3 research outputs found

    Radiosurgery for Benign Vertebral Body Hemangiomas of the Spine: A Systematic Review and Meta-Analysis.

    Get PDF
    Spinal vertebral hemangiomas (SVHs) are the most common benign tumors of the spine. We performed a systematic review and meta-analysis of radiosurgery (RS) for SVHs. We reviewed articles published between January 1990 and December 2020 on PubMed. Tumor control, pain relief, and damage to surrounding tissues were evaluated with separate meta-analyses. This study was performed in accordance with the published Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. A total of 23 patients with 24 SVHs were reported in 3 studies. Follow-up time was 7.3-84 months. The vast majority of lesions were located at dorsal level (n = 18; 75%). In 20 (83.3%) patients, pain was the initial clinical presentation. Complete, partial, and stable responses after radiation were reported in 45.7% (P < 0.001), 23.6% (P = 0.02), and 37.2% (P = 0.7) of cases. Overall response was reported in 94.1% (P = 0.7). No progressive disease was reported. Pain relief was achieved in 87.5% of patients (P = 0.2). Damage to surrounding tissue caused by irradiation was reported in 22.3% (P = 0.02) of cases in 1 study, in which higher doses of radiation were delivered. Radiosurgery is safe and effective for SVHs. Pain relief after RS in symptomatic patients was extremely high, while no progressive disease was reported. Damage to surrounding tissues was reported in only 1 series and included osteitis, osteonecrosis, or soft tissue injury after higher radiation doses

    Promising anticancer agents based on 8-hydroxyquinoline hydrazone copper(II) complexes

    Get PDF
    We report the synthesis and characterization of a group of benzoylhydrazones (L n ) derived from 2-carbaldehyde-8-hydroxyquinoline and benzylhydrazides containing distinct para substituents (R = H, Cl, F, CH 3 , OCH 3 , OH and NH 2 , for L 1-7 , respectively; in L 8 isonicotinohydrazide was used instead of benzylhydrazide). Cu(II) complexes were prepared by reaction of each benzoylhydrazone with Cu(II) acetate. All compounds were characterized by elemental analysis and mass spectrometry as well as by FTIR, UV-visible absorption, NMR or electron paramagnetic resonance spectroscopies. Complexes isolated in the solid state ( 1–8 ) are either formulated as [Cu(HL)acetate] (with L 1 and L 4 ) or as [Cu(L n )] 3 ( n = 2, 3, 5, 6, 7 and 8). Single crystal X-ray diffraction studies were done for L 5 and [Cu(L 5 )] 3 , confirming the trinuclear formulation of several complexes. Proton dissociation constants, lipophilicity and solubility were determined for all free ligands by UV-Vis spectrophotometry in 30% (v/v) DMSO/H 2 O. Formation constants were determined for [Cu(LH)], [Cu(L)] and [Cu(LH −1 )] for L = L 1 , L 5 and L 6 , and also [Cu(LH −2 )] for L = L 6 , and binding modes are proposed, [Cu(L)] predominating at physiological pH. The redox properties of complexes formed with L 1 , L 5 and L 6 are investigated by cyclic voltammetry; the formal redox potentials fall in the range of +377 to +395 mV vs. NHE. The binding of the Cu(II)-complexes to bovine serum albumin was evaluated by fluorescence spectroscopy, showing moderate-to-strong interaction and suggesting formation of a ground state complex. The interaction of L 1 , L 3 , L 5 and L 7 , and of the corresponding complexes with calf thymus DNA was evaluated by thermal denaturation. The antiproliferative activity of all compounds was evaluated in malignant melanoma (A-375) and lung (A-549) cancer cells. The complexes show higher activity than the corresponding free ligand, and most complexes are more active than cisplatin. Compounds 1, 3, 5 , and 8 were selected for additional studies: while these complexes induce reactive oxygen species and double-strand breaks in both cancer cells, their ability to induce cell-death by apoptosis varies. Within the set of compounds tested, 8 emerges as the most promising one, presenting low IC 50 values, and high induction of oxidative stress and DNA damage, which eventually lead to high rates of apoptosis

    Promising anticancer agents based on 8-hydroxyquinoline hydrazone copper(II) complexes

    Get PDF
    We report the synthesis and characterization of a group of benzoylhydrazones (L n ) derived from 2-carbaldehyde-8-hydroxyquinoline and benzylhydrazides containing distinct para substituents (R = H, Cl, F, CH 3 , OCH 3 , OH and NH 2 , for L 1-7 , respectively; in L 8 isonicotinohydrazide was used instead of benzylhydrazide). Cu(II) complexes were prepared by reaction of each benzoylhydrazone with Cu(II) acetate. All compounds were characterized by elemental analysis and mass spectrometry as well as by FTIR, UV-visible absorption, NMR or electron paramagnetic resonance spectroscopies. Complexes isolated in the solid state ( 1–8 ) are either formulated as [Cu(HL)acetate] (with L 1 and L 4 ) or as [Cu(L n )] 3 ( n = 2, 3, 5, 6, 7 and 8). Single crystal X-ray diffraction studies were done for L 5 and [Cu(L 5 )] 3 , confirming the trinuclear formulation of several complexes. Proton dissociation constants, lipophilicity and solubility were determined for all free ligands by UV-Vis spectrophotometry in 30% (v/v) DMSO/H 2 O. Formation constants were determined for [Cu(LH)], [Cu(L)] and [Cu(LH −1 )] for L = L 1 , L 5 and L 6 , and also [Cu(LH −2 )] for L = L 6 , and binding modes are proposed, [Cu(L)] predominating at physiological pH. The redox properties of complexes formed with L 1 , L 5 and L 6 are investigated by cyclic voltammetry; the formal redox potentials fall in the range of +377 to +395 mV vs. NHE. The binding of the Cu(II)-complexes to bovine serum albumin was evaluated by fluorescence spectroscopy, showing moderate-to-strong interaction and suggesting formation of a ground state complex. The interaction of L 1 , L 3 , L 5 and L 7 , and of the corresponding complexes with calf thymus DNA was evaluated by thermal denaturation. The antiproliferative activity of all compounds was evaluated in malignant melanoma (A-375) and lung (A-549) cancer cells. The complexes show higher activity than the corresponding free ligand, and most complexes are more active than cisplatin. Compounds 1, 3, 5 , and 8 were selected for additional studies: while these complexes induce reactive oxygen species and double-strand breaks in both cancer cells, their ability to induce cell-death by apoptosis varies. Within the set of compounds tested, 8 emerges as the most promising one, presenting low IC 50 values, and high induction of oxidative stress and DNA damage, which eventually lead to high rates of apoptosis
    corecore