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Summary

We propose counting process-based dimension reduction methods for right-censored survival 
data. Semiparametric estimating equations are constructed to estimate the dimension reduction 
subspace for the failure time model. Our methods address two limitations of existing approaches. 
First, using the counting process formulation, they do not require estimation of the censoring 
distribution to compensate for the bias in estimating the dimension reduction subspace. Second, 
the nonparametric estimation involved adapts to the structural dimension, so our methods cir-
cumvent the curse of dimensionality. Asymptotic normality is established for the estimators. We 
propose a computationally efficient approach that requires only a singular value decomposition to 
estimate the dimension reduction subspace. Numerical studies suggest that our new approaches 
exhibit significantly improved performance. The methods are implemented in the R package 
orthoDr.

Some key words: Estimating equation; Semiparametric inference; Sliced inverse regression; Sufficient dimension 
reduction; Survival analysis.



1. Introduction

Dimension reduction is important in regression analysis. Its goal is to extract a low-dimensional
subspace from a p-dimensional covariate X = (X1, . . . , Xp)

T in order to predict an outcome of
interest T . The dimension reduction literature often assumes the multiple-index model

T = h
(
BTX , ε

)
, (1)

where ε is a random error independent of X , B ∈ R
p×d is a coefficient matrix with d < p,

and h(·) is an unknown link function. This model is equivalent to assuming T ⊥⊥ X | BTX (Li,
1991). Since any d linearly independent vectors in the linear space spanned by the columns of
B also satisfy model (1) for some h, we denote this linear subspace by S(B). The intersection
of all subspaces satisfying T ⊥⊥ X | BTX is called the central subspace, ST |X , whose dimension
is referred to as the structural dimension. According to Cook (2009), ST |X is uniquely defined
under mild conditions. The goal of sufficient dimension reduction is to determine the structural
dimension and the central subspace using data.

There is an extensive literature on estimating the central subspace for completely observed
data, including Li (1991), Cook & Weisberg (1991), Zhu et al. (2006), Li & Wang (2007), Xia
(2007), and Ma & Zhu (2012). When T is subject to right censoring, model (1) includes many
well-known survival models as special cases, such as the proportional hazards model (Cox, 1972),
the accelerated failure-time model (Lin et al., 1998), and linear transformation models (Zeng &
Lin, 2007).

There has been limited work on estimating the dimension reduction subspace in the presence
of censored observations. Li et al. (1999) propose a modified sliced inverse regression method
that uses the estimate of the conditional survival function to account for censored cases. Xia
et al. (2010) propose to estimate the conditional hazard function nonparametrically and use its
gradient to construct the dimension reduction directions. In Li et al. (1999), p-dimensional kernel
estimation is used to compensate for the bias caused by censoring, while in Xia et al. (2010), the
estimation procedure requires a p-dimensional kernel estimate of the hazard function to provide
reliable initial values, and then gradually reduces the working dimension to d. These methods
suffer from the curse of dimensionality. When p is not small, alternative approaches such as that
of Lu & Li (2011) adopt an inverse probability weighting scheme, which implicitly requires the
correct specification of the censoring mechanism.

In this paper, we propose a counting process-based dimension reduction framework that leads
to four different approaches. The proposed methods address several limitations of the existing
work. First, our framework is built upon a counting process representation of the underlying
survival model. This framework allows construction of doubly robust estimating equations, and
the resulting estimators are more stable than existing ones such as in Xia et al. (2010). Our
formulation can avoid the linearity assumption (Li, 1991) and the estimation of any censoring
distribution, which are necessary in Li et al. (1999) and Lu & Li (2011). Second, the proposed
framework is adaptive to the structural dimension in the sense that the nonparametric estimation
involved depends only on the dimension of S(B), which is usually small, thus circumventing the
curse of dimensionality. To this end, the proposed method shares advantages similar to that in
Xia et al. (2010). Computationally, we use an optimization technique (Wen & Yin, 2013) on the
Stiefel manifold to solve the estimating equations, which is numerically stable and fast. Last,
under restrictive assumptions, our method reduces to a singular value decomposition, which can
directly estimate the dimension reduction subspace without nonparametric estimation.



2. Proposed methods

2.1. Semiparametric estimating equations for the central subspace

Throughout the paper, we denote the failure time by T and the censoring time by C. Let
Y = min(T , C) and δ = I (T � C) be the observed event time and the censoring indicator.
We assume that C is independent of T conditional on X . Let N (u) = I (Y � u, δ = 1) and
Y (u)= I (Y �u) denote the observed counting process and the at-risk process, respectively. Let
λ(u | X ) be the conditional hazard for T given X . According to Xia et al. (2010), model (1) is
equivalent to λ(u | X ) = λ(u | BTX ). Let

dM (u, X )=dM (u, BTX )=dN (u)− λ(u | BTX )Y (u)du

be the martingale increment process indexed by u. This paper considers constructing estimation
equations that are based on the counting process representation of the survival model. To derive
the estimating equations, we follow Bickel et al. (1993) and Tsiatis (2007) to obtain the ortho-
complement of the nuisance tangent space at B as

E⊥ =
{ ∫ {

α(u, X )− α∗(u, BTX )
}

dM (u, X ) : α(u, X ) is measurable in X and u , (2)

where α∗(u, BTX ) = E
{
α(u, X ) | Fu, BTX

}
and Fu is the filtration; see the Supplementary

Material. To estimate B, we consider the unbiased estimating equations

E
∫ {

α(u, X )− α∗(u, BTX )
}{

dN (u)− λ(u | BTX )Y (u) du
}] = 0. (3)

The sample versions based on n independent and identical copies {Yi, δi, Xi}n
i=1 are

1

n

n∑
i=1

[ ∫ {
α(u, Xi)− α∗(u, BTXi)

}{
dNi(u)− λ(u | BTXi)Yi(u) du

}] = 0, (4)

where the conditional hazard function will be estimated using data. For some particular
choices of α(u, X ), this can be implemented using the generalized method of moments
(Hansen, 1982):

arg min
B

{
ψn(B)

Tψn(B)
}
, (5)

where ψn(B) is the vectorized left-hand side of (4). We estimate several quantities in ψn(B)
nonparametrically. For example, the conditional hazard function λ(u | BTXi) at any time-point u
can be estimated by

λ̂(u | BTX = z) =
n
i=1 Kb(Yi − u)δiKh

(
BTXi − z

)
n
j=1 I

(
Yj � u

)
Kh

(
BTXj − z

) (6)

for bandwidths b and h, where Kh(·) is a d-dimensional multivariate kernel function. We defer
the details to § 3.



It is crucial to choose specific forms of α(u, X ). Different choices may simplify the above
formulation or may have theoretical or computational advantages. In the following two subsec-
tions, we present four different choices, which fall into two categories: the forward and inverse
regression schemes. The main difference between the two schemes lies in whether the counting
process N (u) is used in the definition of α(u, X ). The forward regression scheme is essentially
the estimating equation approach, while the inverse regression scheme uses N (u) to mimic the
sliced inverse regression (Li, 1991) conceptually.

2.2. Forward regression

In the forward regression scheme, we choose α(u, X ) to not depend on the observed failure
process N (u). Provided that α(u, X ) depends at most on the at-risk process Y (u), we can simplify
the estimating equations in (3) to

E
∫

α(u, X )− E
{
α(u, X ) | Y (u) = 1, BTX

}]
dN (u)

)
= 0.

We now give one example of α(u, X )when the structural dimension d = 1. This requires only
scalar nonparametric estimation.

Example 1. With α(u, X ) = X , the population versions of the p-dimensional estimating
equations are

E
∫

X − E
{
X | Y (u) = 1, BTX

}]
dN (u)

)
= 0, (7)

which reduce to the efficient estimating equations for the proportional hazards model when the
exponential link is known to be correct. This can also be used for the transformation models in
Zeng & Lin (2007). For some simple extensions, we could let α(u, X ) = E{XY (u)}X T to obtain
p-by-p estimating equations, in order to handle the case of d > 1. To implement the forward
regression method in (7), we can estimate ψn(B) in (5) using

ψ̂n
(
B
) = 1

n

n∑
i=1

{
Xi − Ê(X | Y � Yi, BTXi)

}
δi, (8)

where for any given u and z,

Ê(X | Y � u, BTX = z) =
∑n

i=1 XiI
(
Yi � u

)
Kh

(
BTXi − z

)
n
i=1 I

(
Yi � u

)
Kh

(
BTXi − z

) (9)

for some choice of kernel function Kh(·) with bandwidth parameter h; see § 3.

2.3. Inverse regression

In this subsection, we focus on the inverse regression scheme. Our motivation is the following
counting process representation of the model:

{
dN (u) | Y (u) = 1, BTX

} ∼ Ber
{
λ(u | BTX )du

}
,



where dN (t) = N (t +dt)−N (t). Hence, we can consider the sliced conditional mean of X given
the outcome of dN (t) in the risk set, that is, Y (t) = 1. This leads to the construction of a local
mean difference for the binary outcome dN (u):

ϕ(u) = E
{
X | dN (u)=1, Y (u)=1

}−E
{
X | dN (u)=0, Y (u)=1

}
. (10)

The outcome dN (u) conditioning on the event Y (u) = 1 depends only on λ(u | BTX ). Hence the
inverse regression curve ϕ(u) is contained within the central subspace ST |X . With this choice of
ϕ(u), we consider the function

α(u, X ) = XϕT(u). (11)

Then

α(u, X )− α∗(u, BTX ) = [
X − E{X | Y (u) = 1, BTX }]ϕT(u), (12)

which can be estimated by combining the estimate of E{X | Y (u) = 1, BTX } in (9) and that of
ϕ(u) in (10):

ϕ̂(u) =
∑n

i=1 XiI
(
u � Yi < u + h, δi = 1

)
n
i=1 I

(
u � Yi < u + h, δi = 1

) −
∑n

i=1 XiI
(
Yi � u

)
n
i=1 I

(
Yi � u

) . (13)

Based on this choice of α, we propose two approaches that use the estimating equations (3)
and a computationally efficient approach that further simplifies the formula to a singular value
decomposition.

Example 2. Replacing α(u, X )− α∗(u, BTX ) in (3) by (12) leads to estimating equations of a
semiparametric inverse regression approach:

E
∫ [

X − E{X | Y (u) = 1, BTX }]ϕT(u) dM (u)

)
= 0. (14)

This approach consists of p × p estimating equations, and is able to handle the case of d > 1.
However, the nonparametric estimation part is only d-dimensional, as reflected by BTX . Further-
more, this formulation enjoys the double robustness property, illustrated in the Supplementary
Material. A similar phenomenon has been observed by Ma & Zhu (2012) in the setting without
censoring. This suggests that if one of E{X | Y (u) = 1, BTX } and M (u) is estimated incorrectly,
we can still obtain consistent estimators of the dimension reduction subspace. In our numerical
experiment, we observe a numerical advantage of this approach over its simplified version, which
is given in Example 3.

To implement this method, we estimate ψn(B) in (5) by

vec
[
1

n

n∑
i=1

n∑
j=1
δj=1

{
Xi−Ê

(
X | Y � Yj, BTXi

)}
ϕ̂T(Yj)

{
δiI (j = i)−λ̂(Yj | BTXi

)} ]
, (15)

where Ê{X | Y � u, BTX = z} and ϕ̂T(u) are given in (9) and (13), respectively, and the
conditional hazard function can be estimated by (6). We finally apply the generalized method of
moments to estimate B.



Example 3. Similar to Example 1, our choice of α(u, X ) in (11) depends on at most the at-risk
process Y (u). Hence, the estimating functions in (14) can be simplified to

E
∫ [

X − E{X | Y (u) = 1, BTX }]ϕT(u) dN (u)

)
. (16)

Replacing dM (u)with dN (u) greatly reduces the computational burden. This can be seen from
(15), where a conditional hazard function λ̂

(
Yj | BTXi

)
needs to be evaluated at each observed

failure time-point j for all observations i. Using this simplification, we lose the double robustness
property. The implementation of this approach is a simplified version of that in Example 2 with

ψ̂n
(
B
)=vec

[
1

n

n∑
i=1

{
Xi−Ê

(
X | Y � Yi, BTXi

)}
δiϕ̂

T(Yi)

]
, (17)

where the estimators of the nonparametric components are the same as before.

Example 4. With additional assumptions, B can be estimated without nonparametric smooth-
ing. We need the following definitions.

Definition 1. For any α ∈ R
p and any u > 0, the linearity condition (Li, 1991) is satisfied

conditioning on the event {Y (u) = 1}, i.e.,

E{αTX | Y (u) = 1, BTX = z} = c0(u)+ cT(u)z, (18)

where c0(u) and c(u) are constants that possibly depend on u. Furthermore, the time-invariant
covariance condition requires

cov{X | Y (u) = 1} = c1(u)�, (19)

where c1(u) is some constant depending on u.

After centring X at time u, if (18) and (19) are satisfied, we have

E{X | Y (u) = 1, BTX } − E{X | Y (u) = 1} = P
[
X − E{X | Y (u) = 1}], (20)

where P = �B(BT�B)−1BT and the constant term c1(u) vanishes. By (19), P remains the same
across all time-points. Hence, inserting (20) into (16) leads to

Q E
∫ [

X − E{X | Y (u) = 1}]ϕT(u) dN (u)

)
=0,

where Q = I − P. This is equivalent to deriving the left-singular space of the covariance matrix

E
∫ [

X − E{X | Y (u) = 1}]ϕT(u) dN (u)

)
. (21)

The computation of this approach is extremely simple. Since dN (u) takes value 1 at no more
than one time-point in the entire time domain, the covariance matrix can be estimated directly.
Then we perform singular value decomposition on this sample covariance matrix and obtain its
leading left-singular vectors as our final estimators. Details are provided in Algorithm 1.



Remark 1. The two conditions imposed in Example 4 are restrictive and do not always hold.
For example, since Y (u) is a process that depends on both the failure and the censoring distribution,
as long as the censoring distribution depends on structures beyond BTX , the conditions could
be violated. Nevertheless, many recent papers argue that sliced inverse regression performs well
empirically even when the linearity condition fails (Li & Dong, 2009; Dong & Li, 2010). Hence,
this does not prevent the method from serving as an exploratory tool. The method is also practically
useful since it provides an initial value for solving our other estimation approaches.

3. Implementation and algorithms

Implementation of the method in (21) is straightforward. Algorithm 1 summarizes the
estimation procedure.

Algorithm 1. Algorithm for the computationally efficient approach.
Input: {(Xi, δi, Yi), 1 � i � n}, h > 0, k > 0.
Step 1: For each Yi such that δi = 1, calculate ϕ̂(Yi) using equation (13) and calculate

Ê(X | Y > Yi) using Ê(X | Y > u) = {∑n
i=1 I (Yi > u)}−1{∑n

i=1 XiI (Yi > u)}.
Step 2: Calculate M̂ = n−1 ∑

δi=1{Xi − Ê(X | Yi)}ϕ̂T(Yi).
Step 3: Perform the singular value decomposition, M̂ = Û D̂V̂ T.
Output: B̂ as the first k columns of Û .

Advanced numerical optimization techniques are needed to solve the estimating equations of
the forward regression approach in (7) and the two inverse regression approaches in (14) and
(16). For all three, we solve for the minimizer of ψ̂n(B)Tψ̂n(B), where ψ̂n(B) is specified in (8),
(15) and (17) respectively. Existing methods use general-purpose optimization tools such as the
Newton–Raphson algorithm to solve for the minimizer, but dimension reduction methods create
an additional difficulty because B is not uniquely defined and this causes numerical instability. To
tackle this, Ma & Zhu (2012) propose to take a selected set of d rows of B to be an identity matrix
and solve for the other parameters. This approach requires knowledge of locations of important
variables. Instead, we propose an orthogonality-constrained optimization approach to solve our
semiparametric estimating equations within the Stiefel manifold (Edelman et al., 1998):

minimize ψ̂n(B)
Tψ̂n(B)

subject to BTB = Id×d .

This optimization approach preserves the rank d of the column space of B while not directly
restricting its entries.

The main machinery of the algorithm evolved from a first-order descent algorithm proposed
by Wen & Yin (2013), which preserves the update of the parameters within the manifold. In
particular, let the gradient matrix be defined as

G = ∂ ψ̂n(B)Tψ̂n(B)

∂B
.

Then, utilizing the Cayley transformation, we can update B to

B(τ0) =
(

I + τ0

2
A
)−1(

I − τ0

2
A
)

B,



where A = GBT − BGT is a skew-symmetric matrix and τ0 is a step size. In practice, τ0 can
be chosen using inexact line search by incorporating the Wolfe conditions (Nocedal & Wright,
2006). It can easily be verified that if BTB = I , then B(τ0)

TB(τ0) = I for any τ0 > 0. In this way,
the algorithm preserves the constraint exactly. As with classical dimensional reduction methods,
our method recovers the column space of B rather than treating each entry as a fixed parameter.
Moreover, if an upper block-diagonal version is desired, we can easily convert the obtained
solutions through linear transformations. However, in this case, we can select the largest entries
in the estimated B̂ as the location of the diagonal matrix, instead of prespecifying the locations.
Algorithm 2 summarizes the details.

Algorithm 2. The orthogonality constrained optimization algorithm.
Input: ε0, {(Xi, δi, Yi), 1 � i � n}.
Initialize: Obtain B(0) from the computationally efficient approach in Algorithm 1.
For k = 1 to k = max.iter:

Numerically approximate the gradient matrix G at B(k).
Compute the skew-symmetric matrix A = GBT − BGT.

Perform line search for τ0 on the path B(τ0) = (
I + τ0

2 A
)−1(I − τ0

2 A
)
B.

Update B(k+1) = B(τ0).
Stop if

∥∥B(k+1) − B(k)
∥∥

2 � ε0.
Output: B̂ = B(k+1).

The iteration is stopped when a prespecified optimization precision ε0 is reached. To estimate
the nonparametric components (6) and (9), we exploit a multivariate Gaussian kernel with a
diagonal bandwidth matrix such that the bandwidth for the jth variable is taken as h = {

4/(d +
2)

}1/(d+4)n−1/(d+4)σ̂j (Silverman, 1986), where σ̂j is the sample standard deviation of the jth
variable in BTX . In our numerical implementation, we simply standardize all d coordinates of
BTX , so that σ̂j = 1 for all j. We implemented the algorithm in the R package orthoDr (Zhao
et al., 2017; R Development Core Team, 2019).

4. Asymptotic normality

We prove asymptotic normality of the proposed estimators. Without loss of generality, we focus
on the semiparametric inverse regression approach but with general α(u, X ) and α∗(u, BTX ), in
which we obtain B̂ by solving

1

n
vec

[ n∑
i=1

∫ τ

0

{
α(u, Xi)− α̂∗(u, B̂TXi)

}
dM̂ (u, B̂TXi)

]
= 0.

To address the identifiability of B, we restrict our attention to matrices in the form of B = (BT
u, BT

)
T,

where the upper submatrix Bu = Id ∈ R
d×d is the d × d identity matrix. In this manner, we can

view B as the unique parameterization of the subspace S(B). We then write β = vecl(B) =
vec(B), the vector concatenating all free parameters in B. We need the following regularity
assumptions.

Assumption 1. There exists τ such that 0 < τ < ∞ and pr(Y > τ | X ) > 0.



Assumption 2. Let fBTX (z) be the density function of BTX evaluated at z = BTx, let f (t, z) be
the density of T given BTX = z, and let S(t, x) = pr(T � t | X = x) and Sc(t, x) = pr(C � t |
X = x). Assume that f (t, z), fBTX (z), S(t, z) and E

{
Sc(t, X ) | z

}
are bounded and have bounded

first and second derivatives with respect to t and z, and that S(t, z) is bounded away from zero.

Assumption 3. The univariate kernel function K(x) is symmetric with
∫

x2K(x) dx < ∞.
The d-dimensional kernel function is a product of d univariate kernel functions; that is, K(u) =∏

K(uj) for u = (u1, . . . , ud)
T.

Assumptions 1 and 2 are standard in survival analysis. Assumption 3 is commonly used in
kernel estimation. Based on these assumptions, we provide convergence rates for our estimators
of the conditional hazard function and its derivative. It is easy to see that the Silverman formula
implemented in our numerical approach leads to consistent estimators.

Lemma 1. Under Assumptions 2 and 3, and assuming that the bandwidths satisfy h, b → 0
and nbhd+2 → ∞, we have that, uniformly for all t and z,

λ̂(t | z) = λ(t, z)+ Op

{(
nbhd)−1/2 + h2 + b2

}
,

∂

∂z
λ̂(t | z) = ∂

∂z
λ(t, z)+ Op

{(
nbhd+2)−1/2 + h2 + b2

}
.

Before presenting our main theorem, we need the convergence of the α∗ functions. However,
we do not want the theoretical result to be limited to the choice in equation (2), so we provide
results for any valid α∗, provided the following condition is satisfied.

Assumption 4. For some κ < 1/2, the convergence rate for the following conditional
nonparametric estimation holds uniformly over all u and z:

vec
{
α̂∗(u, z

) − α∗(u, z
)} = Op

(
n−1/2+κ),

∂

∂z
vec

{
α̂∗(u, z

) − α∗(u, z
)} = Op

(
n−1/2+κ).

For most choices, such as a kernel estimator of the conditional density, when the dimension
d is fixed, the rate in Lemma 1 can be achieved for α̂∗(u, z

)
, while for conditional expectation

estimation, the classical rate of Op
{
(nhd)−1/2 +h2

}
can be attained. Hence, with a proper choice

of the bandwidth, the rates in Assumption 4 can usually be guaranteed. We present the main
theorem.

Theorem 1 (Asymptotic normality). Under Assumptions 1–4 and the choice of bandwidths
specified in Lemma 1, the estimator vecl(B̂) is asymptotically normal, that is, n1/2 (β̂ − β) →
N (0,�), where � = (GTG)−1G�AGT(GTG)−1, with

�A = cov
{
A(τ )

} = cov
[∫ τ

0
vec

{
α(u, X )− α∗(u, BTX )

}
dM (u, BTX )

]
,

G = E
∂

∂β

∫ τ

0
vec

[{
α(u, Xi)− α∗(u, BTX )

}]
dM (u, BTX )

)
.



5. Numerical examples

5.1. Simulation studies

We examine the finite-sample performance of our proposed methods via numerical experi-
ments. We estimate the dimension reduction subspace using the forward regression approach
(7), the semiparametric inverse regression approach (14), the counting process inverse regres-
sion approach (16), and the computationally efficient approach (21). All of our methods are
implemented in the orthoDr package in R. Four alternative approaches are considered: a naive
approach that performs sliced inverse regression on the failure observations, carried out using the
dr package (Weisberg, 2002); the double slicing approach (Li et al., 1999) using the R package
censorSIR provided by Wu et al. (2008); the minimal average variance estimation based on
hazard functions in Xia et al. (2010); and the inverse probability-of-censoring weighted approach
based on Lu & Li (2011). Xia et al. (2010)’s approach is implemented through Matlab, provided
at Prof. Xia’s website. We carry out Lu & Li (2011)’s approach ourselves by using a proportional
hazards model to estimate the censoring weights and obtain the reduced space by using the dr
package with subject weights.

We consider four different settings. Setting 1 is a classical proportional hazards model. Setting
2 is set up with structural dimension d = 2 and with directions in the hazard function changing
over time. Setting 3 has the structural dimension equal to 2, with the two directions interacting
with each other. Setting 4 also has two interacting structural dimensions, while the failure and
censoring variables overlap. For each setting, we consider p = 6, 12 and 18. Each experiment is
repeated 200 times with sample size n=400.

In Setting 1, the true survival time T and the censoring time C are generated from exponential
distributions with rates exp(βTX ) and exp(X4+X5−1) respectively, where β = (1, 0.5, 0, . . . , 0)T

and Xj is the jth element of X , for 1 � j � p. The covariate X follows the multivariate nor-
mal distribution with mean zero and covariance � = (

0.5|i−j|)
ij. The overall censoring rate is

around 35%.
In Setting 2, we generate T1 and T2 from exponential distributions with rates exp(βT

1X ) and
exp(βT

2X ) respectively, where β1 = (1, 0, 1, 0, . . . , 0)T and β2 = (0, 1, 0, 1, 0, . . . , 0)T. The true
survival time T = T1I (T1 < 0.4) + (T2 + 0.4)I (T1 � 0.4). The censoring time C is generated
from exponential distributions with rate exp(X5 − X6 − 2). The covariate X follows the same
distribution as in Setting 1. The overall censoring rate is around 35%.

In Setting 3, the true survival time T is generated from a Weibull distribution with shape
parameter 5 and scale parameter exp{4βT

2X (βT
1X − 1)}, where β1 = (1, 0, 1, 0, . . . , 0)T and

β2 = (0, 1, 0, 1, 0, . . . , 0)T. The censoring time C is generated uniformly from 0 to 3 exp(X5 −
X6 + 0.5). We further draw X such that the Xjs follow the standard uniform distribution U(0, 1)
independently. The overall censoring rate is around 34%.

In Setting 4, the true survival time T is generated from a proportional hazards model with
log(T ) = −2.5 + βT

1X + 0.5βT
1XβT

2X + 0.25 log{− log(1 − u)} and log(C) = −0.5 + βT
3X +

log{− log(1 − u)}, where the us are independent and identically uniformly distributed, β1 =
(1, 1, 0, . . . , 0)T, β2 = (0, 0, 1, −1, 0, . . . , 0)T, and β3 = (0, 1, 0, 1, 1, 1, 0, . . . , 0)T. The covariate
X follows the same distribution as in Setting 1, except that� = (

0.25|i−j|). The overall censoring
rate is around 26%.

We investigate the statistical performance using the Frobenius norm distance between the
projection matrix P and its estimator P̂, where P = B(BTB)−1BT, the trace correlation tr

(
PP̂

)
/d,

where d is the structural dimension, and the canonical correlation between BTX and B̂TX . The
results are summarized in Table 1.



Table 1. Simulation results: mean (×102) and standard deviation (×102, in parentheses) of the
Frobenius norm distance, trace correlation and canonical correlation

Setting 1 (d = 1) p = 6 p = 12 p = 18

Frob Tr CCor Frob Tr CCor Frob Tr CCor
Naive 54 (12) 85 (6) 94 (3) 66 (12) 78 (8) 92 (3) 73 (11) 73 (8) 91 (3)
DS 33 (10) 94 (4) 98 (2) 46 (11) 89 (5) 97 (2) 53 (10) 85 (5) 96 (2)
IPCW-SIR 64 (13) 78 (9) 91 (4) 75 (11) 71 (9) 89 (4) 80 (11) 68 (9) 89 (4)
hMave 68 (12) 76 (8) 86 (5) 73 (11) 73 (8) 86 (5) 79 (10) 68 (8) 84 (5)
Forward 21 (6) 98 (1) 99 (0) 33 (8) 94 (3) 99 (1) 39 (7) 92 (3) 98 (1)
CP-SIR 26 (9) 96 (3) 99 (1) 40 (10) 91 (4) 98 (1) 49 (9) 88 (4) 97 (1)
IR-CP 23 (7) 97 (2) 99 (0) 35 (8) 94 (3) 98 (1) 41 (7) 91 (3) 98 (1)
IR-Semi 23 (8) 97 (2) 99 (0) 37 (8) 93 (3) 98 (1) 44 (8) 90 (4) 98 (1)

Setting 2 (d = 2) p = 6 p = 12 p = 18
Frob Tr CCor Frob Tr CCor Frob Tr CCor

Naive 67 (19) 88 (6) 96 (3) 87 (18) 80 (8) 91 (6) 106 (17) 71 (9) 87 (6)
DS 44 (13) 95 (3) 98 (1) 68 (15) 88 (5) 94 (3) 84 (11) 82 (5) 92 (3)
IPCW-SIR 83 (19) 82 (8) 94 (3) 98 (17) 75 (9) 90 (6) 114 (16) 67 (9) 86 (8)
hMave 114 (31) 65 (16) 74 (16) 139 (19) 51 (12) 64 (12) 151 (14) 43 (10) 59 (10)
Forward 102 (1) 49 (1) 100 (0) 105 (2) 48 (1) 99 (0) 107 (2) 46 (1) 99 (0)
CP-SIR 37 (11) 96 (2) 98 (1) 61 (12) 90 (4) 96 (2) 78 (10) 85 (4) 93 (2)
IR-CP 49 (19) 93 (6) 96 (3) 73 (20) 86 (8) 92 (4) 90 (17) 79 (8) 89 (5)
IR-Semi 39 (14) 96 (3) 98 (2) 65 (16) 89 (6) 94 (3) 83 (15) 82 (6) 91 (3)

Setting 3 (d = 2) p = 6 p = 12 p = 18
Frob Tr CCor Frob Tr CCor Frob Tr CCor

Naive 72 (23) 86 (9) 96 (5) 99 (22) 74 (11) 88 (11) 116 (18) 66 (10) 82 (13)
DS 40 (14) 95 (3) 99 (1) 60 (13) 91 (4) 97 (3) 73 (15) 86 (6) 95 (5)
IPCW-SIR 113 (26) 66 (13) 81 (14) 129 (15) 58 (9) 74 (12) 133 (11) 55 (7) 74 (12)
hMave 40 (18) 95 (6) 99 (3) 66 (27) 87 (12) 94 (9) 89 (29) 78 (14) 89 (12)
Forward 100 (0) 50 (0) 100 (0) 100 (0) 50 (0) 100 (0) 101 (0) 50 (0) 100 (0)
CP-SIR 34 (11) 97 (2) 99 (1) 55 (11) 92 (3) 97 (2) 67 (11) 88 (4) 96 (3)
IR-CP 30 (14) 97 (3) 99 (1) 46 (14) 94 (4) 99 (1) 58 (15) 91 (5) 97 (4)
IR-Semi 19 (8) 99 (1) 100 (0) 29 (8) 98 (1) 100 (0) 40 (11) 96 (2) 99 (1)

Setting 4 (d = 2) p = 6 p = 12 p = 18
Frob Tr CCor Frob Tr CCor Frob Tr CCor

Naive 33 (9) 97 (2) 99 (1) 52 (10) 93 (3) 97 (1) 66 (10) 89 (4) 95 (2)
DS 49 (12) 94 (3) 95 (3) 62 (11) 90 (4) 94 (3) 71 (11) 87 (4) 93 (3)
IPCW-SIR 35 (9) 97 (2) 98 (1) 52 (10) 93 (3) 97 (1) 64 (10) 89 (3) 95 (2)
hMave 142 (3) 50 (2) 59 (4) 145 (5) 47 (4) 57 (4) 149 (7) 45 (6) 55 (6)
Forward 101 (0) 50 (0) 100 (0) 102 (1) 49 (0) 99 (0) 102 (1) 49 (0) 99 (0)
CP-SIR 36 (7) 97 (1) 98 (1) 51 (8) 93 (2) 97 (1) 63 (8) 90 (3) 95 (1)
IR-CP 22 (9) 99 (2) 99 (1) 42 (15) 95 (4) 98 (2) 57 (17) 91 (5) 96 (3)
IR-Semi 13 (5) 99 (0) 100 (0) 24 (7) 98 (1) 99 (0) 34 (10) 97 (2) 99 (1)

DS, method of Li et al. (1999); IPCW-SIR, method of Lu & Li (2011); hMave, method of Xia et al. (2010); Forward,
forward regression; CP-SIR, the computationally efficient approach; IR-CP, the counting process inverse regres-
sion approach; IR-Semi, the semiparametric inverse regression approach; Frob, Frobenius norm distance; Tr, trace
correlation; CCor, canonical correlation.

Overall, the two inverse regression methods achieve the best performance, followed by the
computationally efficient approach. When no nonparametric approximation is required, the latter
outperforms existing methods in almost all settings. Among the competing methods, double slic-
ing performs best in general, while the methods of Xia et al. (2010) and Lu & Li (2011) outperform



double slicing in Settings 3 and 4, respectively. Regarding the three error measurements, the
Frobenius norm distance is the most informative, while the trace and canonical correlations are
less sensitive to the performances.

Of the two inverse regression methods, the semiparametric version is slightly better in Settings
3 and 4. The main advantage of the semiparametric version compared with the counting process
version is its double robustness, which ensures consistency even when the conditional expec-
tations are not estimated correctly. However, this theoretical advantage does not translate into
strong numerical improvements in Settings 1 and 2, especially when p is large. This is possibly
due to the variations in the hazard function estimation, which introduces numerical instability.
In Setting 1, forward regression achieves the best performance. As discussed in Example 1,
this method mimics the efficient estimating equations used in the proportional hazards model
and is thus the most efficient method in this setting. In Setting 2, the computationally efficient
approach performs similarly to the two inverse regression approaches and even outperforms them
for large p. This demonstrates the potential of this approach in higher dimensional settings when
nonparametric estimation may not be preferred.

One major challenge in solving the estimating equations is the computational burden, especially
for equations with nonparametric components. Our method adds difficulties due to the extra
orthogonality constraints BTB = Id×d . However, by combining the first-order algorithm with the
Rcpp interface, our implementation can solve the estimating equations very efficiently. Also,
parallel computing through OpenMP is used to approximate the gradient for each entry of B
numerically. In Setting 2 with p = 6, the mean computational time for the inverse regression
counting process approach is only 1.62 seconds, while the time for the semiparametric version is
8.01 seconds. The Supplementary Material summarizes the computational costs. All simulations
were done on an Intel Xeon E5-2680v4 processor with five parallel threads.

We further investigate the variance of the proposed methods. Due to the complicated variance
formula, we instead use bootstrap to estimate the standard deviations of the proposed estimators.
Using an upper block-diagonal version of the parameter of interest, we estimate the standard
deviations based on 100 bootstrap samples and also report the 95% confidence intervals. The
results show that in Setting 1, the bootstrap estimators of all the proposed methods approximate
the standard deviations well. In the other settings, the approximations for the computationally
efficient and counting process inverse regression approaches still achieve good performances,
while the approximation for the semiparametric inverse regression slightly overestimates the
standard deviation, leading to slight overcoverage, around 98%.

5.2. Skin cutaneous melanoma data analysis

We apply the proposed method to The Cancer Genome Atlas (https://cancergenome.
nih.gov/) skin cutaneous melanoma dataset, which provides comprehensive profiling data
on more than thirty cancer types. We acquired 20 531 items of mRNA expression and clinical
data on a total of 469 patients, with 156 observed failures. To produce biologically meaning-
ful results, we preselect the top 20 genes highly associated with cutaneous melanoma based on
meta-analyses of over 145 papers (Chatzinasiou et al., 2011). A list of these genes can be found at
http://bioserver-3.bioacademy.gr/Bioserver/MelGene/.We further include
age at diagnosis as a clinical control variable.All covariates are pre-processed to have unit variance
and zero mean.

Selecting the number of structural dimensions can be challenging, especially with right-
censored survival data (Xia et al., 2010), and we adopt the validated information criterion (Ma &
Zhang, 2015), which is particularly suited to our generalized method of moments framework. The

https://cancergenome.
https://cancergenome.nih.gov/
nih.gov/
https://cancergenome.nih.gov/
http://bioserver-3.bioacademy.gr/Bioserver/MelGene/
http://bioserver-3.bioacademy.gr/Bioserver/MelGene/
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Fig. 1. Fitted direction and survival function of the semiparametric inverse regression: (a) the projected direction
versus the observed failure times (blue dots) and censoring times (orange plus signs); (b) a nonparametric estimate of

the survival function based on the projected direction.

validated information criterion is constructed by penalizing the quadratic form of the objective
function. When we apply this method to all of our proposed estimating equation approaches,
d = 1 always yields the best fit. Hence we present the results for all methods with d = 1. As a
demonstration of the fitted model, we project the design matrix onto the estimated direction of the
semiparametric inverse regression approach and plot the survival outcome against the projection.
A nonparametric estimator of the conditional survival function based on this projection is also
produced. We can see a clear trend that subjects with larger values of the projection have a lower
survival rate. For comparisons, we look at the competing methods with one structural dimension,
and the results can be found in the Supplementary Material. It seems that double slicing obtains a
similar direction with monotone effects on the risk of failure, while the other directions obtained
by other methods are nonmonotone.

We observe both similarities and differences between the different methods for the identified
genes. Figure 1 suggests that a higher survival rate is observed for a smaller derived direction.
This further indicates that younger patients tend to have a higher survival rate. This finding is
consistent with double slicing, which identifies the variableAge with loading 0.47. However, other
methods do not assign large loading to Age. We summarize in Table 2 the results with a positive
loading of Age, and the directions are multiplied by −1 otherwise. Another important predictor
for which all methods agree in signs is MTAP. This gene has been previously reported to have a
negative correlation with the progression of melanocytic tumours (Behrmann et al., 2003), which
justifies the sizeable negative value estimated by the proposed methods. However, the magnitudes
in alternative methods are small. Other common genes identified by the proposed methods are
MYH7B and CASP8. Li et al. (2008) genotyped putatively functional polymorphisms of CASP8
and found a significant association with lower risk of cutaneous melanoma. The result therein
supports the large negative loading of the CASP8 gene in our fitted model. For differences across
methods, TYR is identified by the alternative methods except for the double slicing method,
with large loadings up to −0.78. The enzyme encoded by this gene controls the production of
melanin and has been shown to be strongly associated with melanoma (Gudbjartsson et al., 2008).
Although the estimated directions are dominated by this gene, we did not observe a monotone



Table 2. Skin cutaneous melanoma data analysis results: the loading vectors (×102) of the first
structural dimension
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Age 16 47 10 0 60 59 53 54
TYRP1 −16 −5 −9 24 18 11 39 30
OCA2 18 17 14 −6 21 19 22 5
TYR −60 −9 −65 −78 −19 −27 −19 9
SLC45A2 11 24 23 14 30 28 16 17
CDKN2A 6 −28 −2 −12 −9 −7 −2 −11
MX2 2 −2 −2 −12 −19 −13 −30 −27
MTAP −15 −8 −10 −14 −31 −36 −35 −30
MITF 56 −9 43 5 −13 −12 2 −27
VDR 5 −18 −9 10 −10 −6 −4 2
CCND1 −20 35 −21 −5 16 17 18 16
MYH7B 10 −27 5 −4 −29 −32 −30 −48
ATM −16 −22 2 28 −4 7 0 6
PLA2G6 −22 −16 −21 7 4 −5 −11 −3
CASP8 15 −39 21 −13 −26 −24 −18 −14
AFG3L1 12 26 18 −15 17 10 −6 −9
CDK10 3 8 2 25 −7 −1 9 8
PARP1 −9 3 −22 17 14 18 8 18
CLPTM1L −8 −5 17 2 −6 −6 −2 −6
ERCC5 −14 25 −17 −7 12 13 22 3
FTO −3 −3 −8 14 15 17 7 5

DS, method of Li et al. (1999); IPCW-SIR, method of Lu & Li (2011); hMave, method of Xia et al. (2010); Forward,
forward regression; CP-SIR, the computationally efficient approach; IR-CP, the counting process inverse regression
approach; IR-Semi, the semiparametric inverse regression approach.

effect of the directions. We provide a comparison of the different methods with respect to the
Frobenius norm distance in the Supplementary Material.

6. Discussion

In this paper, we have proposed a counting process-based dimension reduction framework for
censored outcomes. A family of generalized methods of moments approaches is constructed for
estimating the dimension reduction subspace. The main advantage of the proposed methods is that
they are adaptive to the structural dimension and free of the modelling of censoring mechanisms.
This circumvents the difficulties of many existing methods and improves the efficiency when
the ambient dimension p is too large for kernel methods. Our simulation study suggests that the
proposed method outperforms existing methods in a variety of settings. To efficiently solve the
proposed estimating equations, we further introduce an orthogonality constrained optimization
algorithm that solves the parameters within a Stiefel manifold. With implementations in the R
package orthoDr through C++, the counting process version of the estimators can be solved
within a few seconds. However, the martingale version requires significantly more calculation due
to the local estimation of the hazard function, hence requiring a few minutes to solve. We believe
that there is still room to improve the computational performance. Besides, our computationally



efficient approach requires only a singular value decomposition and has satisfactory performance.
However, it does not enjoy the same theoretical guarantee without conditions on the covariates.
Further relaxation of these conditions is of interest.

Our framework may be extended. First, by imposing penalization on the estimating equations, it
is possible to extend the framework to high-dimensional data. Sparse estimation of the B parameter
may help interpretations and improves the prediction accuracy of subsequent nonparametric
models. Another direction is to search for alternative α functions. In our inverse regression
framework, we used the ϕ function, which is motivated by the inverse regression curve of a
binary outcome. It would be interesting to investigate the possibility of a sliced average variance
estimation-type (Cook & Weisberg, 1991) function that may deal with more complicated model
structure. We can also consider using α(u, X ) = BTXϕT(u). It would also be interesting to derive
an α function that achieves semiparametric efficiency. Lastly, it would be interesting to extend
this framework to a time-varying coefficient setting, where the dimension reduction space S(t)
changes over time t.

Supplementary material

Supplementary material available at Biometrika online includes a derivation of the ortho-
complement of the nuisance tangent space, proof of the double robustness property for the
semiparametric inverse regression approach, proofs of Lemma 1 and Theorem 1, and additional
simulation and data analysis results.
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