1,999,987 research outputs found

    Equi-energy sampler with applications in statistical inference and statistical mechanics

    Get PDF
    We introduce a new sampling algorithm, the equi-energy sampler, for efficient statistical sampling and estimation. Complementary to the widely used temperature-domain methods, the equi-energy sampler, utilizing the temperature--energy duality, targets the energy directly. The focus on the energy function not only facilitates efficient sampling, but also provides a powerful means for statistical estimation, for example, the calculation of the density of states and microcanonical averages in statistical mechanics. The equi-energy sampler is applied to a variety of problems, including exponential regression in statistics, motif sampling in computational biology and protein folding in biophysics.Comment: This paper discussed in: [math.ST/0611217], [math.ST/0611219], [math.ST/0611221], [math.ST/0611222]. Rejoinder in [math.ST/0611224]. Published at http://dx.doi.org/10.1214/009053606000000515 in the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Statistical methods of SNP data analysis with applications

    Get PDF
    Various statistical methods important for genetic analysis are considered and developed. Namely, we concentrate on the multifactor dimensionality reduction, logic regression, random forests and stochastic gradient boosting. These methods and their new modifications, e.g., the MDR method with "independent rule", are used to study the risk of complex diseases such as cardiovascular ones. The roles of certain combinations of single nucleotide polymorphisms and external risk factors are examined. To perform the data analysis concerning the ischemic heart disease and myocardial infarction the supercomputer SKIF "Chebyshev" of the Lomonosov Moscow State University was employed

    On applications of Orlicz Spaces to Statistical Physics

    Get PDF
    We present a new rigorous approach based on Orlicz spaces for the description of the statistics of large regular statistical systems, both classical and quantum. This approach has the advantage that statistical mechanics is much better settled. In particular, a new kind of renormalization leading to states having a well defined entropy function is presented.Comment: 20 page
    corecore