100,338 research outputs found

    On the relaxed maximum-likelihood blind MIMO channel estimation for orthogonal space-time block codes

    Full text link
    This paper concerns the maximum-likelihood channel estimation for MIMO systems with orthogonal space-time block codes when the finite alphabet constraint of the signal constellation is relaxed. We study the channel coefficients estimation subspace generated by this method. We provide an algebraic characterisation of this subspace which turns the optimization problem into a purely algebraic one and more importantly, leads to several interesting analytical proofs. We prove that with probability one, the dimension of the estimation subspace for the channel coefficients is deterministic and it decreases by increasing the number of receive antennas up to a certain critical number of receive antennas, after which the dimension remains constant. In fact, we show that beyond this critical number of receive antennas, the estimation subspace for the channel coefficients is isometric to a fixed deterministic invariant space which can be easily computed for every specific OSTB code

    Sparse-Based Estimation Performance for Partially Known Overcomplete Large-Systems

    Get PDF
    We assume the direct sum o for the signal subspace. As a result of post- measurement, a number of operational contexts presuppose the a priori knowledge of the LB -dimensional "interfering" subspace and the goal is to estimate the LA am- plitudes corresponding to subspace . Taking into account the knowledge of the orthogonal "interfering" subspace \perp, the Bayesian estimation lower bound is de- rivedfortheLA-sparsevectorinthedoublyasymptoticscenario,i.e. N,LA,LB -> \infty with a finite asymptotic ratio. By jointly exploiting the Compressed Sensing (CS) and the Random Matrix Theory (RMT) frameworks, closed-form expressions for the lower bound on the estimation of the non-zero entries of a sparse vector of interest are derived and studied. The derived closed-form expressions enjoy several interesting features: (i) a simple interpretable expression, (ii) a very low computational cost especially in the doubly asymptotic scenario, (iii) an accurate prediction of the mean-square-error (MSE) of popular sparse-based estimators and (iv) the lower bound remains true for any amplitudes vector priors. Finally, several idealized scenarios are compared to the derived bound for a common output signal-to-noise-ratio (SNR) which shows the in- terest of the joint estimation/rejection methodology derived herein.Comment: 10 pages, 5 figures, Journal of Signal Processin

    Comparative study for broadband direction of arrival estimation techniques

    Get PDF
    This paper reviews and compares three different linear algebraic signal subspace techniques for broadband direction of arrival estimation --- (i) the coherent signal subspace approach, (ii) eigenanalysis of the parameterised spatial correlation matrix, and (iii) a polynomial version of the multiple signal classification algorithm. Simulation results comparing the accuracy of these methods are presented

    Counting Process Based Dimension Reduction Methods for Censored Outcomes

    Get PDF
    We propose a class of dimension reduction methods for right censored survival data using a counting process representation of the failure process. Semiparametric estimating equations are constructed to estimate the dimension reduction subspace for the failure time model. The proposed method addresses two fundamental limitations of existing approaches. First, using the counting process formulation, it does not require any estimation of the censoring distribution to compensate the bias in estimating the dimension reduction subspace. Second, the nonparametric part in the estimating equations is adaptive to the structural dimension, hence the approach circumvents the curse of dimensionality. Asymptotic normality is established for the obtained estimators. We further propose a computationally efficient approach that simplifies the estimation equation formulations and requires only a singular value decomposition to estimate the dimension reduction subspace. Numerical studies suggest that our new approaches exhibit significantly improved performance for estimating the true dimension reduction subspace. We further conduct a real data analysis on a skin cutaneous melanoma dataset from The Cancer Genome Atlas. The proposed method is implemented in the R package "orthoDr".Comment: First versio

    Robust Subspace Learning: Robust PCA, Robust Subspace Tracking, and Robust Subspace Recovery

    Full text link
    PCA is one of the most widely used dimension reduction techniques. A related easier problem is "subspace learning" or "subspace estimation". Given relatively clean data, both are easily solved via singular value decomposition (SVD). The problem of subspace learning or PCA in the presence of outliers is called robust subspace learning or robust PCA (RPCA). For long data sequences, if one tries to use a single lower dimensional subspace to represent the data, the required subspace dimension may end up being quite large. For such data, a better model is to assume that it lies in a low-dimensional subspace that can change over time, albeit gradually. The problem of tracking such data (and the subspaces) while being robust to outliers is called robust subspace tracking (RST). This article provides a magazine-style overview of the entire field of robust subspace learning and tracking. In particular solutions for three problems are discussed in detail: RPCA via sparse+low-rank matrix decomposition (S+LR), RST via S+LR, and "robust subspace recovery (RSR)". RSR assumes that an entire data vector is either an outlier or an inlier. The S+LR formulation instead assumes that outliers occur on only a few data vector indices and hence are well modeled as sparse corruptions.Comment: To appear, IEEE Signal Processing Magazine, July 201

    Subspace Methods for Data Attack on State Estimation: A Data Driven Approach

    Full text link
    Data attacks on state estimation modify part of system measurements such that the tempered measurements cause incorrect system state estimates. Attack techniques proposed in the literature often require detailed knowledge of system parameters. Such information is difficult to acquire in practice. The subspace methods presented in this paper, on the other hand, learn the system operating subspace from measurements and launch attacks accordingly. Conditions for the existence of an unobservable subspace attack are obtained under the full and partial measurement models. Using the estimated system subspace, two attack strategies are presented. The first strategy aims to affect the system state directly by hiding the attack vector in the system subspace. The second strategy misleads the bad data detection mechanism so that data not under attack are removed. Performance of these attacks are evaluated using the IEEE 14-bus network and the IEEE 118-bus network.Comment: 12 page
    corecore