530,511 research outputs found
Multi-Level quasi-Newton methods for the partitioned simulation of fluid-structure interaction
In previous work of the authors, Fourier stability analyses have been performed of Gauss-Seidel iterations between the flow solver and the structural solver in a partitioned fluid-structure interaction simulation. These analyses of the flow in an elastic tube demonstrated that only a number of Fourier modes in the error on the interface displacement are unstable. Moreover, the modes with a low wave number are most unstable and these modes can be resolved on a coarser grid. Therefore, a new class of quasi-Newton methods with more than one grid level is introduced. Numerical experiments show a significant reduction in run time
A Holistic Approach to Forecasting Wholesale Energy Market Prices
Electricity market price predictions enable energy market participants to
shape their consumption or supply while meeting their economic and
environmental objectives. By utilizing the basic properties of the
supply-demand matching process performed by grid operators, known as Optimal
Power Flow (OPF), we develop a methodology to recover energy market's structure
and predict the resulting nodal prices by using only publicly available data,
specifically grid-wide generation type mix, system load, and historical prices.
Our methodology uses the latest advancements in statistical learning to cope
with high dimensional and sparse real power grid topologies, as well as scarce,
public market data, while exploiting structural characteristics of the
underlying OPF mechanism. Rigorous validations using the Southwest Power Pool
(SPP) market data reveal a strong correlation between the grid level mix and
corresponding market prices, resulting in accurate day-ahead predictions of
real time prices. The proposed approach demonstrates remarkable proximity to
the state-of-the-art industry benchmark while assuming a fully decentralized,
market-participant perspective. Finally, we recognize the limitations of the
proposed and other evaluated methodologies in predicting large price spike
values.Comment: 14 pages, 14 figures. Accepted for publication in IEEE Transactions
on Power System
- …
