19,618 research outputs found

    Collaborative Gaze Channelling for Improved Cooperation During Robotic Assisted Surgery

    Get PDF
    The use of multiple robots for performing complex tasks is becoming a common practice for many robot applications. When different operators are involved, effective cooperation with anticipated manoeuvres is important for seamless, synergistic control of all the end-effectors. In this paper, the concept of Collaborative Gaze Channelling (CGC) is presented for improved control of surgical robots for a shared task. Through eye tracking, the fixations of each operator are monitored and presented in a shared surgical workspace. CGC permits remote or physically separated collaborators to share their intention by visualising the eye gaze of their counterparts, and thus recovers, to a certain extent, the information of mutual intent that we rely upon in a vis-à-vis working setting. In this study, the efficiency of surgical manipulation with and without CGC for controlling a pair of bimanual surgical robots is evaluated by analysing the level of coordination of two independent operators. Fitts' law is used to compare the quality of movement with or without CGC. A total of 40 subjects have been recruited for this study and the results show that the proposed CGC framework exhibits significant improvement (p<0.05) on all the motion indices used for quality assessment. This study demonstrates that visual guidance is an implicit yet effective way of communication during collaborative tasks for robotic surgery. Detailed experimental validation results demonstrate the potential clinical value of the proposed CGC framework. © 2012 Biomedical Engineering Society.link_to_subscribed_fulltex

    Dynamic Active Constraints for Surgical Robots using Vector Field Inequalities

    Full text link
    Robotic assistance allows surgeons to perform dexterous and tremor-free procedures, but robotic aid is still underrepresented in procedures with constrained workspaces, such as deep brain neurosurgery and endonasal surgery. In these procedures, surgeons have restricted vision to areas near the surgical tooltips, which increases the risk of unexpected collisions between the shafts of the instruments and their surroundings. In this work, our vector-field-inequalities method is extended to provide dynamic active-constraints to any number of robots and moving objects sharing the same workspace. The method is evaluated with experiments and simulations in which robot tools have to avoid collisions autonomously and in real-time, in a constrained endonasal surgical environment. Simulations show that with our method the combined trajectory error of two robotic systems is optimal. Experiments using a real robotic system show that the method can autonomously prevent collisions between the moving robots themselves and between the robots and the environment. Moreover, the framework is also successfully verified under teleoperation with tool-tissue interactions.Comment: Accepted on T-RO 2019, 19 Page

    Deep Reinforcement Learning in Surgical Robotics: Enhancing the Automation Level

    Full text link
    Surgical robotics is a rapidly evolving field that is transforming the landscape of surgeries. Surgical robots have been shown to enhance precision, minimize invasiveness, and alleviate surgeon fatigue. One promising area of research in surgical robotics is the use of reinforcement learning to enhance the automation level. Reinforcement learning is a type of machine learning that involves training an agent to make decisions based on rewards and punishments. This literature review aims to comprehensively analyze existing research on reinforcement learning in surgical robotics. The review identified various applications of reinforcement learning in surgical robotics, including pre-operative, intra-body, and percutaneous procedures, listed the typical studies, and compared their methodologies and results. The findings show that reinforcement learning has great potential to improve the autonomy of surgical robots. Reinforcement learning can teach robots to perform complex surgical tasks, such as suturing and tissue manipulation. It can also improve the accuracy and precision of surgical robots, making them more effective at performing surgeries

    Evaluation of the results of perioperative surgical robots in urology - literature review

    Get PDF
    Introduction: Operations with the use of surgical robots have become an acceptable method of treating urological complaints. The question remains what the perioperative results look like compared to other methods, such as classical surgery or laparoscopy. The aim of the study is to summarize the current state of knowledge about the use of surgical robots in urology, provide information on the types of procedures that can be performed with their help, safety and results Materials and methods: Literature review in databases: [Pubmed; science direct; google scholar]; searched using the words: [robotic surgery, surgical robots, BPH, robot, cystectomy, nephrectomy, retroperitoneal lymphadenectomy, prostatectomy,]. Publications from 2016 to 2023 were reviewed. Results: Data from multiple publications were collected. Promising perioperative results of surgical robots have been shown. Blood loss, length of hospital stay, and complication rate are lower compared to other methods. Positive surgical margins occur with a similar frequency. The safety of performing operations with the use of surgical robots in patients after previous chemotherapy or radiotherapy has been proven. The duration of the operation is usually longer compared to other methods. Conclusions: Performing surgery with the use of surgical robots is a promising method in urology. In many cases, perioperative outcomes are better. However, there is a lack of good quality studies conducted over a long period of time

    Computer- and robot-assisted Medical Intervention

    Full text link
    Medical robotics includes assistive devices used by the physician in order to make his/her diagnostic or therapeutic practices easier and more efficient. This chapter focuses on such systems. It introduces the general field of Computer-Assisted Medical Interventions, its aims, its different components and describes the place of robots in that context. The evolutions in terms of general design and control paradigms in the development of medical robots are presented and issues specific to that application domain are discussed. A view of existing systems, on-going developments and future trends is given. A case-study is detailed. Other types of robotic help in the medical environment (such as for assisting a handicapped person, for rehabilitation of a patient or for replacement of some damaged/suppressed limbs or organs) are out of the scope of this chapter.Comment: Handbook of Automation, Shimon Nof (Ed.) (2009) 000-00

    Robot Autonomy for Surgery

    Full text link
    Autonomous surgery involves having surgical tasks performed by a robot operating under its own will, with partial or no human involvement. There are several important advantages of automation in surgery, which include increasing precision of care due to sub-millimeter robot control, real-time utilization of biosignals for interventional care, improvements to surgical efficiency and execution, and computer-aided guidance under various medical imaging and sensing modalities. While these methods may displace some tasks of surgical teams and individual surgeons, they also present new capabilities in interventions that are too difficult or go beyond the skills of a human. In this chapter, we provide an overview of robot autonomy in commercial use and in research, and present some of the challenges faced in developing autonomous surgical robots

    A Multi-Robot Cooperation Framework for Sewing Personalized Stent Grafts

    Full text link
    This paper presents a multi-robot system for manufacturing personalized medical stent grafts. The proposed system adopts a modular design, which includes: a (personalized) mandrel module, a bimanual sewing module, and a vision module. The mandrel module incorporates the personalized geometry of patients, while the bimanual sewing module adopts a learning-by-demonstration approach to transfer human hand-sewing skills to the robots. The human demonstrations were firstly observed by the vision module and then encoded using a statistical model to generate the reference motion trajectories. During autonomous robot sewing, the vision module plays the role of coordinating multi-robot collaboration. Experiment results show that the robots can adapt to generalized stent designs. The proposed system can also be used for other manipulation tasks, especially for flexible production of customized products and where bimanual or multi-robot cooperation is required.Comment: 10 pages, 12 figures, accepted by IEEE Transactions on Industrial Informatics, Key words: modularity, medical device customization, multi-robot system, robot learning, visual servoing, robot sewin
    corecore