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A Holistic Approach to Forecasting Wholesale
Energy Market Prices

Ana Radovanovic, Tommaso Nesti, and Bokan Chen.

Abstract—Electricity market price predictions enable
energy market participants to shape their consumption or
supply while meeting their economic and environmental
objectives. By utilizing the basic properties of the supply-
demand matching process performed by grid operators,
known as Optimal Power Flow (OPF), we develop a
methodology to recover energy market’s structure and
predict the resulting nodal prices by using only publicly
available data, specifically grid-wide generation type mix,
system load and historical prices. Our methodology uses the
latest advancements in statistical learning to cope with high
dimensional and sparse real power grid topologies, as well
as scarce, public market data, while exploiting structural
characteristics of the underlying OPF mechanism. Rigorous
validations using the Southwest Power Pool (SPP) market
data reveal strong correlation between the grid level mix
and corresponding market prices, resulting in accurate
day-ahead predictions of real time prices. The proposed
approach demonstrates a remarkable proximity to the
state-of-the-art industry benchmark, while assuming a fully
decentralized, market-participant perspective. Finally, we
recognize limitations of the proposed and other evaluated
methodologies in predicting large price spike values.

Index Terms—Locational Marginal Price (LMP), elec-
tricity price forecast, wholesale energy markets, statistical
learning, big data, compressed sensing.

NOMENCLATURE

N Set of nodes, representing n buses in a power
system.

L Set of edges, representing m transmission
lines.

G G = G(N ,L) is a connected graph represent-
ing the power grid.

g Generation vector g ∈ Rn.
g∗ Optimal generation vector, solution of optimal

power flow (OPF) problem.
d Demand vector d ∈ Rn.
Ci(·) The cost function of generation at node i.
g, ḡ The vectors of generation capacity lower and

upper limits, g, ḡ ∈ Rn.
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f , f̄ The vectors of transmission capacity lower
and upper limits, f , f̄ ∈ Rm.

T The power transfer distribution factors matrix
(PTDF), T ∈ Rm×n.

A Sub-matrix of the edge-node incidence matrix
Ã of G, A ∈ Rm×(n−1).

B Sub-matrix of the weighted Laplacian matrix
B̃ of G, B ∈ R(n−1)×(n−1).

D Diagonal matrix with D`` = x−1
` , with x` > 0

denoting the reactance of line ` ∈ L, D ∈
Rm×m.

λ The dual variable corresponding to the de-
mand/supply balance constraints in the OPF.

τ−, τ+ The dual variables corresponding to the gen-
eration capacity limit constraints in the OPF.

µ−, µ+ The dual variables corresponding to the trans-
mission line capacity limit constraints in the
OPF.

S The congestion matrix (Equation 8); s denotes
one column of the congestion matrix.

M The normalized generation and load mix vector
we use as inputs to the prediction model
(Definition III.1).

d(r)(t) Regional demand in region r ∈ R at time t,
where R denotes a set of system load regions.

g(k)(t) Total generation from type k ∈ K at time t,
where K denotes a set of generation types
(solar, wind, etc.) in the generation mix data.

d(tot)(t) Total grid wide demand at time t.
d̄(tot) Average d(tot)(t) across all time intervals t.

I. INTRODUCTION

Development of Distributed Energy Resource (DER)
technologies enabled the owners of controllable energy
assets to shape their wholesale market participation
responsively and in a coordinated manner [1], [2]. To
address the environmental and operational challenges,
besides making the clean energy generation available and
cheap, the question remains whether wholesale market
prices could be inferred from the supply/demand mix on
the grid and, then, used to create a feedback for ”shaping”



energy asset’s production or consumption. In this paper
we provide an affirmative response to this inquiry.

Power networks are defined by transmission lines that
transport power from generators to loads. Generators
and loads are connected to buses, which are commonly
referred to as nodes of a power network. Following [3],
many wholesale power markets in the US adopted
the concept of Locational Marginal Prices (LMPs) as
electricity prices at the grid nodes. The LMP at a specific
node is defined as the marginal cost of supplying the next
increment of load at that node, consistent with all power
grid operating constraints. In this paper, we introduce
a novel methodology for predicting LMPs using only
publicly available market data.

LMP markets are divided into day-ahead (DA) and real-
time (RT, sometimes referred to as intra-day) markets. In
the DA market, participants submit bids/offers to buy/sell
energy. The Independent System Operator (ISO) then
runs the Optimal Power Flow (OPF, [4]) program to
derive DA LMPs for each grid’s node. The OPF is
an optimization problem that determines the generation
schedule that minimizes the total system generation cost
while satisfying demand/supply balance and network
physical constraints [5]. Since DA scheduled supply may
not meet real-time demand, ISOs also calculate RT LMPs
every five minutes.

Our methodology is based on statistical learning
techniques that take advantage of the sparsity properties
induced by the nature of real grid topologies, underlying
physical laws and the resulting OPF solution structure.
The emerging field of statistical learning with sparsity [6]
aims to utilize sparsity to help recover the underlying
signal in a large set of data. Successful applications of
sparse machine learning techniques include image/video
processing [7], pattern classification [8], face recogni-
tion [9], and customers preference learning [10]. In this
paper, using the recent advancements in compressed
sensing [11] and convex optimization [12], we utilize
the OPF problem structure to infer the unknown grid
topology, transmission line congestion regimes, and the
resulting nodal prices as functions of grid-level generation
mix and load.

We validate the proposed methodology using the
Southwest Power Pool (SPP) market data. By focusing
on day ahead RT price predictions, we show that the
proposed approach has a comparable performance to
the state-of-art industry benchmark (Genscape [13]),
which incorporates richer and proprietary information.
We further discover that the grid structure and the grid
level generation/demand strongly affect the intra-day price
shape. However, we also identify the limitations of the

newly proposed and other evaluated methodologies to
predict large price spike values, even after augmenting
the structure-based predictions with statistically estimated
error estimates.

The proposed approach assumes a decentralized, mar-
ket participant-centric perspective, making it fully scal-
able. To the best of our knowledge, this is the first study
that holistically incorporates the structural properties of
the grid-level supply-demand matching (OPF), statistical
inference and validation using publicly available market
data.

In the following two subsections we outline the basics
of the power grid modeling, a version of the OPF
formulation with its solution structure, as well as the
key references in the domain.

A. Power grid and wholesale energy market modeling

In its full generality, the optimal power flow problem
is a nonlinear, nonconvex optimization problem, which is
difficult to solve [14], [15]. For the purpose of this paper,
we will focus on a widely used tractable approximation
known as DC-OPF [16], which can be formulated as the
following optimization problem:

min
g

n∑
i=1

Ci(gi) (1)

s.t. 1T (g − d) = 0 : λ (2)

g ≤ g ≤ ḡ : τ−, τ+ (3)

f ≤ T(g − d) ≤ f̄ : µ−,µ+. (4)

The cost functions, Ci(·), i > 0, are typically modeled
using monotonically increasing quadratic or piecewise
linear functions [16], [17]. Here, we consider generation
that has variable and fixed costs of production, but
faces no startup, shutdown, no-load costs, or ramping
constraints. To that end, we assume Ci(gi) = aig

2
i +bigi+

ci, ai > 0, bi, ci ∈ R. Linear and quadratic cost functions,
as well as the corresponding generation production range,
constitute generators’ bids.

The PTDF matrix T describes the linear mapping
from nodal power injections to active power flows over
transmission lines under the assumption of the Direct
Current (DC) approximation [18]. The operators ≤ and
≥ are understood entry-wise. Following the notation and
derivation in [19], the PTDF matrix can be written as

T = [0 DAB−1], (5)

where matrices D,A,B describe topological and physical
properties of the grid. A is obtained by deleting the first
column of the edge-node incidence matrix Ã, which
describes which buses are connected to a transmission
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line; and B is obtained by deleting the first row and
the first column of the weighted Laplacian matrix B̃,
which is the matrix representation of the grid graph. The
reduced dimension from n to n−1 stems from the nullity
of the connected grid graph, i.e. Ã1 = 0. In order to
ensure the uniqueness of the optimal solution, without
loss of generality, we remove from consideration the node
corresponding to the first column, which is selected as
the reference bus. In view of the definitions above, matrix
A is a full-column rank matrix, and B is strictly positive
definite with non-positive off-diagonal entries. For more
detailed derivation and discussion, we refer to [19].

Potential generalizations of the above formulation
would involve additional operational constraints, such
as ramping up/down constraints, power factor constraints,
as well as treatments of the reactive power transfer
and voltage variation bounds [20]. Nonetheless, in this
paper we show that we are able to capture the market
structure, as well as the dominant drivers of its dynamics,
even under the assumptions of the DC approximation.
In addition, the recent advancements in power system
technologies and changing regulations (e.g. [21]) will
make the impact of reactive power transfer and the related
voltage variations less exaggerated, and the DC-OPF
approximation even more accurate.

LMPs are the shadow prices of the real power balance
constraints of OPF [22]. More formally, they can be
represented as

LMP =
∂L
∂d

= λ1 + T>µ, (6)

where ∂L
∂d denotes the partial derivative of the Lagrangian

function of the OPF evaluated at the optimal solution, and
µ = µ−−µ+ ∈ Rm. The entries of µ corresponding to
uncongested lines (f

`
< f` < f̄`) are equal to zero, while

the components corresponding to congested lines are
different than zero (in particular, µ+

` > 0 iff f` = f̄` and
µ−` < 0 iff f` = f

`
). As a consequence, if there are no

congested lines, all LMPs are equal, i.e. LMPi = λ, ∀i ∈
N , and the common value λ in (6) is called the marginal
energy component (MEC). The energy component reflects
the marginal cost of energy at the reference bus. On the
other hand, if some lines are congested, we have µ 6= 0
and the LMPs become different (see Figure 1); we call
the second term π̃ = T>µ in (6) the marginal congestion
component (MCC); in particular, π̃i reflects the marginal
cost of congestion at bus i relative to the reference bus.

When ISOs calculate LMPs, they also include the loss
component, which is related to the heat dissipated on
transmission lines, and is typically negligible compared
to the other price components [23]. For this reason, we
omit it from the consideration in this paper, and end up

with the marginal energy LMP component (same across
all grid nodes) and marginal congestion LMP component,
as defined in the previous paragraph and expression (6).

If we recall the definition in (5), the marginal conges-
tion price vector (excluding the reference bus) at a given
time t can be presented as

π(t) = B−1A>Dµ(t) = B−1s(t) ∈ Rn−1, (7)

with s(t) = ATDµ(t). The vector s(t) ∈ Rn−1 contains
the information on the congested lines, since

s(t) =

m∑
`=1

µ`(t)x
−1
` a`, (8)

where a` ∈ Rn−1 is the `-th column of AT . The non-
zero entries of s(t) represent nodes corresponding to
congested transmission lines. Thus, by stacking historical
π(t), s(t) for T different time intervals as columns of
the matrices Π,S ∈ R(n−1)×T , we can rewrite (7) in
matrix form as

Π = B−1S. (9)

In the following, the matrices B and S will be referred
to as topology matrix and congestion matrix, respectively.
In Section IV, we use the previous relationship and
the properties of matrices B and S to recover diverse
congestion regimes that occur in a grid.

Fig. 1: RT market price for randomly selected SPP nodes.

B. Related literature and our contributions

The previously published work in the same domain
can be categorized based on whether it takes an operator-
centric or a participant-centric point of view. In the former
case, the full knowledge of supply bids, grid topology,
and physical properties of the network allow for the
explicit computation of nodal LMPs as dual variables
of the corresponding OPF optimization. The relevant
papers mostly study the impact of uncertainty in total
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grid load or renewable generation on the resulting prices,
while relying on the fact that changes in LMP regimes
happen at the so called critical load levels [24]–[28]. The
number of the critical load levels exponentially grows
with the size of a grid, making the proposed approaches
intractable for use in practice.

The market participant-centric point of view has been
much less addressed in the existing literature. A key
reference for this work is [19], where the authors derive a
methodology to recover information on the grid topology
based only on publicly available market data, leveraging
results from convex optimization and compressed sensing.
[29] utilizes the structure of the OPF formulation to
infer states of transmission lines using only the zonal
load levels, without considering generation saturation or
grid-level generation mix information. Through the so
called System Pattern Regions (SPR), zonal prices are
obtained by learning the map between zonal load and
the corresponding zonal price, which introduces a large
forecasting error. On the other hand, [30] presents a data-
driven approach that exploits structural characteristics by
learning nodal prices as a function of nodal loads using
support vector machines (SVMs), but is computationally
unscalable and limited to synthetically generated, small
grid examples. In [31], the authors propose an inverse
optimization approach to estimate the parameters in the
OPF, by assuming full knowledge of supply bids, nodal
generation and prices, and then obtaining nodal price
predictions by solving the OPF with new supply and
demand data. The requirement of full knowledge of
grid structure makes this approach unusable by market
participants.

The contributions of this paper can be summarized as
follows:

1) By taking market participants’ point of view,
we propose a price forecasting methodology
that utilizes only publicly available data, while
enabling users to make more informed bidding
decisions.

2) By combining the theoretical insights on how
ISOs derive LMPs, and the latest developments
in compressed sensing and machine learning lit-
erature, we develop a unique algorithm that can
predict market prices with comparable accuracy
to the state-of-the-art industry benchmark.

3) The new approach reveals interesting and po-
tentially very useful insights about different
grid state regimes (both in terms of the grid
wide generation/load mix, as well as the grid
congestions) and their impact on prices across
all nodes in the network. It also recovers its

limitation to predict some of the price spikes
when using only the topology and grid-level
generation/demand information, implying that
their true cause is of different nature.

II. ENERGY MARKET STRUCTURE

As Subsection I-A suggests, nodal wholesale prices
are functions of grid-wide nodal demand and generation.
Here, we state the key results from [29], which formalize
the market structure using pricing regimes (called system
patterns in [29]), characterized by grid-wide state vectors
that indicate the marginal status of generators and
congestion status of transmission lines at optimality.
Our approach, discussed in Section IV, utilizes these
theoretical concepts and parametrizes pricing regimes by
a vector of publicly available grid-level generation mix
and regional load (called system load) data.

For convenience, we reformulate the OPF problem
defined by equations (1) - (4) as:

min
g

JT1 g +
1

2
gTJ2g s.t. Ag ≤ b + Eθ, (10)

where g is the optimization variable denoting nodal
generation, θ = [d ḡ]T is a vector of nodal loads and
generation capacities, b,A,E are opportunely defined
vector and matrices, and J1 ∈ Rn,J2 ∈ Rn×n define the
linear and quadratic costs of generation, respectively. Note
that the objective function (1) is a separable quadratic
function, since the cost of each generator can be assumed
independent from other generators’ costs [16], [17].
Consequently, J2 is a positive-definite diagonal matrix.

The formulation in (10) allows us to make use of
the well-established theory of multiparametric program-
ming [32], according to which the feasible parameter
space of (10) can be partitioned into a finite number
of convex polytopes, each corresponding to a different
pricing regime uniquely defined by the set of marginal
generators and congested transmission lines.

More precisely, if J denotes the index set of constraints
of (10) and g∗(θ) the optimal solution for a given
parameter vector θ, we define

B(θ) = {i ∈ J |Fig∗(θ) = bi + Eiθ},
B{(θ) = {i ∈ J |Fig∗(θ) < bi + Eiθ}.

Set B corresponds to binding (active) constraints, while
B{ corresponds to non-binding constraints. Clearly, B ∩
B{ = ∅ and B ∪ B{ = J . We identify pricing regime by
the corresponding set of binding constraints.

The following result, originally established within the
multiparametric programming literature in [32], Theorem
1, and subsequently stated in [29], Proposition 1, for a
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variant 1 of the LMP forecasting problem, constitutes the
theoretical foundations of the methodology presented in
this paper.

Theorem II.1. Assume that the OPF problem (10) is
non-degenerate2. Then:

1) The parameter space can be uniquely partitioned
into convex polytopes Θ(Bi) := {θ : B(θ) = Bi},
such that the interior of each polytope corresponds
to a unique pricing regime Bi;

2) Within each pricing regime Bi, the optimal genera-
tion g∗ and the associated vector of LMPs (6) are
uniquely defined affine functions of d and ḡ.
Overall, the vector of LMPs over the whole parame-
ter space is a continuous, piecewise affine function
of nodal demand d and generation capacities ḡ.

Note that the vector of LMPs is only dependent on ḡi
when generator i becomes saturated, at which point g∗i =
ḡi. Assuming no knowledge on generators’ bids, market
participants can use g∗ to learn the piecewise linear
mapping of Theorem II.1, as we discuss in Section IV-E.

III. INPUT MARKET DATA

The publicly available market data depends on the
specific market and commonly includes historical grid-
level generation mix, system load, and nodal LMPs. The
methodology developed in this paper requires at least
the aforementioned components. More granular data (e.g.
nodal load and generation) would improve the accuracy
of the algorithm, but is not essential.

In case of the SPP market, historical generation mix is
recorded at 5 minute time granularity and equals to the
total average power produced across different types of
generation (coal, natural gas, wind, solar, nuclear, etc., see
Figure 2). System load consists of regionally aggregated
average demand recorded at hourly time granularity.

In addition to the grid level mix and the regional
load data, operators release the corresponding nodal RT
market prices at 5 min time granularity. For the purpose
of training and validation, in this paper we use six months
of SPP data, from June to November of 2017, with 929
nodes, where we exclude a few new nodal connections
with limited price history.

To facilitate the analysis, we scale the available
generation and load data, and refer to the scaled data as
M-vectors defined as follows.

1In [29], the parameter space is constituted by loads d, while in our
approach θ = [d, ḡ].

2See section 5 in [32] for the definition.

Fig. 2: Grid level generation mix.

Definition III.1. At any time point t, M(t) is a vector
that contains three components: normalized generation
mix, normalized system load, and scaled total demand.

• Generation mix is normalized as g(k)(t)/d(tot)(t),
• System load is normalized as d(r)(t)/d(tot)(t),
• Total demand is scaled as d(tot)(t)/d̄(tot),

where d(tot)(t) =
∑
r∈R d

(r)(t) =
∑
k∈K g

(k)(t) is the
total demand at time t, and d̄(tot) is the average of d(tot)(t)
across all time intervals t. M(t) ∈ R|R|+|K|+1 is the
vector obtained by concatenating these three components.

Even though M-vectors are time-indexed, for the
reasons of simplicity, in the rest of the paper we omit
the time index when referring to M(t).

IV. NEW PRICE PREDICTION METHODOLOGY

In this section we propose a novel price prediction
methodology that assumes no information on generators’
placement, capacities and pricing curves, as well as grid
topology, line capacities and load distribution across its
nodes, which characterize the DC-OPF in (1)-(4).

The discussion in Section II provides theoretical
concepts for piecewise linear relationships between LMPs
and pricing regimes that are uniquely defined by nodal
demands and dispatched generation. We utilize this
structural property by relating nodal generation and load
to the corresponding grid and regional level quantities,
and introduce the concept ofM regime (Subsection IV-B)
with the following assumption.

Assumption IV.1. Within eachM regime, all generators
of the same type (e.g., wind, natural gas, etc.) preserve
their production fraction with respect to the total grid
level generation of the same type. Similarly, all load
within the same geographic region preserves the same
consumption ratio when compared to the total load in
the region.
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Intuitively, Assumption IV.1 states that, within the
same intraday M regime, each generator preserves
approximately constant production fraction in relation to
the total grid supply of the same type. In other words,
when wind generation increases, we assume that all wind
generators produce proportionally more power. In case
of conventional generators, this translates into generators’
typical on/off activity within specific intraday regimes.
This simplifying assumption enables us to extend the
piecewise affinity in Theorem II.1, and parametrize the
pricing regimes using M vectors.

More specifically, Theorem II.1 establishes that nodal
LMPs are piecewise affine function of nodal demand
and saturated generation (the parameters in the formu-
lation (1)-(4)), which are not publicly available. The
introduced proportionality assumption and Theorem II.1
result in piecewise affinity of nodal LMPs in grid level
saturated generation of each type and regional demands
(the M vectors), within each M regime.

In order to learn the LMP function, we conveniently
utilize a statistical procedure for fitting continuous
adaptive regression splines, called Multivariate Adaptive
Regression Splines (MARS) [33], [34]. Relying on the
piecewise affinity of the LMP functions, MARS identifies
a linear combination of statistically significant truncated
spline functions of the form (x − q)+, where x are
conveniently scaled covariates (in our case, grid level
mix inputs, explained in Subsection IV-E ), while qs are
knot locations (price regime switching points) identified
by the algorithm.

A. Summary of the forecasting pipeline

In this section, we summarize the proposed methodol-
ogy by splitting it into the training and prediction stages.
Training:

Step 0: Normalize generation and demand data to
generate mix vectors M (Definition III.1).

Step 1: Perform PCA analysis and k-means clustering
using the PCA-projected M vectors to obtain
i = 1, 2, . . . , nMix M-regimes (Section IV-B).

Step 2: Using historical price data, perform recovery
of topology matrix B (Section IV-C).

Step 3: For each M-regime i, compute the cor-
responding congestion matrix S = B−1Π,
and run k-means clustering of its columns
to obtain the congestion regimes C(i) =
{1, 2, . . . , nCongestion(i)} (Section IV-D).

Step 4: For each M-regime i, relate M-vectors to
congestions by training multinomial logistic
regression to map M-vectors to congestions
j ∈ C(i).

Step 5: For each (i, j), j ∈ C(i), and a selected
grid node, use MARS to learn LMP deviations
as the piecewise linear function of deviations
in generation and demand (more details are
provided in Section IV-E).

Prediction:
Step 0: Normalize generation and demand forecasts to

obtain M-vectors using the same denominators
as those used to normalize the training data.

Step 1: Using the model trained in Step 1 of the
training stage, project the forecastedM-vectors
and assign them the matching M-regime i.

Step 2: Within each M-regime i, use the trained
multinomial logistic regression model in Step
4 above to assign congestion regime j ∈ C(i).

Step 3: For each (i, j), j ∈ C(i), and a selected grid
node, map the deviations in generation and load
to the resulting price using the model obtained
in Step 5 above.

Step 4: Perform smoothing of the generated forecasts
as described in IV-F.

The steps and data flows are demonstrated in Figure 3.
Next, we separately describe each of the modeling
components and our approach in validating them.

Fig. 3: Price prediction pipeline.
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B. Clustering into M regimes

We classify M-vectors by first applying Principal
Component Analysis (PCA, [35]) using M vectors as
defined earlier. The PCA revealed that only 4 dominant
principal components explain 98% of the variance (see
Figure 5). Interestingly, the same property is preserved
across different time horizons. Then, we perform k-means
clustering [36] using the obtained lower dimensional M
representations, where, by applying the fairly standard
elbow method, we end up with 4 M-regimes. Figure 4
shows the centroids of the 4 clusters, expressed in terms
of a subset of the original coordinates corresponding to
generation mix. Note that in cases where price exhibits
high uncertainty, and when there is enough historical data,
one can avoid doing PCA-based clustering, and simply
cluster M-vectors based on hour of day. Our validations
with the SPP data set show that choosing one versus the
other clustering approach does not reveal differences in
the final prediction accuracies.

Fig. 4: Generation mix corresponding to the centroids of
the PCA-based clusters. NG refers to Natural Gas.

C. Topology recovery

The following section is based on the work in [19],
which focuses of recovering the power grid topology by
leveraging only publicly available data. Specifically, the
authors derive a methodology to recover matrices B and
S via LMP matrix Π and the relation (9), based on recent
advances in compressed sensing.

For the sake of completeness and reproducibility of
our paper, here we summarize the methodology with the
particular focus on implementation details, referring the
interested reader to [19] for the complete derivation.

First, note that matrices B and S enjoy the following
structural properties: (i) B is a positive definite M-

Fig. 5: Number of principal components v.s. explained
variance ratio

matrix 3 and is sparse, and (ii) S is sparse and low-rank.
The sparsity of B follows from the fact that the graph
underlying a power grid is usually weakly connected
(mainly holds for grids inref the USA, [38]). The fact
that S is sparse and low-rank follows from (8) and the
fact that, almost always, only a very small subset of
transmission lines gets congested, implying that most of
the terms in the sum in (8) are zero.
In [19], the authors suggest to recover matrices B and S
by solving the optimization problem:

min
B,S

‖S‖0 + κ0‖B‖0

s.t. BΠ = S, B � 0,B ≤ I,
(11)

where ‖X‖0 is the `0 pseudo-norm counting the non zero
entries of matrix X, and κ0 ≥ 0. Since problem (11) is
in general NP-hard, the following convex relaxation is
used:

min
B,S

‖S‖1 + κ1tr(PB)− κ2 log |B|

s.t. BΠ = S, B ∈ C,
(12)

with ‖X‖1 =
∑
i,j |Xi,j | denoting the `1 norm of matrix

X , P = I−11T , C := {B : B � 0, B ≤ I}, κ1, κ2 ≥ 0,
and B � 0 denoting a positive semidefinite matrix.

Given that the previous semidefinite program is hard
to solve for large grids (order of 103 nodes), we
utilize the Alternating Direction Methods of Multipliers
(ADMM, [39]) to solve the program iteratively. We first
replace B with three copies B(1),B(2),B(3), yielding
the equivalent formulation of (12), and then define the
matrices M12,M13,M to be the Lagrange multipliers
corresponding to the equality constraints in this new

3See Section 1 in [37] for the definition of M-matrix.
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formulation. In every iteration of the ADMM algorithm
the variables and Lagrange multipliers are updated by
solving appropriate optimization problems, for which
closed form solutions are available [19]. The result-
ing algorithm is reported in Alg. 1. Matrix UΓUT

Algorithm 1 Topology and congestions recovery

1: Inputs:
Π, κ1, κ2, ε

2: Initialize:
B(1) = B(2) = B(3) = I
S = B(1)P, P = I− 11T

M(12) = M(13) = 0,M = 0

3: while ‖B(1)Π− S‖1 > ε do

4: B(1) ← (B(2) −M(12) + B(3) −M(13)+

5: (S−M)ΠT − κ1
ρ

P)(2I + ΠΠT )−1

6: B(2) ← min(B(1) + M(12), I)

7: UΓUT = 1
2
(B(1) + M(13))(B(1) + M(13))T

8: B(3) ← 1
2
U
(
Γ + (Γ2 + 4κ2

ρ
I)

1
2

)
UT

9: Yij = max
(
0, 1− κ2

ρ|(B(1)Π+M)ij |

)
,

10: i = 1 : n− 1, j = 1 : T

11: S← (B(1)Π + M)� Y

12: M(12) ←M(12) + ρ(B(1) −B(2))

13: M(13) ←M(13) + ρ(B(1) −B(3))

14: M←M + ρ(B(1)Π− S)

15: end while
16: B = B(1)

17: return (B,S)

(line 7) denotes the eigenvalue decomposition of matrix
1
2 (B(1) + M(13))(B(1) + M(13))T , where the maximum
operator in (line 10) is understood entry-wise and the
symbol � (line 11) denotes the entry-wise product.

Alg. 1 is implemented in Python. The parameters ε,
κ1, κ2, ρ are selected in a way that ensures a reasonable
convergence time, while making sure that the resulting
matrix B has the desired structure (i.e., has all diagonal
entries equal to 1, is sparse, symmetric, with non-positive
off-diagonal entries). The selected parameter values are
set as ε = 60, κ1 = 1.5, κ2 = 2.0, ρ = 0.8. Throughout
the execution of the ADMM, we monitor `1 norm
of matrix B(1)Π − S, which monotonically decreases
from iteration to iteration. After approximately 1400
ADMM iterations (∼ 30 minutes), the monitored l1 norm
decreases much slower and, when it reaches ε = 60,
B’s entries change insignificantly (< 10−4) from one
iteration to another. Due to the sporadic changes in
grid topology, we envision that the topology recovery
algorithm runs weekly and, thus, its runtime is not critical
for the proposed methodology.

Since the grid topology is not publicly available, we
perform the validation in two ways. Below, we compare
the number of nonzero entries obtained by running
the topology recovery using the input prices from non-
overlapping time intervals (week by week). In order to
validate the algorithm’s ability to recover the actual links
and, consequently, the whole methodology, we run it
against the synthetically generated demand and supply
inputs, and several IEEE test cases. Our validation process
for IEEE 30 bus test case can be found in Appendix. For
an extensive testing of the topology recovery accuracy,
the interested reader is referred to [19].

In practice, nodal connections slowly change due
to sporadic repairs and new nodes and, therefore, we
expect B to be approximately constant. We validate this
hypothesis by taking 7 consecutive weeks of real time
market prices and, for each of them, we run the matrix
recovery algorithm to infer Bw,1,Bw,2,Bw,3, . . . ,Bw,7.
To evaluate the difference in the recovered links, we first
perform entry-wise normalization of all the recovered
matrices by dividing each entry with the entry-wise
maximum absolute value to obtain scaled matrices
B̂w,1, B̂w,2, B̂w,3, . . . , B̂w,7. Then, we count the identi-
fied links by counting off-diagonal entries with absolute
values exceeding some given threshold value.

Fig. 6: Number of identified transmission lines corre-
sponding to the dominant B̂-entry values.

The result of counting the identified grid links for a
given threshold across all recovered matrices exhibit a
surprising proximity (see Figure 6), despite the variable
impact of the numerical precision criteria of the topol-
ogy recovery algorithm, as well as the changing link
reactances due to weather conditions and variations in
heating induced by the energy transfer. In Table I, we use
p(Bw,i−1,Bw,i) to express the percent of links identified
from week ith matrix Bw,i, that are not recovered by
week (i− 1)th matrix Bw,i−1.
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TABLE I: Differences in recovered links.

Percent
p(Bw,1,Bw,2) 6%
p(Bw,2,Bw,3) 6%
p(Bw,3,Bw,4) 6%
p(Bw,4,Bw,5) 4%
p(Bw,5,Bw,6) 6%
p(Bw,6,Bw,7) 3%

Fig. 7: Heatmap of a segment of the congestion matrix.

D. Congestion regimes recovery

Apart from the topology matrix B, the recovery
algorithm discussed in Subsection IV-C allows us to
obtain congestion matrix S, which can be visualized as
the heat map in Figure 7. The x-axis spans time instances,
and the y-axis corresponds to node numbers. As can be
seen in the figure, most of the entries of the matrix S are
close to zero, with a few entries having relatively large
absolute values. Those entries represent nodes connected
to the congested transmission lines.

In contrast to [19], in the present work we are mostly
interested in recovering congestion regimes, defined by
the set of congested lines within eachM-regime obtained
by the previously discussed PCA-based clustering. For
each M-regime, we obtain the corresponding matrix S
using the relationship Π = B−1S (9), where matrix B
has previously been obtained as in Section IV-C. In view
of (7), we recover congestion regimes by clustering the
columns of S using again the k-means clustering method.
We observe different misclassification fractions depending
on the month of the year. During the testing intervals
in August and September of 2017, the misclassification
happens in less than 4% of instances across all M-

regimes, while it can reach ≈ 20% when the methodology
is applied to recover congestions in November 2017. A
further investigation of the misclassified instances reveals
extremely large price spikes (bursts) in the RT price,
which turns out to be the result of the limited information
used by the proposed approach.

E. Mapping regime-dependent generation and load to
market prices

The last stage of the methodology relies on Assump-
tion IV.1 and Theorem II.1, and learns the piecewise
linear function between deviations in generation mix and
system load, and deviations in price of the selected node
n within the specific regime. More specifically, consider
regime (i, j), where i is the enumerated M-regime, and
j is one of the congestion regimes corresponding to i, i.e.
j ∈ C(i). For each (i, j), we define the corresponding
average generation of type k and average regional load
r as ḡ(k)

(i,j), and d̄(r)
(i,j), respectively.

Then, without loss of generality, for each regime
(i, j), we exploit the piecewise affinity of the LMP
price functions and learn local price regime transitions
by fitting MARS models [33], [34] to predict nodal
price deviations (from the average within the regime)
as a function of covariates ∆gk(i,j)(t) = g(k)(t)− ḡ(k)

(i,j),

∆dr(i,j)(t) = d(r)(t)− d̄(r)
(i,j).

F. Smoothing

Note that we propose to train MARS for each regime
(i, j) separately, which can result in observable, small,
jitters in the predicted prices at the time instances
corresponding to regime shifts. The observed models’
miscalibration is more exaggerated when there is a
transition to a regime with more frequent price spikes.

One way to cope with this is to perform smoothing of
the raw predicted prices by, first, removing the largest
predicted spikes, and, then, by applying interpolation and
local smoothing. While the applied smoothing technique
recovers the trend in the predicted prices, there is an
information loss on the potentially predicted price spikes,
which could be critical for risk-aware market participation
strategies. The performance of the trained models for
different training and testing intervals is discussed in the
next section.

V. PERFORMANCE ANALYSIS

Even though the proposed approach can be used for
predicting any grid node’s price, we analyze the perfor-
mance for two SPP nodes, SPPNORTH and SPPSOUTH
hub. The available historical data (beginning of June to
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end of November 2017), enabled us to test the predictive
performance of the new methodology throughout August
to November of 2017.

Training and testing is split into four stages triggered
by the periodic recovery of the topology matrix B,
which we perform using one week of RT price data
from July, August, September, and October. The cor-
responding trained models are tested in the following,
non-overlapping, 2-week chunks at the beginning of
August, end of August, end of September, and beginning
of November, respectively. The training and predicting
within the testing phases follow the steps outlined in
Subsection IV-A.

To train M and congestion classification models, we
typically use 6− 8 weeks of the available historical data,
corresponding to the time instances prior to the 2-week
testing phases, while MARS models (Subsection IV-E)
are retrained every day using all available training data
for each of the recovered regimes C(i, j). Furthermore, in
order to cope with changes in the dispatched generation
cost functions, we assign larger weights to more recent
training instances.

Note that the real-time execution and evaluation of
the proposed methodology is envisioned to be stream-
lined, where the topology recovery and training of M
and congestion classification models could be repeated
biweekly, while MARS models (Subsection IV-E) are
retrained every day prior to providing the forecasts for
next day’s prices.

To validate the proposed methodology and investigate
its limitations, we evaluate the performance of the
following day-ahead forecasts:

• ALG-M: the new methodology applied to the actual
generation mix and regional load data within the
testing time horizon.

• ALG-M̂: the new methodology applied to the
forecasted generation mix and regional load data
(purchased from Tomorrow [40]) within the testing
time horizon.

• ALG-M̂ + ARIMA: forecasts are obtained by
adding the estimated hour-of-the-day error term
to the ALG-M̂ forecasts. More specifically, our
analysis of algorithm ALG-M̂’s residuals revealed
a strong correlation between the same hours of
consecutive days and weak correlation between
consecutive hours. We forecast day ahead residuals
using ARIMA(1, 1) models trained for each hour
of day and add them to ALG-M̂ forecasts.

• ALG-M̂ + Day Ago: forecasts obtained by adding
a day ago (24 hours ago) price as an additional
feature to the MARS model.

• Genscape: state-of-the-art baseline predictions pur-
chased from Genscape [13].

• Day Ago: a naive prediction obtained by using
the price from 24 hours ago as next day’s price
prediction.

In Table II, we included three metrics to evaluate
our forecasts: Mean Absolute Percent Error (MAPE),
Median Absolute Percent Error (MdAPE), and Root Mean
Squared Error (RMSE). Each of the computed metrics
has a different sensitivity to the difference between actual
and predicted prices.

Based on the evaluation of these metrics, we conclude
that the proposed methodology is reasonably accurate
throughout the whole testing period, and is robust with
respect to the accuracy in day ahead mix forecasts.
Figure 8 shows how well our forecasts follow the trend
of actual real time prices. Furthermore, we observe that
the proposed approach has a comparable performance to
the industry benchmark, Genscape, with respect to all of
the considered metrics, which is remarkable given that
Genscape incorporates richer and proprietary data.

While the smoothing discussed in Subsection IV-F
helps to more accurately predict the trend in day ahead RT
prices, we lose valuable spike information. As Figure 9
shows, the original, uncalibrated, ALG-M̂ forecasts are
capable of predicting spike events caused by the grid
level generation and demand mix. The spike predictions
could be utilized by market participant to build risk-
averse trading strategies, potentially avoiding large losses.
However, predicting price spike magnitudes turns out to
be a more challenging task, and some of this difficulty
can certainly be attributed to the accuracy of the grid
level mix predictions.

Finally, we note that there are spikes that the newly
proposed methodology does not predict, even when the
absolute knowledge of the grid level mix is available.
The failure to predict such spikes suggests that they
are the result of some other, unknown phenomena,
not captured by the available data. Possible causes
include short-term infrastructure failures, as well as
limitations related to using a simple version of the DC-
OPF formulation, without taking into account reserves
and ramping constraints.

Since the process of supply-demand matching for DA
energy market involves solving the same optimization
problem, the models trained for the RT price prediction
can be used to infer DA prices as well, while the inputs
in this case would correspond to the day-ahead cleared
generation and system load, and is typically less variable
(i.e., we can expect smaller prediction errors).
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TABLE II: Forecast Accuracy Comparison For All Prices.

Node Approach MAPE MdAPE RMSE
SP

PS
O

U
T

H ALG-M 26.4% 17.4% 19.6
ALG-M̂ 25.4% 15.8% 19.4

ALG-M̂+ARIMA 26.3% 15.5% 19.9
ALG-M̂+Day Ago 26.0% 14.9% 19.3

Genscape 21.7% 11.2% 19.2
Day Ago 31.1% 12.9% 23.5

SP
PN

O
R

T
H ALG-M 39.2% 17.1% 18.5

ALG-M̂ 36.9% 17.4% 18.0
ALG-M̂+ARIMA 38.0% 17.7% 18.4
ALG-M̂+Day Ago 37.1% 16.6% 18.3

Genscape 28.2% 13.7% 19.1
Day Ago 50.0% 16.2% 23.4

VI. CONCLUSIONS AND FUTURE WORK

In this paper we show that the wholesale energy market
structure can be inferred using limited, publicly available,
historical market data (grid level generation type mix,
system load mix and nodal prices). By utilizing the basic
underlying physical model that captures generation-load
matching on the grid, we develop a methodology for
predicting nodal market prices. Extensive and rigorous
validations using the Southwest Power Pool (SPP) market
data shows that the price values are significantly impacted
by this basic structural information.

The proposed approach, in its basic (ALG-M̂) and
augmented forms (ALG-M̂ + ARIMA, ALG-M̂ + Day
Ago), fairly closely matches the performance of the state-
of-the-art baseline (Genscape [13]) in predicting day
ahead RT price trend, using only grid level, publicly
available data.

Furthermore, a derivative of the proposed methodology
is the uncalibrated ALG-M̂ forecast, which identifies
spike events related to generation and demand mix
changes and turns out to be a unique feature across
the considered algorithms. This capability enables market
participants to design trading strategies that will protect
them from potentially large market losses.

The proposed methodology can be enhanced with
additional data. For example, the statistical models
in this paper did not capture seasonality patterns in
generation and load, as well as the impact of other
relevant data, such as available reserves and their prices,
or ramping constraints. To that end, we believe that
using the additional data sources can only improve the
prediction performance, and it will be part of our future
investigations. The other potential area of exploration
involves studying the impact of localized measurements

Fig. 8: Comparison across available forecasts.

Fig. 9: Spike prediction.

at market participants’ sites to improve the corresponding
local market predictions. After all, it is expected that
each market participant’s goal is to maximize its own
financial reward while reducing environmental impact,
and improving market predictions is the key instrument
for achieving these objectives.
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APPENDIX: IEEE 30-BUS SYSTEM CASE STUDY

In this section we report the results for IEEE 30-
bus test system, which is taken from the MATPOWER
toolbox (case 30, [41]). Due to the small number of
generators, we do not normalize the generation/load
values to obtain mix vectors, and there is no need to
conduct the PCA analysis. The test case includes all
parameters needed to run DC-OPF, but since it does not
include renewable generators, we modify a subset of the
generators (specifically generators 2 and 4) into renewable
generators as follows: we set the corresponding cost
functions to be equal to 0, and we allow the generation
limit ḡ to vary according to a distribution learned from
CAISO data [42], as explained below. To make sure that
we get a few congested lines, we also uniformly multiply
the transmission line limits by a small factor, set at 1.2.

For demand profiles, we download 3 months of histori-
cal total demand profiles from S&P Global [43], collected
at hourly granularity. We then fit the multivariate normal
distribution to the historical data and obtain model
d(tot) ∼ N24(µdemand,Σdemand) from which we can sample
daily total load profiles. We scale down the total demand
so that its mean value matches the base-level demand of
the test case. Finally, for each load node i, we assign its
demand to be the fixed fraction of the total, grid-level,
demand as αi, where

∑
i αi = 1, αi > 0.

To simulate renewable generation profiles, we down-
load a typical daily profile for PV generation in the
CAISO market from California ISO, which we de-
note as G̃ ∈ R24. A daily realization G ∈ R24 is
then obtained by sampling from normal distribution
Gh ∼ N(G̃h, G̃hσ

2
supply) for each hour h, where we set

σ2
supply = 0.1. The generated profiles are scaled down to

be consistent with the other generators. Finally, similarly
as in the case of load nodes, renewable generation for
the specific nodes are obtained by fixing the ratios to the
simulated, grid-level, generation, where these fractions
are expressed by βk, where

∑
k βk = 1, βk > 0.

Finally, we run the DC-OPF in MATPOWER to obtain
LMPs, which we use for training and testing of our
algorithm. The training and testing periods consist of 3
months and 50 days, respectively.

The topology recovery method described in this paper
can only recover transmission lines that get affected by
congestions. The focus of our validations was to check
the accuracy when recovering the congestion matrices. In
Figure 10, we show the comparison between snapshots
of the actual and recovered congestion matrices. The
red boxes highlights three of the dominant congestion
regimes. The graph shows that the algorithm is able to
recover the congestion matrix with a reasonable accuracy
and, as a result, identify the congestion regimes.

(a) Actual (b) Recovered

Fig. 10: Comparison between Actual and Recovered
Congestion.

To evaluate the predictive performance of our approach,
we use a synthetically generated day-ahead forecasts
for total load and total renewable generation. First, we
generate 100 samples from distributions d(tot)(i) ∈ R24

and G(i) ∈ R24, for day i, and over a testing period of 50
days. Then, we cluster these samples into typical profiles
(5 for demand, and 2 for renewable supply), and match
each sample path to the closest identified typical profile
(in terms of L2-norm) to obtain the synthetic day-ahead
forecasts d̂(tot)(i) and Ĝ(i) for each day.

By stacking d(tot), d̂(tot)(i), G, Ĝ for the different
days in the testing period as columns of the matrices
L, L̂,G, Ĝ ∈ R24,50, the forecasting errors are expressed
by

err(demand) =
‖L− L̂‖F
‖L‖F

, err(ren.gen.) =
‖G− Ĝ‖F
‖G‖F

,

where ‖A‖F =
√∑

i,j |aij |2 denotes the Frobenius norm
of matrix A. Similarly, for each node k, we stack the
actual and predicted LMPs as columns of the matrices
LMPk, L̂MPk ∈ R24,50.

Then, the predictive performance of our methodology
is evaluated using the mean relative error errk across all
nodes 1

n

∑n
k=1 errk, where

errk =
‖LMPk − L̂MPk‖F
‖LMPk‖F

.

Fig. 11 captures the sensitivity of the predictive
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performance as a function of the forecasting errors in
total load and renewable generation, by treating them
separately. More specifically, Fig. 11 (a) (Fig. 11 (b))
shows how the prediction error changes as a function of
the forecasting error in the total load (total renewable
generation) where the generation (load) forecasting error
is kept fixed.

(a) Renewable generation forecast error fixed
at 1.5%.

(b) Demand forecast error fixed at 1%.

Fig. 11: LMP prediction error vs. demand (a) and
renewable generation (b) forecasting error.

One of the assumptions we make is that the ratio
between the nodal demand (renewable supply) and the
total demand (total renewable supply) stays the same.
We conduct the sensitivity analysis to evaluate how the
prediction error changes as the relative errors ‖∆α‖2‖α‖2 and
‖∆β‖2
‖β‖2 increase. The results are captured in Table III.

TABLE III: Sensitivity Analysis on nodal ratios

Demand and generation ratio
error ‖∆α‖2‖α‖2 = ‖∆β‖2

‖β‖2

1% 2% 3% 4%

LMP prediction error 6.5% 7.5% 8.5% 10%
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