1 • 1 • I

°°°fi °°fi, ,
20ms 40ms 60ms 80ms

waiting to start elapsed time

running

preempted The SAFD task is AST driven

lili

I
100ms

lid

v

Figure 11 - Algorithm Scheduling

SAFD determines the scheduling interval from the algorithm map file.

Just as in the case of input and output parameters, scheduling for

algorithms can be changed without modifying the SAFD platform
software.

The SAFD task also handles recording and playback functions. During test

and simulate modes, if recording is on, SAFD records the following items:

VDT tables

Facility parameters

Algorithm inputs

Algorithm outputs
SAFD status data

GMT

Note that VDT and facility parameters are all recorded, even if they are not

used by an algorithm. This allows the user to play a test recording into an

algorithm in simulate mode, even if that algorithm uses parameters other

than those used by the algorithm active during the test. It also allows the

user to view parameters in playback that were not used by the algorithm.

The SAFD task time stamps all of the data with the GMT which is acquired

from the facility. This time is displayed on the screen during test,

playback, and simulate.

page 17

-. - _ _,,L_-__ 7

SAFD Final Report 24 July, 1992

SAFD provides extremely versatile and powerful display capability. This

capability is afforded by Data Views, an off-the-shelf software package from

VI Corporation. Using this package the user can build custom data

displays for use in test, playback, and simulate. The package includes over

60 predefined displays such as bar charts, digital readouts, strip charts, and

pie graphs. The package also allows the user to build custom displays.

The Data Views graphical editor allows the user to build the data displays

interactively. The SAFD software makes all parameters defined in the

parameter map and all outputs from all scheduled algorithms for the

chosen test configuration available to the editor. When the user enters

the editor, he simply selects the parameters to display and configures the

desired display. The user can configure any number of displays for a test

configuration.

Data Views editor

Since the user selects the display to use in test, playback, and simulate

individually, he may use one display during the test, enter playback to

view that test, and specify a different display for playback. The same

capability exists for simulate mode. This avoids restricting the user to a

fixed display or to viewing only parameters displayed during the test. It

also allows the user to construct and use multiple displays without having

to modify the SAFD or the algorithm software.

page 18

JKKS *_K2/- 3 7

SAFD Final Report 24 July, 1992

The SAFD user interface is a graphical user interface based on the Motif

standard. The graphical user interface makes the system easier for the user

to learn and operate.

2.2.2 SAFD Platform Operation

The SAFD platform software operates in the states and modes shown in
Table 2.

State Mode Description

Checkout Data Input

Data Recording
Calibration

Cutoff

Checkout facility analog, VDT,

and GMT inputs

Checkout recording file

Calibrate facility parameters

Checkout cutoff circuitry

Test Setup
Execute

Build test configuration

Execute test configuration

Playback Setup
Execute

Setup playback configuration

Execute playback

Simulate Setup
Execute

Setup simulate configuration
Execute simulation

Utilities DVEditor Build display

Table 2 - SAFD Platform States and Modes

The user generally invokes the various checkouts to perform confidence

checks on the hardware. Calibration is the exception in that it is used to

calibrate the facility parameters prior to test.

The following paragraphs describe operations during a typical test.

Prior to setting up for a test, the user must ensure that a valid parameter

map exists in the test directory and that the algorithms and their

appropriate maps are in the test directory. After entering the test setup

mode, the user selects the appropriate parameter map, names a view

(display) file (which may or may not exist), chooses the default recording

mode, specifies the test length, and selects the algorithms to be executed.

After entering this data, the user saves and names the test configuration.

Normally, if the view file does not exist, the user will enter the DVEditor

page 19

SAFD Final Report 24 July, 1992

mode to create it. Once the test configuration is saved it can be used at any
time.

At some time prior to invoking the test, the user will normally calibrate

the facility parameters. This is typically done early on the day of the test.

To calibrate, the user must coordinate with test personnel at the TTB. The

user selects the parameters to calibrate and requests data points from the

test personnel, answering the prompts from SAFD as appropriate. After

calibrating, the user selects "apply" and exits the calibration mode. The

SAFD software saves the calibration data into the test configuration file.

Prior to the test, the user will enter the test setup mode and select the test

configuration that he created and used for the calibration. He may then

select "execute" to begin executing the test. Typically, the user selects "auto

record" just prior to start. This causes the SAFD system to record one

sample every 10 seconds until start when it begins recording all data. At

the end of the test, usually after entry into post shutdown, the user turns

off the recording and exits the test mode.

After the test, the user enters playback setup mode, selects the test ID and

view file, and enters the playback execute mode to view the data.

Currently, to facilitate data reduction, view files have been pre-built to plot

each of the parameters used by the SAFD algorithm. This allows the user

to simply select each view in turn, execute playback, and copy the plots. Of

course, the user always has the capability to build display files to display
whatever is needed in the format needed.

Simulate works like test except that, rather than using realtime data from

the stand, the user specifies a previously recorded test as input. The SAFD

system then schedules the selected algorithms and sends them data from

the recorded test, just as though the algorithms were executing on the test

stand during that test. The only difference is that there are no realtime

operations and algorithms are allowed to take as long as necessary to
execute.

Simulate allows the user to record the "test", just as in test mode.

Therefore, the user can execute algorithms in simulate mode, record the

execution, and use playback to analyze the results.

The graphical user interface, the ability to define and select displays, and

the playback and simulation capability makes SAFD a powerful and

versatile system for testing algorithms as well as for using them on test

stands.

page 20

SAFD Final Report 24 July, 1992

2.3 SAFD Platform Development Problems

The development of the SAFD system encountered a number of problems,

most due to poor response times through the operating system. During

the selection process, system performance was included as a criteria and

the Concurrent literature indicated that the 6450 was adequate. However,

the literature was apparently based on ideal examples because the times

recorded by the development team for functions and response show

significantly more system overhead than indicated by the literature.

Although work arounds were developed for most problems, development

of the work arounds significantly impacted the cost of the project. This

section will address each of the problems, the work arounds for the

problems, and the impact to the system.

2.3.1 Queueing I/O Requests

Rocketdyne found that queueing a read request took approximately 10

milliseconds. Since SAFD executes in a 20 millisecond loop and requires

four reads every 40 milliseconds, this leaves no room for the SAFD

processing. This limitation required work arounds for obtaining inputs

from the ADCs (facility inputs), the DR11-Ws (VDT), and the discretes

(GMT).

For the ADCs, the built-in clocks were set up to control the input. The

software initializes the ADCs and maps to them. It then queues up a

request to read one buffer more than required and saves the registers.

Then, when ADC input is desired, the software restores the registers and

strobes the clock to initiate the input. Since the registers are set up to read

more than is actually input, the requested read never completes. Upon

exiting, the SAFD cancels the read and closes the device.

For the DR11-Ws, which bring in the VDTs, a custom driver was written

to handle the devices. As with the ADCs, the software queues a read

request to read more than will ever be input, saves the registers, and

restores them after each read. Since the VDTs trigger the input and the

interrupt is routed through a discrete, the SAFD software only fields the

interrupt.

For the discrete inputs, the software maps directly to the device and reads

the input directly from the device registers.

2.3.2 Asyncronous System Trap (AST) Processing

The literature indicated that AST delivery times were less than 1
millisecond but the times measured for SAFD indicated the the times

were actually closer to 3 milliseconds. The SAFD software uses three ASTs

plus two ASTs per algorithm. Thus, with only one algorithm resident,

page 21

K_,-_°_2S-._ 7

SAFDFinal Report 24 July, 1992

AST processing uses up to five ASTs every 40 milliseconds and therefore

loses 15 milliseconds to AST processing. There was really nothing that
could be done to reduce AST overhead other than to reduce the number of

ASTs being used. The design already specified the minimum possible
number of ASTs.

2.3.3 Single Shot Clock Requests

The manuals for the system indicated that the system clock could be set up

to request a single interrupt but this proved untrue. The development

team verified that the option did not work and, after consulting with

Concurrent via telephone, confirmed that there was an error in the system

software. Concurrent sent a fix for the bug.

2.3.4 Clock Resolution

The only clocks available from Concurrent are line frequency clocks. A

line frequency clock nominally interrupts every 1/60 seconds. To

accommodate realtime applications, Concurrent included the ability to

speed the clocks up so that they interrupted every 1 millisecond.

However, the time remaining for SAFD processing was already limited

and this imposed even more system overhead as the clock had to be

serviced every 1 millisecond whether or not SAFD needed .it. A

programmable clock was purchased from VMIC to eliminate the need for

the system clock.

2.3.5 Interrupt Processing Latency

By default, all interrupts in the Concurrent system are processed by the

host processor. The development team discovered that this was causing

unpredictable interrupt latencies. The work around for this involved

strapping the programmable clock and the VDT interrupts to interrupt

level 2 on the realtime processor (CPU 2). This modification is a standard

field modification offered by Concurrent to improve realtime

performance.

2.3.6 VMIC Clock/VME Interrupt Logic

An incompatibility between the VMIC clock and Concurrent machine

appeared as a result of employing the field mod to strap interrupts directly

to the realtime processor. The incompatibility lay between the bus logic on

the programmable clock board from VMIC and the VME bus in the

Concurrent machine. At the time neither vendor could identify the

problem. A Rocketdyne engineer identified the problem which was then

determined to be a deficiency in the VMIC clock board. VMIC modified

the clock boards to resolve the problem.

page 22

___- RK2_q--_ "7

SAFD Final Report 24 July, 1992

2.3.7 Disabling System Clock

According to the Concurrent manual, the system clock on the realtime

processor can be disabled. However, in attempting to do this, the

development team found that it didn't work. After consultation,

Concurrent agreed that it was an error in the system software. Upon

further investigation, Concurrent discovered that the feature worked if

tasks ran at a lower priority. Rocketdyne implemented this work around.

2.3.8 System Delay

During development, Rocketdyne had continually observed a random

delay while performing system functions. For no apparent reason, the

system would gain control and not return for 40 to 80 milliseconds. The

exercises with the clocks above were attempts to eliminate this delay.

Concurrent was alerted early and has not been able to identify the source

of the delay. Rocketdyne and Concurrent personnel are still working to

identify the cause. Since the delay is random, it has not materially affected

SAFD operations. The development team employed a work around that

allows SAFD to continue operation in most instances.

2.4 Conclusions

The experience with SAFD, both in the lab and on the test stand, has

proven the viability of the approach. The system has proven versatile and

easy to use. In spite of the problems encountered during development,

the end product serves the purpose.

The problems encountered with the system added significantly to the

development cost. Unfortunately, they also removed many of the

advantages of working with an operating system. The expectation of being

able to use operating system functions rather than coding low level

functions also led to eliminating custom systems from the evaluation. As

it turned out, a custom system probably could have been cost competitive.

Based on experience with SAFD, Rocketdyne does not recommend using

the Concurrent 6450 for realtime applications requiring response time in

the millisecond range unless the "system delay" can be remedied and
custom drivers are written.

Rocketdyne does, however, believe that the approach and architecture

used is appropriate for the task. The idea of modularizing the components

yields a system capable of supporting change and reconfiguration with a

minimum of effort. It should be noted that, at least on a high level, some

aspects of object based design were applied.

page 23

Rc,_ -XKIS- :_7

SAFD Final Report 24 July, 1992

Rocketdyne developed the system using primarily the Ada language. The

intent was to develop a system that was portable and to follow NASA's

movement toward standards. However, particularly in the user interface,

Ada was more expensive to use than C. Part of the problem was that the

vendor did not have compatible interfaces between the languages. Since

the X Windows libraries, which were used to develop the user interface,

were written in C, the use of Ada here caused problems that C would not

have encountered. While Ada is good for developing embedded systems,

Rocketdyne would not recommend using it for developing user interfaces

implemented with X Windows.

The Data Views product proved very successful. It provided the

sophisticated data display capability required by the system and provided a

mechanism for the user to configure displays without having to change

software. Rocketdyne highly recommends this product where flexible and

sophisticated user display capability is required.

The system currently supports two algorithms. Given the system

overhead, this is approaching the limit of its capacity. More capacity can be

added by replacing the current processors with three 68040 processors or

with RISC processors. It is also possible to simply add RISC processors to
the current machine.

Overall, the system has proven successful. The approach and

implementation were sound and the system has performed successfully in
the HSL and on the TTB.

2.5 Outstanding Issues

Some problems still exist in the system and are due to operating system

deficiencies, design deficiencies, and errors.

The most critical problem outstanding in the system is the delay induced

by the operating system (see paragraph 2.3.8).

The design deficiency involves the method used to qualify VDT data. The

system currently qualifies VDT data by qualifying it within a range which

is set by adaptation data. The current values set for the adaptation data

represent the physical range of the sensor. With the range that wide, there

are certain sensor failures that would not be detected by the SAFD

platform and therefore would result in erroneous values being provided

to the algorithms. There are basically three methods to address this

problem, each with advantages and disadvantages. These are enumerated
below.

page 24

KK5 -_/_C-57

SAFD Final Report 24 July, 1992

Approach

Change the sensor

qualification range to
reflect the normal

range of a working

sensor during engine

on phases.

Advantages

No changes required
to controller or

SAFD software

Disadvantages

Probably will not
work for all failures.

Difficult in some

cases to tell whether

sensor failed or

parameter is out of
limits

Use the failure

reports in the VDT

to disqualify

parameters.

In most cases,

sensors disqualified

by controller will

also be disqualified

by SAFD.

Possible that for

numerous failures,

some failure reports
will be lost.

Some SAFD

parameters are not

qualified by
controller.

Requires change to
SAFD software.

Modify the
controller software

to tag bad
measurements.

In all cases, sensors

disqualified by
controller will also

be disqualified by
SAFD.

Some SAFD

parameters are not

qualified by
controller.

Requires change to
controller and SAFD

software.

There are known errors in the software, mostly in the user interface.

However, these errors are minor in nature and pose no risk to the

operation of the system. When convenient, these should be fixed.

2.6 Recommendations

Rocketdyne recommends the following tasks as follow on effort for the

SAFD platform program.

The system delay can cause the system to halt. Therefore, the cause of this

delay should be determined and, if possible, corrected. Currently a work

around has been implemented in the software to lessen the chance that

the system will halt.

page 25

R_._" _._--_ 7

SAFD Final Report 24 July, 1992

The sensor qualification should be improved. As currently implemented

and with the current adaptation data, a channel A power failure in the

controller will cause the SAFD algorithm to erroneously request

shutdown. One or more of the approaches outlined in paragraph 2.5

should be implemented to correct this deficiency.

Vendor support should be maintained for both systems. Even though the

systems are entering the maintenance phase, they cannot be considered

mature. The system software is still evolving and there are outstanding

problems. Typically vendors will only provide support for their latest

revisions of software. Maintaining vendor support for the hardware

insures the program against catastrophic failures in the systems. If a

critical part failed without maintenance, it could be months to obtain the

parts through normal purchasing channels thus delaying the program.

Therefore, it is in NASA's best interest to maintain vendor support for the
hardware and software.

While the system has excellent data reduction capability, added capability

is desirable. One such capability is the ability to generate a report showing

the parameters indicating out of limits and the time that they were

reported out of limits. A crude version of this capability was developed by

the test team to aid testing, but this crude version does not work properly

if other algorithms are active or if the inputs or outputs in the SAFD

algorithm change. An integrated capability should be added to the system.

There are a number of outstanding SPRs against the system. Although

none but the system delay (mentioned above) are critical, they should

eventually be closed.

page 26

_5__ -;_.__q -_'/

SAFDFinal Report 24 July, 1992

3 SAFD Algorithm

The requirements for the SAFD algorithm originated with the work done

at Rocketdyne in Canoga Park, California under TTB Task 21. The SAFD

algorithm was developed as an improvement over the current redline

system used in the Space Shuttle Main Engine Controller (SSMEC).

Simulation tests and execution against previous hot fire tests

demonstrated that the SAFD algorithm can detect engine failures as much

as tens of seconds before the redline system recognized the failure.

Although the current algorithm only operates during steady state

conditions (engine not throttling), work is underway to expand the

algorithm to work during transient conditions.

3.1

AlgOrithm operation during TTB-028

Algorithm Approach

The SAFD algorithm only monitors during mainstage, steady state (with

respect to power level) operation. If it detects three (adaptation data)

parameters out of limits, it will request shutdown.

The adaptation data for the algorithm includes the cutoff count

(nominally three) and the following data for each parameter:

page 27

R._g£ - R$ X__-_37

SAFD Final Report 24 July, 1992

power level for this set of adaptation data

precalculated mean

precalculated standard deviation
N1 factor

N2 factor

The adaptation data for each parameter includes the above set of values

for each power level at which the engine will operate during the test. The

algorithm loads the adaptation data when initialized by the SAFD

platform software.

Figure 12 illustrates the logical operation of the algorithm. SAFD is only

active during mainstage, steady state (with respect to power level)

operation. It operates in three modes while active; first instance,

calculation interval, and steady state.

reach one two second monitor

commanded second calculation against
level I delay I interval calculated I

I -4- limits I

precalculated ./'K..,._----I__ _ ,.._{ J

meao / I -I
/I + I

I I I

I I I

I I I

------- parameter limits

Figure 12 - Algorithm Operation

During mainstage operation, upon detecting a power level command,

SAFD suspends operation until PcRef reaches the commanded power

level. After a one second delay, SAFD performs a first instance check of

the parameter against limits calculated from adaptation data and, if the

parameter is within limits, SAFD establishes new limits to be used during
the next two seconds. It calculates the limits for the first instance check as

follows:

upper limit = adaptation data mean +

(adaptation data standard deviation * N1 factor)

lower limit = adaptation data mean -

(adaptation data standard deviation * N1 factor)

page 28

/C._ - _ a.E-.3-/

SAFD Final Report 24 July, 1992

It calculates the limits for the two second interval as follows:

upper limit = first instance parameter value +

(adaptation data standard deviation * N1 factor)

lower limit = first instance parameter value -

(adaptation data standard deviation * N1 factor)

During the two second interval, SAFD maintains a running average of the

most recent five samples of each parameter and compares that running

average against the limits. If it has not accumulated five samples, it

averages the samples available. At the end of two seconds, SAFD

calculates steady state limits based on the deviation calculated for the two

second interval, the N2 multiplier factor from the adaptation data, and the

current running average. It calculates these limits as follows:

upper limit = running average at end of interval +
(standard deviation from interval +* N2 factor)

lower limit = running average at end of interval -
(standard deviation from interval * N2 factor)

SAFD remains in the steady state mode until another power level change

occurs.

3.2 Algorithm Parameters

The algorithm currently includes 22 parameters; 16 from the Vehicle Data

Table (VDT) and 6 from facility. However, only 5 of the facility parameters

are available as the facility is using the available amplifiers for HPFTP

Balance Cavity Pressure. Table 3 lists the parameters currently included in

the SAFD algorithm.

Parameter VDT PID

HPFTP

HPFTP

HPFTP

HPFTP

HPFTP

HPFTP

Shaft Speed Ch A
TDT Ch A

TDT Ch B

Discharge Pr Ch A
Radial Accel 90 °

Coolant Liner Pr Ch A

HPFTP Balance Cavity Pr

HPOTP Discharge Pr Ch A
HPOTP TDT Ch A

HPOTP TDT Ch B

96 260

16 231

17 232

29 52

N/A 1953

14 53

N/A 457

30 90

18 233

19 234

page 29

SAFD Final Report 24 July, 1992

HPOTP ISP Pr Ch A

HPOTP Boost Pump Disch Pr Ch B

HPOTP Boost Pump Radial Accel 45 °

LPFTP Shaft Speed Ch A

LPOTP Pump Discharge Pr Ch A
HEX Venturi Delta Pr

HEX Bypass Mix Temp

MCC Pr (qualified average)

MCC Liner Cavity Pr Facility
OPOV Actuator Pos

FPOV Actuator Pos

Fuel Flowmeter (qualified average)

20 211

33 59

N/A 1994

82 32

70 209

N/A 8352

N/A 8359

6 63

N/A 1951

28 40

27 42

7 100

Table 3 - SAFD Algorithm Parameters

3.3 Test Experience

From December 1991 through April of 1992, SAFD monitored tests TTB-

026 through TTB-032. These tests have represented a variety of power

levels and operating conditions and have confirmed the validity of the

algorithm. They have also demonstrated the need for accurate adaptation
data. In all cases the cutoff was disabled.

The adaptation data for the first three tests did not take into consideration

the mixture ratio changes, thereby causing the SAFD algorithm to flag

parameters out of limits. This demonstrated the detection capability of the

algorithm in that it did flag conditions that would have been anomalous

had the mixture ratio not been intentionally changed.

3.3.1 TTB-026

TTB-026 ran for full duration of 170 seconds. The test included a mixture

ratio change to 6.16. Since the adaptation data was not adjusted for this

perturbation, SAFD noted the following parameters out of limits during
the test:

LPFTP shaft speed
Pc

Fuel Flow

However, since the three parameters were not all out of limits

simultaneously, SAFD did not request a shutdown.

The facility parameters were not available for this test.

page 30

SAFD Final Report 24 July, 1992

3.3.2 T'['B-027

TTB-027 shut down prematurely at 40 seconds due to loss of a facility

system. This test included mixture ration excursions to 5.85. Again, the

SAFD adaptation data was not adjusted to accommodate this perturbation,

and SAFD reported parameters out of limits. The parameters detected out
of limits were:

HPFT TDT Ch B

HPOT TDT Ch A

HPOT TDT Ch B

OPOV Pos

Fuel Flow

This time there were three parameters out of limits simultaneously and

SAFD requested a cut at 28.48 seconds. Since the cutoff was disabled, this

did not actually shut down the engine.

Sixteen VDT parameters and five facility parameters were monitored

during this test.

3.3.3 TTB-028

TTB-028 ran full duration of 210 seconds. This test included mixture

ration excursions to 6.86. This test also included CCV excursions. The

adaptation data generated for this test included allowances for the mixture

ration changes but not for the CCV excursions. Two parameters registered
out of limits. Fuel flow indicated out of limits due to an error in

calculating the adaptation data for 86% power level. LPFP shaft speed
indicated out of limits at the CCV excursion.

Sixteen VDT parameters and five facility parameters were monitored

during this test.

3.3.4 TTB-029

TFB-029 prematurely shutdown less than 1 second after start. Therefore,

no algorithm data was gathered.

3.3.5 TrB-030

TTB-030 shutdown prematurely at about 5.5 seconds. Thus, the SAFD

algorithm only executed for about .5 seconds during which time there
were no anomalies.

SAFD Final Report 24 July, 1992

3.3.6 TTB-031

TTB-031 ran full duration of 85 seconds. The SAFD algorithm detected no
anomalies.

3.3.7 TTB-032

TTB-032 ran full duration of 205 seconds. The algorithm indicated HEX

Bypass Mix Temperature out of limits during the 2 second interval at 115

seconds and 128 seconds (power levels 104 and 100 respectively). The

parameter limits were good for these power levels early in the test but

early in the test Oxidizer Inlet Pressure was at 120 psi. When the out of

limit conditions occurred, Oxidizer Inlet Pressure was at 20 psi. During the

venting at 109% power level, HPOT ISP Pressure increased toward the

upper limit while LPOP Discharge Pressure decreased toward the lower

limit. However, neither of these parameters exceeded the limits.

3.4 Conclusions

The algorithm performed as expected in the HSL and on the TTB.

However, the testing indicated two areas in which the algorithm is
vulnerable.

Testing in the HSL and analysis demonstrated the algorithm's sensitivity

to channel A power failures. Several approaches can remedy this

problem, so it really doesn't detract from the suitability of the algorithm

for engine monitoring. These approaches are addressed in section 2.5.

Performance on the TTB indicates the critical nature of the adaptation data

and emphasized the necessity of ensuring that the adaptation data is
correct.

Rocketdyne believes that the SAFD algorithm represents a viable approach

to engine health monitoring. It demonstrated greater sensitivity to engine

anomalies than the redlines currently being used. Its ability to use and

generate limits based on engine operation makes it much more flexible

than the current redlines. However, based on test experience, the key to

success in use of the algorithm is in proper generation of the adaptation
data.

3.5 Recommendations

Testing in the HSL and at the TTB validated the usefulness of the

algorithm. However, this testing also indicated that areas exist that need
further work.

SAFD Final Report 24 July, 1992

First of all, the algorithm should be modified to accept adaptation based on

time rather than power level. This allows using closer tolerances for the

limits since the data can be tailored for operation at a particular time

during the test rather than being solely based on power level. For

example, if a test changes mixture ratio from 6.01 to 6.16 at 100% power

level the limits could be set individually for operation at 6.01 mixture

ratio/100% power level and 6.16 mixture ratio/100% power level rather

than expanding the limits to accommodate mixture ratios from 6.01 to 6.16

at 100% power level.

The platform should be modified to guard against sensor failures that

would not be caught by a simple limit check. The options for this
modification were enumerated earlier in section 2.5. Note that this

change should be implemented in the platform software rather than the

algorithm software.

Currently, the adaptation data is acquired and entered in an informal

fashion. A formal procedure should be established with the appropriate

cross checks to ensure that the proper adaptation data is generated and
entered for each test.

Further validation testing of the algorithm is needed, particularly in the
area of avionics failures from which the controller can recover. The

testing performed to data in the HSL centered primarily on verification

testing, which verifies that the system performs per requirements.

Additional validation testing would serve to prove that the system

performs as intended. An initial set of tests have been defined by NASA

and Rocketdyne, but a formal method for generating adaptation data must

be established for the testing to be meaningful.

page 33

SAFD Final Report 24 July, 1992

4 Other Algorithms

The SAFD platform was designed to accommodate multiple algorithms.

The decision to do so was based on the fact that other algorithms were

being developed through LeRC and they would require a platform.

Designing the platform to accommodate multiple algorithms saves money

by eliminating the need for additional platforms and reduces the

complexity of the facility by only requiring one connection for the SAFD

per parameter rather than requiring one connection per algorithm. It has

demonstrated that capacity on tests TTB-031 and TTB-032.

No anomalies have been noted when executing the UTRC algorithms.

However, the timing indicates that there is only limited room for further

growth. Additional algorithms will require upgrading the processors in

the SAFD platform or combining new algorithms with existing ones.

SAFDFinalReport 24 July, 1992

v

5 Summary

The SAFD project has been successful in demonstrating the viability of the

SAFD platform and algorithm. The strategy of separating the two proved

very successful in that the system is able to accommodate additional

algorithms with little effort. The user interface has also proved

convenient and represents an improvement over command line

interfaces. The data reduction represents a significant improvement over

similar systems in that it can easily be controlled by the user. The

approach and capability of the system can be used as a pattern for future

development.

Unfortunately, the Concurrent system proved to be somewhat of a

disappointment. While it is adequate for the task, the excessive system

overhead limits its capacity to accommodate additional algorithms.

However, this deficiency can be remedied by upgrading to faster processors

or adding processors.

The algorithm behaved as expected. While performance in early tests

demonstrated the algorithm's ability to detect off-nominal conditions in

an engine, it also demonstrated the importance of correctly determining

the adaptation data.

Some outstanding problems should be fixed and some improvements

should be implemented in the platform software. These include:

• Find and cure the system delay problem.

• Close outstanding SPRs.

• Implement a better qualification scheme for VDT parameters.

• Add an integrated capability to obtain a report enumerating

parameters indicating out of limits during a test.

Improvements should be made in the algorithm as well and further

testing is warranted. Candidate follow on work includes:

• Change the algorithm to use adaptation data based on time rather

than on power level.

• Establish a formal procedure and methodology for generating

adaptation data.

• Perform additional testing in the HSL to establish the algorithm's

sensitivity to recoverable failures.

• Update the algorithm to incorporate the capability to monitor

during transients (work done under STA 21 in Canoga Park).

Overall, the project was successful. The two systems were built and are

performing well on the TFB. The algorithm has behaved as expected and

SAFD Final Report 24 July, 1992

has demonstrated its sensitivity to off nominal engine operation. Most of

the outstanding problems in the platform software are minor. Those that

are significant are already being addressed as part of the maintenance of

the system.

page 36

__C_C- £,¢._-"--d 7

SAFD Final Report 24 July, 1992

6 Acronyms

ADC

ASCII

AST

DC

CADS

CCV

CPU

FPOV

GMT

HEX

HPFTP

HPOTP

HSL

ISP

I/O

LPFTP

LPOTP

MB

MHz

MSFC

NASA

OPOV

Pc

RISC

RTU

SAFD

SIU

SSME

SSMEC

STA

TDT

TTB

UTRC

VDT

Analog to Digital Converter
American National Standard Code for Information

Interchange

Asynchronous System Trap
Direct Current

Command And Data Simulator

Coolant Control Valve

Computer Processing Unit
Fuel Preburner Oxidizer Valve

Greenwich Mean Time

Heat Exchanger

High Pressure Fuel Turbopump

High Pressure Oxidizer Turbopump

Hardware Simulation Laboratory

Intermediate Seal Purge

Input/Output

Low Pressure Fuel Turbopump

Low Pressure Oxidizer Turbopump

Megabyte

Megahertz

Marshall Space Flight Center

National Aeronautics and Space Administration

Oxidizer Preburner Oxidizer Valve

Chamber Pressure

Reduced Instruction Set Computer
Real Time UNIX

System for Anomaly and Failure Detection

Signal Interface Unit

Space Shuttle Main Engine

Space Shuttle Main Engine

Special Task Assignment

Turbine Discharge Temperature

Technology Test Bed

United Technologies Research Center
Vehicle.Data Table

