2,151,384 research outputs found
Structural analysis applications
An account is given of the application of computer codes for the efficient conduct of three-dimensional inelastic analyses to aircraft gas turbine combustor, turbine blade, and turbine stator vane components. The synergetic consequences of the program's activities are illustrated by an evaluation of the computer analyses of thermal barrier coatings and of the Space Shuttle Main Engine's High Pressure Fuel Turbopump turbine blading. This software, in conjunction with state-of-the-art supercomputers, can significantly reduce design-task burdens
Ferritic stainless steels in structural applications
Ferritic stainless steels are low cost, price-stable, corrosion-resistant materials. Although widely used in the automotive and domestic appliance sectors, structural applications are scarce owing to a dearth of performance data and design guidance. The characteristics of ferritics make them appropriate for structures requiring strong and moderately durable structural elements with attractive metallic surface finishes. The present paper provides an overview of the structural behaviour of ferritic stainless steels, including a summary of the findings of a recent European project (SAFSS) on ferritics. Laboratory experiments have been completed including material tests as well as structural member tests, both at ambient and elevated temperatures. The experimental data is supplemented by numerical analysis in order to study a wide range of parameters. The findings of this work have enabled design guidance to be proposed, as discussed herein
Applications of Structural Balance in Signed Social Networks
We present measures, models and link prediction algorithms based on the
structural balance in signed social networks. Certain social networks contain,
in addition to the usual 'friend' links, 'enemy' links. These networks are
called signed social networks. A classical and major concept for signed social
networks is that of structural balance, i.e., the tendency of triangles to be
'balanced' towards including an even number of negative edges, such as
friend-friend-friend and friend-enemy-enemy triangles. In this article, we
introduce several new signed network analysis methods that exploit structural
balance for measuring partial balance, for finding communities of people based
on balance, for drawing signed social networks, and for solving the problem of
link prediction. Notably, the introduced methods are based on the signed graph
Laplacian and on the concept of signed resistance distances. We evaluate our
methods on a collection of four signed social network datasets.Comment: 37 page
Use of structural adhesive joints in construction applications
The Research Group of Materials Performance works in the development of structural adhesive joints and their performance in service in collaboration with some adhesive manufacturer companies. It is sought to increase the number of adhesive manufacturer companies to work with, as well as to find construction companies interested in the application of this technology.Contrato Programa de Comercialización e Internacionalización. Sistema Regional de Investigación Científica e Innovación Tecnológica. (Comunidad de Madrid; Universidad Carlos III de Madrid
Vacuum infusion of natural fibre composites for structural applications
Numerous methods of manufacturing natural fibre composites have been reported in the literature, including compression moudling, often in conjunction with a hot press. Other forms of composite manufacture include 'Vacuum Assisted Resin Transfer Moulding' (VATRM) and the 'Seemann Composite Resin Infusion Moulding Process' (SCRIMP). These methods have been reported to produce natural fibre composies with reasonable mechanical properties [1-2]. In this paper, a vacuum infusion rig is described that has been developed to produce consistent quality composite plates for studies into optimising natural fibre composites. The process aims to harness the benefits of vacuum infusion and compression moulding, where vacuum infusion encourages the removal of trapped air in the system and hence avoid reduction, and additional compression moulding can help to achieve high volume fractions that are otherwise difficult in other processes
Structural Path Analysis: Applications to Structural Changes in the Andalusian economy (1990-1999)
Social Accounting Matrices (SAM) are an useful tool that enables to get extenser information than Input-Output analysis as far as they work not only with an economy´s intersectorial relations, but also with consumers' behaviour, government or foreign sector; reflecting the income flow of rent. In this paper, we use Social Accounting Matrices for Andalusia for years 1990, 1995 y 1999, that we got from previous works. With this information we use "path analysis" technique to obtain the main changes in the productive structure and demand in Andalusia for the last ten years. Those changes will be represented in a three-dimensional picture. We also want to know which are the sectors that have strongly contributed to regional economic growth. Finally we measure the influence of sectorial shocks on themselves and also on the other sectors of this regional economy. Keywords: social accounting matrix, regional accounting, structural analysis. JEL: C67, D57, R15.
CSM Testbed Development and Large-Scale Structural Applications
A research activity called Computational Structural Mechanics (CSM) conducted at the NASA Langley Research Center is described. This activity is developing advanced structural analysis and computational methods that exploit high-performance computers. Methods are developed in the framework of the CSM Testbed software system and applied to representative complex structural analysis problems from the aerospace industry. An overview of the CSM Testbed methods development environment is presented and some new numerical methods developed on a CRAY-2 are described. Selected application studies performed on the NAS CRAY-2 are also summarized
Lunar rated fasteners
A catalog of fasteners is presented for a variety of applications to be used in a lunar environment. The fastening applications targeted include: covers, panels, hatches, bearings, wheels, gears, pulleys, anchors for the lunar surface and structural fasteners (general duty preloadable). The robotic installation and removal of each fastener is presented along with a discussion of failure modes. Structural performance data is tabulated for various configurations. Potential materials for the space environment are presented along with recommendations of appropriate solid film lubricants. Three original fastener designs were found suitable for the lunar environment. A structural analysis is presented for each original design
- …
