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On Applications of Orlicz Spaces
to Statistical Physics

W. Adam Majewski and Louis E. Labuschagne

Abstract. We present a new rigorous approach based on Orlicz spaces for
the description of the statistics of large regular statistical systems, both
classical and quantum. The pair of Orlicz spaces we explicitly use are,
respectively, built on the exponential function (for the description of reg-
ular observables) and on an entropic type function (for the corresponding
states). They form a dual pair (both for classical and quantum systems).
This pair has the advantage of being general enough to encompass regu-
lar observables, and specific enough for the latter Orlicz space to select
states with a well-defined entropy function. Moreover for small quantum
systems, this pair is shown to agree with the classical pairing of bounded
linear operators on a Hilbert space, and the trace-class operators.

1. Introduction

To indicate reasons why (classical as well as non-commutative) Orlicz spaces
are emerging in the theory of (classical and quantum) physics, we begin with
a simple question asking when a physicist knows that a certain quantity is
an observable. Obviously, one answers—an observable is known when also a
function of this observable is known. A nice illustration of this way of think-
ing is provided by classical mechanics—for example: knowing a coordinate one
knows also a potential (being a function of coordinates), etc. It is worth point-
ing out that exactly this feature of observables was probably a motivation for
Newton to develop calculus and to use it in his laws of motion.

On the other hand, in statistical physics the same question seems to be
more subtle. Namely, let (X,Σ,m) be a probability space and u an observ-
able and thus a random variable (so, a measurable function). The question
just posed implies that we wish to at least know the average of 〈u〉m as well
as 〈F (u)〉m for a large class of functions F . Assume that F has the Taylor
expansion F (x) =

∑
i cix

i. Our demands mean that 〈F (u)〉m =
∑

i ci〈ui〉m

should be well defined. However this implies that one should be able to select
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a subset of observables, say “regular” observables, for which all moments are
finite. It is worth pointing out that for the special case of Dirac measures (so,
for point masses) the answer given by classical mechanics can be reproduced.

Let us consider the question posed above in detail in the context of prob-
ability theory. Denote by Sm the set of the densities of all the probability
measures equivalent to m, i.e.,

Sm = {f ∈ L1(m) : f > 0 m− a.s., E(f) = 1}.
Here, E(f) ≡ 〈f〉m stands for

∫
f(x) dm(x) · Sm can be considered as

a set of (classical) states and its natural “geometry” comes from embedding
Sm into L1(m). However, it is worth pointing out that the Liouville space
technique demands L2(m)-space, whilst the employment of interpolation tech-
niques needs other Lp-spaces with p ≥ 1.

Turning to the moment problem, let us consider a class of moment-
generating functions; so fix f ∈ Sm and take a real random variable u on
(X,Σ, f dm). Define (see [3])

ûf (t) =
∫

exp(tu)f dm, t ∈ R

and denote by Lf the set of all random variables such that ûf is well defined
in a neighborhood of the origin 0 and the expectation of u is zero.

One can observe that in this way a nice selection of (classical) observables
was made ([3], and/or [25]) in that all the moments of every u ∈ Lf exist and
they are the values at 0 of the derivatives of ûf .

But it is important to note that Lf is actually a closed subspace of the so-
called Orlicz space based on the exponentially growing function cosh−1 (see
[25]). Whereas L1(m), L2(m), L∞(m) and the interpolating Lp(m) spaces may
be regarded as spaces of measurable functions conditioned by the functions tp

(1 ≤ p < ∞), the more general category of Orlicz spaces are spaces of mea-
surable functions conditioned by a more general class of convex functions, the
so-called Young’s functions (see Sect. 2 for details). Consequently in response
to the work of Pistone and Sempi [25], one may say that even in classical sta-
tistical physics one could not restrict oneself to merely L1(m), L2(m), L∞(m)
and the interpolating Lp(m) spaces. Another argument in favour of Orlicz
spaces was provided by Cheng and Kozak [7]. Namely, it seems that the nat-
ural framework within which certain non-linear integral equations of statistical
mechanics can be studied is provided by Orlicz spaces. In particular, the Orlicz
space defined by the Young’s function u 	→ e|u| −|u|−1 played a distinguished
role (see [7] for details). In other words, generalizations of Lp-spaces—Orlicz
spaces—do appear.

But there is a second important problem. Statistical physics aims at
explaining thermodynamics. To this end, one should have well-defined so-called
state-functions. A nice example of such a function is given by the entropy
function which has an exceptional status among other state functions. Entropy
is defined by:
1. H(f) = − ∫

f(x) log f(x) dμ, f ∈ Sμ, for the classical (continuous) case;
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2. S(�) = −Tr� log �, � a density matrix, for the quantum case.

The problem is that both definitions can lead to divergences. To illustrate
the seriousness of this problem, we firstly consider the quantum case where we
will follow Wehrl [37] and Streater [29,30] (see also [19]). Let �0 be a quantum
state (a density matrix) and S(�0) its von Neumann entropy. Assume S(�0)
to be finite. It is an easy observation that in any neighborhood of �0 (given
by the trace norm, so in the sense of quantum L1-space) there are plenty of
states with infinite entropy. One can say more (see Wehrl [37, p. 241]); the
set of “good” density matrices {� : S(�) < ∞} is merely a meager set. This
should be considered alongside the thermodynamical rule which tells us that
entropy should be a state function which increases in time. Thus, we run into
serious problems in explaining the phenomenon of return to equilibrium and
with the second law of thermodynamics.

Turning to classical continuous entropy, we mention only that for f ∈ L1

the functional H(f) is not well defined—see [4, Chapter IV, §6, Exercise 18].
(For other arguments see Sect. 4.)

Attempting to find a solution to the problems outlined above, we propose
replacing the pair of Banach spaces

〈L∞(X,Σ,m), L1(X,Σ,m)〉 (1.1)

appearing in standard approaches to statistics and statistical physics, with the
pair of Orlicz spaces (or pairs equivalent to this one, see the ensuing sections)

〈Lcosh −1, L log(L+ 1)〉. (1.2)

The first Orlicz space Lcosh −1 appears as the proper framework for
describing the set of regular observables (cf. arguments given prior to the
discussion of the second problem). The second Orlicz space L log(L + 1) is
the space defined by the Young’s function x 	→ x log(x + 1), x ≥ 0. This
space is nothing but an equivalent renorming of the Köthe dual of Lcosh −1, as
cosh(x)−1 and x 	→ x log(x+

√
1 + x2)−√

1 + x2+1, x ≥ 0 are complementary
Young’s functions, with the latter function equivalent to x 	→ x log(1+x), x ≥ 0
(see the next section for details).

To appreciate the significance of our choice (for details see the ensuing
sections), we note that models considered in statistical physics and quantum
field theory are par excellence large systems, i.e. systems with infinite degrees
of freedom. Our new approach is designed exactly for large systems. Further-
more, we note that the condition f ∈ L log(L + 1) guarantees the finiteness
of classical (continuous) and quantum entropies (for finite measure case) as
well as legitimizing the consideration of elements of L log(L+1) as continuous
functionals over the set of regular observables of a system. Thus, L log(L+ 1)
is home to the states of a regular statistical system. On the other hand, it
should be mentioned that in both the classical and quantum cases, an analysis
of problems such as return to equilibrium and entropy production demands
more general Banach spaces than Lp-spaces—see [35] and the references given
therein for the classical case, and [19] for the quantum case.
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Consequently, we propose a new rigorous approach for the description
of statistics of large regular statistical systems having the advantage that sta-
tistics is better settled. This was obtained by means of the “regularization”
of admissible states. Namely, Lcosh −1 can be seen as an enlarged family of
observables. Consequently, the (Köthe) dual space consists of more regular
states (cf. Theorem 2.6). This is a new way of removing “non-physical” states
which lead to infinities. Thus a kind of renormalization is proposed.

The next important point to note here is the fact that quantum theory
is by nature probabilistic. Therefore, the proposed new approach is especially
important for a description of quantum systems, and the presented quantiza-
tion of classical regular systems is essential. The presented quantization of clas-
sical regular systems reveals rather strikingly the difference between systems
associated with factors of type III and II, i.e. large systems, and those which
are associated with type I factors (see the end of Sect. 6). Namely, for the von
Neumann algebra B(H) (type I factor), the quantization based on the Dodds,
Dodds, de Pagter approach (see Sect. 5) forces an employment of Banach
function spaces which are based on completely atomic measure spaces, with
all atoms having equal measure. This implies that for simple systems (with
finite degrees of freedom), the standard pair of algebras 〈B(H), L1(B(H))〉
is unchanged (L1(B(H)) stands for the trace class operators). In other
words the regularization procedure which we propose is effective for large
systems.

The paper will be organized as follows: in Sect. 2 we review some of
the standard facts on (classical) Orlicz spaces. Then classical regular sys-
tems are described (Sect. 3). In Sect. 4 we indicate how our approach can be
extended to the infinite measure case. In particular, certain questions around
the Boltzmann equation are considered. In Sect. 5 we provide a brief account
on non-commutative Orlicz spaces (which is taken from [18]). Section 6 is
devoted to the study of regular non-commutative statistical systems. In par-
ticular, the quantization of the Orlicz space approach to regular systems is
presented.

2. Classical Orlicz Spaces

Let us begin with some preliminaries (for details we refer to [2,15,26]).

Definition 2.1. [2] Let ψ : [0,∞) → [0,∞] be an increasing and left-continuous
function such that ψ(0) = 0. Suppose that on (0,∞) ψ is neither identically
zero nor identically infinite. Then the function Ψ defined by

Ψ(s) =

s∫

0

ψ(u) du, (s ≥ 0) (2.1)

is said to be a Young’s function.

Clearly, x 	→ cosh(x) − 1, x 	→ x log(x +
√

1 + x2) − √
1 + x2 + 1, x 	→

x log(x+ 1) are Young’s functions, while x 	→ x log x is not.
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Definition 2.2. [2,26]
1. A Young’s function Ψ is said to satisfy the Δ2-condition if there exist s0 > 0

and c > 0 such that

Ψ(2s) ≤ cΨ(s) < ∞, (s0 ≤ s < ∞). (2.2)

If Ψ satisfies the above condition for s0 = 0, we say that it satisfies the
Δ2-condition globally.

2. A Young’s function Φ is said to satisfy ∇2-condition if there exist x0 > 0
and l > 1 such that

Φ(x) ≤ 1
2l

Φ(lx) (2.3)

for x ≥ x0.
If Φ satisfies the above condition for x0 = 0, we say that it satisfies the ∇2-
condition globally.

It is easy to verify that the Young’s functions, given prior to Defini-
tion 2.2, x 	→ x log(x +

√
1 + x2) − √

1 + x2 + 1, x 	→ x log(x + 1) (x 	→
cosh(x) − 1), satisfy the Δ2-condition (∇2-condition, respectively).

We also need

Definition 2.3. [2] Let Ψ be a Young’s function, represented as in (2.1) as the
integral of ψ. Let

φ(v) = inf{w : ψ(w) ≥ v}, (0 ≤ v ≤ ∞). (2.4)

Then the function

Φ(t) =

t∫

0

φ(v) dv, (0 ≤ t ≤ ∞) (2.5)

is called the complementary Young’s function of Ψ.

We note that if the function ψ(w) is continuous and monotonically
increasing, then φ(v) is a function exactly inverse to ψ(w). Consequently, as

cosh(x) − 1 =

x∫

0

sinh(v) dv, (2.6)

and sinh(x) has a well-defined inverse: arcsinh(x), we arrive at the second
Young’s function, namely

x log(x+
√

1 + x2) −
√

1 + x2 + 1 =

x∫

0

arcsinh(v) dv. (2.7)

We have

Corollary 2.4. x log(x +
√

1 + x2) − √
1 + x2 + 1 and coshx − 1 are comple-

mentary Young’s functions.

Let L0 be the space of measurable functions on some σ-finite measure
space (Y,Σ, μ). Orlicz spaces are defined in:
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Definition 2.5. The Orlicz space LΨ associated with Ψ is defined to be the set

LΨ ≡ LΨ(Y,Σ, μ) = {f ∈ L0 : Ψ(λ|f |) ∈ L1 for some λ = λ(f) > 0}.
(2.8)

This space turns out to be a linear subspace of L0, and LΨ becomes a
Banach space when equipped with the so-called Luxemburg–Nakano norm

‖f‖Ψ = inf{λ > 0 : ‖Ψ(|f |/λ)‖1 ≤ 1}.
Here, ‖ · ‖1 stands for L1-norm. An equivalent Orlicz norm for a pair (Ψ,Φ) of
complementary Young’s functions is given by

‖f‖Φ = sup
{∫

|fg|dμ :
∫

Ψ(|g|) dμ ≤ 1
}

.

If Ψ satisfies the Δ2 condition globally, LΨ is more regular in the sense that
then LΨ(Y,Σ, μ) = {f ∈ L0 : Ψ(|f |) ∈ L1}. In the case of finite measures, Ψ
only needs to satisfy Δ2 for large values of t for this equality to hold (see [26,
Theorem III.1.2]).

Clearly, (classical) Lp-spaces are good examples of Orlicz spaces. Other
useful examples, so-called Zygmund spaces, are defined as follows (cf. [2]):

• L logL is defined by the following Young’s function

s log+ s =

s∫

0

φ(u) du

where φ(u) = 0 for 0 ≤ u ≤ 1 and φ(u) = 1 + log u for 1 < u < ∞, and
log+ x = max(log x, 0). Note that this Young’s function is 0-valued on all
of [0, 1] and not just for s = 0.

• Lexp is defined by the Young’s function

Ψ(s) =

s∫

0

ψ(u) du,

where ψ(0) = 0, ψ(u) = 1 for 0 < u < 1, and ψ(u) is equal to eu−1

for 1 < u < ∞. Thus, Ψ(s) = s for 0 ≤ s ≤ 1 and Ψ(s) = es−1 for
1 < s < ∞.
To understand the role of Zygmund spaces the following result will be

helpful (see [2]):

Theorem 2.6. Let (Y,Σ,m) be a finite measure space with m(Y ) = 1. The
continuous embeddings

L∞ ↪→ Lexp ↪→ Lp ↪→ L logL ↪→ L1 (2.9)

hold for all p satisfying 1 < p < ∞. Moreover, Lexp may be identified with the
Banach space dual of L logL.

More generally, for a pair (Ψ,Φ) of complementary Young’s functions
with the function Ψ satisfying Δ2-condition and the function Φ(s) = 0 if and
only if s = 0, one has that (LΨ)∗ = LΦ (cf. [26]).
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Theorem 2.6 is a particular case of the following fact (for all details see
[2]): since any classical Orlicz space X is a rearrangement-invariant Banach
function space (over a resonant measure space), one has

L1 ∩ L∞ ↪→ X ↪→ L1 + L∞ (2.10)

For the finite measure case (2.10) is simplified. Namely, one has

L∞ ↪→ X ↪→ L1 (2.11)

We note that L1∩L∞ is therefore the smallest Orlicz space while L1+L∞

is the largest one.
Finally, we will write F1 � F2 if and only if F1(bx) ≥ F2(x) for x ≥ 0 and

some b > 0, and we say that the functions F1 and F2 are equivalent, F1 ≈ F2,
if F1 ≺ F2 and F1 � F2.

Example 2.7. Consider, for x > 0
• F1(x) = x log(x+

√
1 + x2) − √

1 + x2 + 1 =
∫ x

0
log(s+

√
1 + s2) ds,

• F2 = kx log x = k
∫ x

0
(log s+ 1) ds, k > e.

Then F1 � F2.

Remark 2.8. 1. Recall that x 	→ x log x is not a Young’s function. Therefore
it does not make sense to speak of the Orlicz space Lx log x.

2. If Ψ � F,Ψ is a Young’s function satisfying Δ2-condition, and the
function F is bounded below by −c, then for f ∈ LΨ the integral∫
F (f)(u) dm(u) is finite provided that the measure m is finite.

To see Remark 2.8(2) we note: by the definition of Orlicz spaces f ∈ LΨ

implies
∫

Ψ(λ|f |)(u) dm(u) < ∞ for some λ. Further, as x 	→ Ψ(x) satisfies
the Δ2-condition, the set {f ∈ L0;

∫
Ψ(|f |) dm(u) < ∞} is a linear space.

Therefore, λ > 0 can be taken arbitrarily. Hence

∞ >

∫

Ψ(λ|f |) dm ≥
∫

F (|f |) dm ≥ −c ·m(Ef )

for a proper choice of λ (for example: λ = b = k > e), where Ef = {u :
F (|f |)(u) < 0}. Finally,

∫
F (|f |) dm is finite if and only if

∫
c′F (|f |) dm is

finite, where c′ is an arbitrary fixed positive number. Thus, we arrived at

Corollary 2.9. Let (X,Σ,m) be a probability space. Putting Ψ(x) = x log(x +√
1 + x2) − √

1 + x2 + 1 and F (x) = kx log x where k > e is a fixed positive
number, we obtain: H(f) is finite provided that f ∈ LΨ

+.

The equivalence relation ≈ on the set of Young’s functions defined prior
to Example 2.7 leads to classes of Young’s functions. The principal significance
of this concept follows from:

Theorem 2.10. [26] Let Φi, i = 1, 2 be a pair of equivalent Young’s functions.
Then LΦ1 = LΦ2 .

Consequently, a pair of Orlicz spaces (X,X ′) where X ′ stands for the
(Köthe) dual of X can be determined using different but equivalent pairs of
complementary Young’s functions. We will use this strategy to replace the
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Orlicz space defined by x 	→ x log(x +
√

1 + x2) − √
1 + x2 + 1 by the Orlicz

space L log(L + 1) and to legitimize the pair 〈Lcosh −1, L log(L + 1)〉. For the
finite measure case we will see that one can even replace 〈Lcosh −1, L log(L+1)〉
by the pair of Zygmund spaces 〈Lexp, L logL〉.
Proposition 2.11. Let (Y,Σ, μ) be a σ-finite measure space and L log(L+1) be
the Orlicz space defined by the Young’s function x 	→ x log(x+1), x ≥ 0. Then
L log(L+ 1) is an equivalent renorming of the Köthe dual of Lcosh −1.

Proof. Firstly, observe that there are 0 < a ≤ b < ∞ such that

φ1(ax) ≤ φ2(x) ≤ φ1(bx)

for x > 0, where φ1(x) = coshx − 1 and φ2(x) = ex − x − 1. Consequently,
φ1 ≈ φ2 (even globally equivalent, cf. [26, Section 2.2]). Hence, the conjugate
function of coshx − 1 is equivalent to the conjugate function of ex − x − 1,
namely (x + 1) log(x + 1) − x. Finally, observe that there are 0 < c ≤ d < ∞
such that

ψ1(cx) ≤ ψ2(x) ≤ ψ1(bx)

for x > 0, where ψ1(x) = (x+1) log(x+1)−x and ψ2(x) = x log(x+1). Thus,
ψ1 ≈ ψ2, and the proof is complete. �

We wish to close this Section with an analysis of the relation between the
pair of Orlicz spaces 〈Lcosh −1, L log(L + 1)〉 and the pair of Zygmund spaces
〈Lexp, L logL〉 for the finite measure case.

Proposition 2.12. For finite measure spaces (X ,Σ,m), one has

Lcosh −1 = Lexp. (2.12)

Consequently, for the finite measure case, 〈Lcosh −1, L log(L+ 1)〉 is an equiv-
alent renorming of 〈Lexp, L logL〉.
Proof. As Φ(t) = et − t− 1 ≈ cosh t− 1, see Proposition 2.11, it is enough to
prove that LΦ = Lexp. To show this, firstly recall that the Young’s function
Φexp(t) defining Lexp is equal to

Φexp(t) =
{
t if 0 ≤ t ≤ 1
1
eet if t > 1. (2.13)

Secondly,

lim
t→∞

et − t− 1
Φexp(t)

= lim
t→∞

et − t− 1
1
eet

= e. (2.14)

Hence there exists u0 > 0 and some K > 1 so that
1
K

(et − t− 1) ≤ Φexp(t) ≤ K(et − t− 1) (2.15)

for t ≥ u0. Given a function f we therefore have
∫

Φexp(|f |)χE(x) dm(x) < ∞ ⇐⇒
∫

(e|f | − |f | − 1)χE(x) dm(x) < ∞
(2.16)
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where E = {x ∈ X : |f(x)| ≥ u0}. Next, let M0,M1, respectively, be the
maximal value of Φexp and et − t− 1 on [0, u0]. Then

∫

Φexp(|f |)χEc(x) dm(x) ≤ M0

∫

dm(x) < ∞
and

∫

(e|f | − |f | − 1)χEc(x) dm(x) ≤ M1

∫

dm(x) < ∞,

where Ec ≡ X \ E. If we combine this with the earlier observation, then we
get that

∫

Φexp(|f |) dm < ∞ ⇐⇒
∫

(e|f | − |f | − 1) dm < ∞, (2.17)

which proves the claim. �

3. Classical Regular Systems [18]

We begin with the definition of the classical regular model (cf. [25]). Let
{Ω,Σ, ν} be a probability space; ν will be called the reference measure. The
set of densities of all the probability measures equivalent to ν will be called
the state space Sν , i.e.

Sν = {f ∈ L1(ν) : f > 0 ν − a.s., E(f) = 1}, (3.1)

where, E(f) ≡ ∫
f dν. It is worth pointing out that f ∈ Sν implies that f dν

is a probability measure.

Definition 3.1. The classical statistical model consists of the measure space
{Ω,Σ, ν}, state space Sν , and the set of measurable functions L0(Ω,Σ, ν).

To select regular random variables, i.e. random variables having all finite
moments, we define the moment-generating functions as follows: fix f ∈ Sν ,
take a real random variable u on (Ω,Σ, f dν) and define:

ûf (t) =
∫

exp(tu)f dν, t ∈ R. (3.2)

Note that t 	→ ûf (t) is called the Laplace transform of u cf. [3]. In the
sequel we will need the following properties of û (for details see Widder [38]):
1. û is analytic in the interior of its domain,
2. its derivatives are obtained by differentiating under the integral sign.
Now the following definition is clear (cf. [25]):

Definition 3.2. The set of all random variables on (Ω,Σ, ν) such that for a
fixed f ∈ Sν

1. ûf is well defined in a neighborhood of the origin 0,
2. the expectation of u is zero,

will be denoted by Lf ≡ Lf (f ·ν) and called the set of regular random variables.

The set of regular random variables having zero expectation is character-
ized by:
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Theorem 3.3 (Pistone and Sempi [25]). Lf is the closed subspace of the Orlicz
space Lcosh −1(f · ν) of zero expectation random variables.

Consequently, the first space in the postulated pair, see (1.2), has
appeared as the natural home for regular observables. But as L log(L + 1) is
the Köthe dual of Lcosh −1, see Proposition 2.11, the appearance of the second
Orlicz space in (1.2) is also explained. In particular, elements in L log(L+ 1)
can be considered as “normal” functionals over the space Lcosh −1 of regular
observables.

Turning to the entropy problem, we note (see Remark 2.8(2)) that there is
a relation � between the Young’s function x log(x+

√
1 + x2)−√

1 + x2+1 and
the entropic function c · x log x where c is a positive number. Consequently, as
the Orlicz space defined by the Young’s function x log(x+

√
1 + x2)−√

1 + x2+
1 is equal to L log(L+1) (cf. Proposition 2.11), the condition f ∈ L log(L+1)
guarantees that the continuous entropy is well defined for the finite measure
case. Thus we arrived at:

Corollary 3.4.

〈Lcosh −1, L log(L+ 1)〉
or equivalently

〈Lexp, L logL〉
provides the proper framework for the description of classical regular statistical
systems (based on probability measures).

Proof. Note that regular statistical systems are reliant on finite measures f ·ν,
so the claim is a direct consequence of the previous Section (cf. Proposition 2.12
and Corollary 2.9). �

An analysis of the classical continuous entropy for the infinite measure
case will be presented in Sect. 4 below.

4. Applications of Orlicz Space Technique to Boltzmann’s
Theory

The goal of this section is twofold. Firstly, we want to present another example
illustrating how the Orlicz space technique is useful in statistical mechanics.
Secondly, we have studied the continuous entropy H(f) = − ∫

f(x) log f(x) dx
only for the finite measure case. Now, we wish to show that ifH(f) is defined in
the context of the Orlicz space L log(L+1) (or L logL), the natural Lyapunov
functional for Boltzmann’s equation, namely H+(f) ≡ −H(f), is then well
defined.

Recall that (spatially homogeneous) Boltzmann’s equation reads:

∂f1
∂t

=
∫

dΩ
∫

d3v2I(g, θ)|v2 − v1|(f ′
1f

′
2 − f1f2) (4.1)
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where f1 ≡ f(v1, t), f ′
2 ≡ f(v′

2, t), etc., are velocity distribution functions,
with v standing for velocities before collision, and v′ for velocities after colli-
sion. I(g, θ) denotes the differential scattering cross section, dΩ is the solid
angle element, and g = |v|. As it was mentioned, the natural Lyapunov
functional for this equation is the continuous entropy with opposite sign, i.e.
H+(f) =

∫
f(x) log f(x) dx, where f is supposed to be a solution of Boltz-

mann’s equation. The exceptional status of the functional H+(f) in an analy-
sis of Boltzmann’s equation follows from McKean’s result [21]. He proved that
the entropy H(f) is the only increasing functional for some simplified model of
gas. The time behaviour of H+(f) is described by the H-Theorem (see [34] for
physical aspects of Boltzmann’s equation while a survey of the mathematical
theory of this equation can be found in [35] (see also [6,9,10]). One of the
features of H-functional H+(f) where f ∈ L1 is the fact that it is unbounded
both from below and from above (see, e.g. [12]). We wish to show that the
Orlicz space technique allows a rigorous analysis of the H-functional so also
the H-Theorem. We start with

Proposition 4.1. Let f ∈ L1 ∩ L logL where both Orlicz spaces are over
(R3,Σ, d3v) (d3v—the Lebesgue measure). Then

∫

|f | log |f |d3v = lim
ε↘0

∫

Ef
ε

|f | log |f |d3v (4.2)

is well defined, and bounded above. Moreover, each
∫

Ef
ε

|f | log |f |d3v is finite,
where Ef

ε = {v : |f(v)| > ε}.
Proof. Let f ∈ L1. For any ε > 0 we have

|f |χ(ε,∞)(|f |) ≥ εχ(ε,∞)(|f |). (4.3)

Since
∫ |f |χ(ε,∞)(|f |) d3v ≤ ‖f‖1 < ∞, the set Ef

ε must have finite measure.
Note that further

∫

Ef
ε

|f | log |f |d3v ≥ −e−1

∫

Ef
ε

d3v > −∞. (4.4)

Moreover, for f ∈ L1 ∩ L logL,

∞ >

∫

|f | log+ |f |d3v =
∫

Ef
1

|f | log+ |f |d3v +
∫

(Ef
1 )c

|f | log+ |f |d3v

>

∫

Ef
ε

|f | log+ |f |d3v > −∞. (4.5)

Thus,
∫

Ef
ε

|f | log+ |f |d3v

is well defined. Clearly, (4.2) holds and the proof is complete. �
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Consequently, using the Orlicz space technique, the continuous entropy
H(f) of any velocity distribution function f ∈ L1 ∩ L logL can be uniformly
approximated by distributions (states) with well-defined continuous entropy.

As in this section we are concerned with the infinite measure case, we
have that L logL �= L log(L+ 1). Hence the following result is relevant.

Proposition 4.2. Let f ∈ L1 ∩L log(L+1), f ≥ 0, where both Orlicz spaces are
over (R3,Σ,d3v) (d3v—the Lebesgue measure). Then,

Hε(f) =
∫

f log(f + ε) d3v (4.6)

is well defined for any ε > 0

Proof. Let f ∈ L1 ∩L log(L+1) with f ≥ 0. As both spaces are vector spaces,
then βf ∈ L1 ∩ L log(L + 1) for an arbitrary β > 0. It is an exercise to see
the Young’s functions t and t log(t+1) both satisfy the Δ2 condition globally.
Hence, we even have that

∫
βf log(βf + 1) d3v < ∞. Note that

∫

βf log(βf+1) d3v=
∫

(β log β)f d3v+β
∫

f log
(

f+
1
β

)

d3v. (4.7)

As the LHS of (4.7) and the first term of the RHS of (4.7) are finite numbers,
the claim follows. �

Let us comment on the above results.
1. Proposition 4.2 implies that for any f ∈ L1 ∩ L log(L+ 1), f ≥ 0,H+(f)

(so also H(f)) can be approximated by finite numbers Hε(f).
2. The important point to note here is the fact that DiPerna–Lions (see

[1,9,10]) showed that the estimates

f ∈ L∞
t ([0, T ];L1

x,v((1 + |v|2 + |x|2) dxdv) ∩ L log(L+ 1)) (4.8)

and

D(f) ∈ L1([0, T ] × R
N
x ), (4.9)

where D(f) = 1
4

∫
dΩ

∫
d3v1 d3v2I(g, θ)|v2 −v1|(f ′

1f
′
2 −f1f2) log f ′

1f ′
2

f1f2
, are

sufficient to build a mathematical theory of weak solutions.
Furthermore, Villani announced, see [35, Chapter 2, Theorem 9],

that for particular cross sections (collision kernels in Villani’s terminol-
ogy) weak solutions of Boltzmann equation are in L log(L+ 1).

3. Consequently, for the infinite measure case, the condition f ∈ L1 ∩
L log(L + 1) is well suited to entropic problems associated with Boltz-
mann’s equation.
As the entropic functional H+(f) plays such an important role in the

analysis of Boltzmann’s theory, we will continue the examination of its prop-
erties.

Proposition 4.3. Let f ∈ L1 ∩ L log(L+ 1) and f ≥ 0. Then

H+(f) =
∫

f log f d3v
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is bounded above and, if in addition f ∈ L1/2 (equivalently f1/2 ∈ L1), it is
also bounded from below. Thus, H+(f) is bounded below on a dense subset of
the positive cone of L log(L+ 1).

Proof. As x 	→ log x, x > 0 is a monotonic function, we have x log x ≤ x log(x+
ε), for any ε > 0. Hence,

H+(f) ≤ Hε(f).

To examine boundedness from below, let 0 ≤ f ∈ L1 ∩ L log(L + 1) be such
that f

1
2 ∈ L1. Then denoting

∫
f

1
2 d3v by N , one has

∫

f log f d3v =
∫

f
1
2 · f 1

2 log(f
1
2 · f 1

2 ) d3v = 2
∫

(f
1
2 log(f

1
2 )) · f 1

2 d3v

≥ 2
(∫

f d3v

)

log

(∫
f d3v

N

)

, (4.10)

where the last inequality follows from Jensen’s inequality. (See [27] for a very
general version of this inequality.)

The last part of the claim will be established if we can show that each
non-negative element of L1 ∩ L log(L + 1) is the norm limit of a sequence
of functions with support having finite measure. We present a very general
proof of this fact which can be directly translated to the non-commutative
context. Let f ∈ L1 ∩ L log(L + 1) be given with f ≥ 0, and for any n ∈ N

let En = {v| 1
n ≤ f(v) ≤ n}. By [17, Corollary 3.3], the sequence {fχEn

} will
in fact converge to f in the L1-norm. Next notice that the Young’s function
Ψ(t) = t log(t + 1) generating L log(L + 1) is actually an N -function. (That
means that the limit formulae limt→0

Ψ(t)
t = 0 and limt→∞

Ψ(t)
t = ∞ are

valid.) It is an exercise to see that Ψ(t) also satisfies the Δ2-condition globally.
Hence by [18, Remark 6.8], L log(L + 1) must have order-continuous norm.
(The remark referred to assumes that N -functions are in view.) Since fχEn

increases pointwise to f as n → ∞, the order continuity of the norm ensures
that fχEn

converges to f in the L log(L + 1)-norm as n → ∞. Thus fχEn

converges to f in the norm on L1 ∩ L log(L+ 1). �

To sum up, the proposed approach is compatible with a rigorous analysis
of Boltzmann’s equation.

In the last two sections, we have shown that the scheme for clas-
sical statistical mechanics based on the two distinguished Orlicz spaces
〈Lcosh −1, L log(L+1)〉 does work. However, the basic theory for nature is quan-
tum mechanics. Therefore the question of a quantization of the given approach
must be considered. This will be done in the next two sections. To facilitate
the procedure of quantization, although up to now only classical systems have
been considered, we have deliberately tried to formulate our arguments in as
general a way as possible.
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5. Non-Commutative Orlicz Spaces

For the reader’s convenience we start this section by presenting a brief review
of quantum (non-commutative) Orlicz spaces extracted from Section 2 in [18].

Let Φ be a given Young’s function. In the context of semifinite von Neu-
mann algebras M equipped with an faithful normal semifinite (fns) trace τ ,
the space of all τ -measurable operators M̃ (equipped with the topology of
convergence in measure) plays the role of L0 (for details see [22]). In this case,
Kunze [16] used this identification to define the associated non-commutative
Orlicz space to be

LncO
Φ = ∪∞

n=1n{f ∈ M̃ : τ(Φ(|f |) ≤ 1}
and showed that this is a linear space which becomes a Banach space when
equipped with the Luxemburg–Nakano norm

‖f‖Φ = inf{λ > 0 : τ(Φ(|f |/λ)) ≤ 1}.
Using the linearity it is not hard to see that

LncO
Φ = {f ∈ M̃ : τ(Φ(λ|f |)) < ∞ for some λ = λ(f) > 0}.

Thus, there is a clear analogy with the commutative case.
It is worth pointing out that there is another approach to quantum Orlicz

spaces. Namely, one can replace (M, τ) by (M, ϕ), where ϕ is a normal faithful
state on M (for details see [28]). However, as we wish to put some emphasis on
the universality of quantization, we prefer to follow the Banach space theory
approach developed by Dodds et al. [8].

Given an element f ∈ M̃ and t ∈ [0,∞), the generalized singular
value μt(f) is defined by μt(f) = inf{s ≥ 0 : τ(1l − es(|f |)) ≤ t} where
es(|f |), s ∈ R is the spectral resolution of |f |. The function t → μt(f) will
generally be denoted by μ(f). For details on the generalized singular values see
[11]. (This directly extends classical notions where for any f ∈ L0

∞, the func-
tion (0,∞) → [0,∞] : t → μt(f) is known as the decreasing rearrangement of
f .) We proceed to briefly review the concept of a Banach function space of mea-
surable functions on (0,∞). (Necessary background is given in [8].) A function
norm ρ on L0(0,∞) is defined to be a mapping ρ : L0

+ → [0,∞] satisfying
• ρ(f) = 0 iff f = 0 a.e.
• ρ(λf) = λρ(f) for all f ∈ L0

+, λ > 0.
• ρ(f + g) ≤ ρ(f) + ρ(g) for all f, g ∈ L0

+.
• f ≤ g implies ρ(f) ≤ ρ(g) for all f, g ∈ L0

+.
Such a ρ may be extended to all of L0 by setting ρ(f) = ρ(|f |), in which case
we may then define Lρ(0,∞) = {f ∈ L0(0,∞) : ρ(f) < ∞}. If now Lρ(0,∞)
turns out to be a Banach space when equipped with the norm ρ(·), we refer
to it as a Banach function space. If ρ(f) ≤ lim infn ρ(fn) whenever (fn) ⊂ L0

converges almost everywhere to f ∈ L0, we say that ρ has the Fatou property.
If less generally this implication only holds for (fn)∪{f} ⊂ Lρ, we say that ρ is
lower semicontinuous. If further the situation f ∈ Lρ, g ∈ L0 and μt(f) = μt(g)
for all t > 0, forces g ∈ Lρ and ρ(g) = ρ(f), we call Lρ rearrangement invariant
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(or symmetric). Using the above context Dodds et al. [8] formally defined the
non-commutative space Lρ(M̃) to be

Lρ(M̃) = {f ∈ M̃ : μ(f) ∈ Lρ(0,∞)}
and showed that if ρ is lower semicontinuous and Lρ(0,∞) rearrangement-
invariant, Lρ(M̃) is a Banach space when equipped with the norm ‖f‖ρ =
ρ(μ(f)).

Now for any Young’s function Φ, the Orlicz space LΦ(0,∞) is known to
be a rearrangement invariant Banach function space with the norm having the
Fatou property; see Theorem 8.9 in [2]. Thus on selecting ρ to be ‖ · ‖Φ, the
very general framework of Dodds, Dodds and de Pagter presents us with an
alternative approach to realizing non-commutative Orlicz spaces.

As the von Neumann entropy is defined on M = B(H), we end this
section with a description of the Banach function spaces for B(H) which are
constructed using the philosophy of Dodds, Dodds and de Pagter described
above. Let M = B(H) equipped with the standard trace Tr. Then M̃ =
B(H) [32]. Let n be a non-negative integer and let b ∈ B(H) be given. Since
Tr is integer-valued on the projection lattice of B(H), it follows from [11,
Proposition 2.4] that μt(b) = μn(b) = an+1(b) for any t ∈ [n, n + 1), where
an+1 is the distance from b to the operators with rank at most n (the so-called
(n + 1)th approximation number of b [24]). Of course, b will be compact if
and only if an(b) → 0 as n → ∞. If indeed b is compact, then by a result of
Allahverdiev (cf. [13, Theorem II.2.1]), the an(b)’s correspond to the elements
of the spectrum of |b| arranged in decreasing order according to multiplicity.
Given a Banach function norm ρ, the prescription given above (cf. [8]) says
that b ∈ Lρ(B(H)) if and only if μ(b) ∈ Lρ(0,∞), with the norm on Lρ(B(H))
given by ‖b‖ρ = ‖μ(b)‖ρ. Now let Φ be a Young’s function. It can then be seen
that b ∈ LΦ(B(H)) if and only if μ(b) ∈ LΦ(0,∞) if and only if there exists
some α > 0 so that

∫ ∞
0

Φ(αμt(b)) dt =
∑∞

n=0 Φ(α(an(b)) < ∞ if and only if
{an(b)} belongs to the Orlicz sequence space �Φ(N). Similarly, the Luxemburg
norm of b ∈ LΦ(B(H)) can then be shown to be precisely ‖b‖Φ = inf{ε > 0 :∑∞

n=0 Φ(an(b)/ε) ≤ 1} (the Luxemburg norm of {an(b)} considered as an
element of �Φ(N).

6. Non-Commutative Regular Systems

In [18] the definition of non-commutative regular system was given. To quote
this method of quantization we need some preparation (cf. [18]). Let (M, τ)
be a pair consisting of a semifinite von Neumann algebra and fns trace.

Remark 6.1. 1. For large quantum systems, i.e. for systems with an infinite
number of degrees of freedom, type III factors are of paramount interest.
Namely (cf. [14]) representations of quasilocal algebras induced by an
equilibrium state as well as local algebras of relativistic theory in the so-
called vacuum sector lead to type III factors. However by using crossed-
product techniques (cf. [32]), one arrives at semifinite algebras.
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2. Since in the models of quantum physics von Neumann algebras act on
separable Hilbert spaces, one can restrict oneself to σ-finite algebras (cf.
[5]). The advantage of this assumption follows from the fact that it allows
for a simplification of the crossed-product technique in that here one can
more easily select the elements of the original algebra (cf. [36])

Consequently, the assumption that M is a semifinite algebra acting on
a separable Hilbert space is not too restrictive as one can consider instead of
N (factor III) the corresponding crossed product M = N �σ IR with a good
identification of N inside M.

To provide the promised preliminaries, let us define (see [31, vol. I]):
1. nτ = {x ∈ M : τ(x∗x) < +∞}.
2. (definition ideal of the trace τ) mτ = {xy : x, y ∈ nτ}.
3. ωx(y) = τ(xy), x ≥ 0.

One has (for details see Takesaki [31, vol. I])
1. if x ∈ mτ , and x ≥ 0, then ωx ∈ M+

∗ .
2. If L1(M, τ) stands for the completion of (mτ , || · ||1) then L1(M, τ) is iso-

metrically isomorphic to M∗.
3. M∗,0 ≡ {ωx : x ∈ mτ} is norm dense in M∗.

Finally, denote by M+,1
∗ (M+,1

∗,0 ) the set of all normalized normal positive
functionals in M∗ (in M∗,0, respectively). Now, performing a “quantization”
of Definition 3.1 we arrive at (cf. [18]).

Definition 6.2. The non-commutative statistical model consists of a quantum
measure space (M, τ), “quantum densities with respect to τ” in the form of
M+,1

∗,0 , and the set of τ -measurable operators M̃.

Having “quantized” the statistical model, we can present the definition
of regular non-commutative statistical model [18].

Definition 6.3.

Lquant
x = {g ∈ M̃ : 0 ∈ D(μ̂g

x(t))0, x ∈ m+
τ }, (6.1)

where D(·)0 stands for the interior of the domain D(·) and

μ̂g
x(t) =

∫

exp(tμs(g))μs(x) ds, t ∈ R. (6.2)

(Notice that the requirement that 0 ∈ D(μ̂g
x(t))0 presupposes that the trans-

form μ̂g
x(t) is well defined in a neighbourhood of the origin.)

We remind that above and in the sequel μ(g) (μ(x)) stands for the func-
tion [0,∞) � t 	→ μt(g) ∈ [0,∞] ([0,∞) � t 	→ μt(x) ∈ [0,∞], respectively).

To give a non-commutative generalization of the Pistone–Sempi theorem,
we need a generalization of the Dodds, Dodds, de Pagter approach, i.e. the
approach which was presented in Sect. 5. To this end we need [18].

Definition 6.4. Let x ∈ L1
+(M, τ) and let ρ be a Banach function norm on

L0((0,∞), μt(x) dt). In the spirit of [8] we then formally define the weighted
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non-commutative Banach function space Lρ
x(M̃) to be the collection of all

f ∈ M̃ for which μ(f) belongs to Lρ((0,∞), μt(x) dt). For any such f we write
‖f‖ρ = ρ(μ(f)).

Remark 6.5. The classical statistical model is constructed using objects of the
form f · dν. A faithful non-commutative translation of this would be to look at
objects of the form τ(x

1
2 · x 1

2 ) =
∫
μt(x

1
2 · x 1

2 )dt. However it is convenient for
us to rather use the related objects τx(·) =

∫
μt(·)μt(x) dt. These two objects

are clearly closely related, with τx having the advantage of exhibiting many
trace-like properties.

The mentioned generalization of the Dodds, Dodds, de Pagter approach
is contained in:

Theorem 6.6. [18] Let x ∈ L1
+(M, τ). Let ρ be a rearrangement-invariant

Banach function norm on L0((0,∞), μt(x) dt) which satisfies the Fatou prop-
erty and such that: ν(E) < ∞ ⇒ ρ(χ) < ∞ and ν(E) < ∞ ⇒ ∫

E
f dν ≤

CEρ(f) for some positive constant CE, depending on E and ρ but indepen-
dent of f (ν stands for μt(x) dt). Then Lρ

x(M̃) is a linear space and ‖ · ‖ρ a
norm. Equipped with the norm ‖ · ‖ρ, L

ρ
x(M̃) is a Banach space which injects

continuously into M̃.

The generalization of the Pistone–Sempi is given by (see [18])

Theorem 6.7. The set Lquant
x coincides with the the weighted Orlicz space

Lcosh −1
x (M̃) ≡ LΨ

x (M̃) (where Ψ = cosh−1) of non-commutative regular ran-
dom variables.

Finally, to show that statistics and thermodynamics can be well estab-
lished for non-commutative regular statistical systems, we note that for ele-
ments x ∈ L1

+(M), μt(x) dt gives a finite resonant measure on (0,∞). To see
this, it is enough to observe that t 	→ μt(·) is a non-increasing and right
continuous function (see [11]). Note, this property of μt(·) dt simplifies the
theory of rearrangement-invariant Banach function spaces. In particular, one
can easily apply the scheme given in Sect. 2. Moreover, both of the spaces
Llog(L+ 1)(M̃) and LlogL(M̃) are suitable frameworks within which to
study the quantum entropy τ(f log(f)). We justify this claim by first prov-
ing a quantum version of Propositions 4.2 and 4.3.

Proposition 6.8. Let M be a semifinite von Neumann algebra with an fns trace
τ (cf. Sect. 4) and let f ∈ L1 ∩ L log(L+ 1)(M̃), f ≥ 0. Then τ(f log(f + ε))
is well defined for any ε > 0. Moreover,

τ(f log f)

is bounded above, and if in addition f ∈ L1/2 (equivalently f1/2 ∈ L1), it is
also bounded from below. Thus τ(f log f) is bounded below on a dense subset
of the positive cone of L log(L+ 1).

Proof. Let f ∈ L1 ∩L log(L+1)(M̃) be given with f ≥ 0. From the discussion
in Sect. 5, we know that this forces μ(f) ∈ L1 ∩ L log(L + 1)(0,∞). Notice
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that a similar argument to the one used in the proof of Proposition 4.2, can
now be used to show that

∫ ∞
0

|μt(f) log(μt(f) + ε)|dt < ∞ for any ε. Since
t → μt(f) is non-increasing, the fact that μ(f) ∈ L1(0,∞) ensures that μt(f)
decreases to zero as t → ∞. Hence we also have that τ(g(f)) =

∫ ∞
0
g(μt(f)) dt

for any non-negative Borel function g with g(0) = 0 (see [11, Remark 3.3]). If
we combine this with the above observation regarding μ(f), it follows that for
any ε > 0 we have

τ(|f log(f + ε)|) =

∞∫

0

|μt(f) log(μt(f) + ε)|dt < ∞.

This proves the first claim.
To prove the second claim, fix some ε>0. Using the fact that x→ log(x)

(x > 0) is monotonic, we may conclude from the Borel functional calculus that
f log(f)≤f log(f+ε). Let χI denote the spectral projection of f corresponding
to the interval I. Since log is non-negative on [1,∞), it therefore follows from
the above inequality that 0≤fχ[1,∞) log(fχ[1,∞))≤fχ[1,∞) log(fχ[1,∞)+ε) ≤
|f log(f + ε)|. Hence 0 ≤ τ(fχ[1,∞) log(fχ[1,∞))) ≤ τ(|f log(f + ε)|) < ∞.
Notice that 0 ≥ fχ[0,1) log(fχ[0,1)). We may therefore give meaning to τ(fχ[0,1)

log(fχ[0,1))) by setting τ(fχ[0,1) log(fχ[0,1))) = −τ(−fχ[0,1) log(fχ[0,1))) and
to τ(f log(f)) by setting τ(f log(f)) = τ(fχ[0,1) log(fχ[0,1)) + τ(fχ[1,∞)

log(fχ[1,∞))). Then τ(f log(f)) is well defined (possibly assuming the value
−∞), and bounded above by τ(|f log(f + ε)|).

It remains to prove the final claim. To this end let 0 ≤ f ∈ L1 ∩L log(L+
1)(M̃) be such that f

1
2 ∈ L1(M̃). We have already observed that the first

condition ensures that μ(f) ∈ L1 ∩L log(L+1)(0,∞). Since μ(f)1/2 = μ(f1/2)
(see [11, Lemma 2.5]), the assumption regarding f1/2 similarly ensures that
μ(f)1/2 ∈ L1(0,∞). A similar argument to the one used in the proof of Propo-
sition 4.3 now ensures that in this case

−∞ <

∞∫

0

μt(f) log(μt(f)) dt < ∞.

Hence by [11, Remark 3.3], we then have that

τ(|f log(f)|) =

∞∫

0

|μt(f) log(μt(f))|dt < ∞.

This in turn ensures that τ(f log(f)) > −∞. �

One also has the following “almost” characterization of the elements of
LlogL(M̃)+ for which f log(f) is integrable.

Proposition 6.9. As before, let M be a semifinite von Neumann algebra with
an fns trace τ . Let f = f∗ ∈ M̃ be given. By χI we will denote the spec-
tral projection of f corresponding to the interval I. If f ∈ LlogL(M̃)+ with
τ(χ[0,1]) < ∞, then τ(|f log(f)|) exists (i.e. f log(f) ∈ L1(M̃)).
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Conversely, if τ(|f log(f)|) exists, then f ∈ LlogL(M̃)+ with τ(χI) < ∞
for any open subinterval I of [0, 1].

Before proving this Proposition, we discuss the significance of the con-
dition τ(χ[0,1]) < ∞. For any f ≥ 0, membership of LlogL(M̃) ensures
that f log(f)χ[1,∞) ∈ L1(M̃)). (Here, χ[1,∞) is a spectral projection of f .)
This follows from the fact that the Young’s function generating this space is
t log+(t) < ∞. However to be sure that in fact f log(f) ∈ L1(M̃), we need
some additional criteria with which to control the portion f log(f)χ[0,1]. The
requirement that τ(χ[0,1]) < ∞ is precisely such a criterion. Consequently, if
the “state” is taken from the non-commutative Zygmund space LlogL(M̃) and
τ(χ[0,1]) < ∞, then the entropy function exists!

Proof. Firstly we show: if f ∈ LlogL(M̃)+ with τ(χ[0,1]) < ∞, then
τ(|f log(f)|) exists. To this end note that f ∈ LlogL(M̃)+ guarantees that
0 ≤ τ(fχ[1,∞) log(fχ[1,∞))) < ∞ since log(fχ[1,∞)) = log+(fχ[1,∞)). Now,
notice that 0 ≥ fχ[0,1] log(fχ[0,1]) ≥ − 1

eχ[0,1]. So, τ(|fχ[0,1] log(fχ[0,1])|)
≤ 1

eτ(χ[0,1]) < ∞. Hence, τ(|f log(f)|) < ∞.
Conversely, we show that if τ(|f log(f)|) exists, then f ∈ LlogL(M̃)+

and for any 0 < δ < 1
e < ε < 1 we have that τ(χ[δ,ε](f)) < ∞.

Notice that 0 ≤ τ(|fχ[1,∞) log(fχ[1,∞))|) ≤ τ(|f log(f)|). Furthermore,
one has fχ[1,∞) log(fχ[1,∞)) = f log+(f), which means that the above inequal-
ity ensures that f ∈ LlogL(M̃)+. For the final part of the claim note that
t log(t) is negative valued on [0, 1], decreasing on [0, e−1) and increasing on
(e−1, 1]. These facts ensure that

0 ≥ δ log(δ)χ[δ,1/e] + ε log(ε)χ[1/e,ε]

≥ fχ[δ,1/e] log(fχ[δ,1/e]) + fχ[1/e,ε] log(fχ[1/e,ε])
= fχ[δ,ε] log(fχ[δ,ε]).

So, for 0 < K < {|δ log(δ)|, |ε log(ε)|} we will have

Kτ(χ[δ,ε]) ≤ τ(|fχ[δ,ε] log(|fχ[δ,ε])|) ≤ τ(|f log(f)|) < ∞.

This completes the proof of the proposition. �

Remark 6.10. We briefly consider the significance of the above Proposition for
more general settings.
1. Thus far we have studied the entropy function x 	→ x log x for semifinite

algebras. However it is non-semifinite type III W ∗-algebras that seem to
be the rule for infinite systems. The crossed-product technique provides a
tool for bridging this gap, in that such type III algebras can be represented
as subalgebras of semifinite algebras. Moreover using this technique, the
non-commutative Orlicz spaces corresponding to such type III algebras can
the be constructed using semifinite algebras.

2. We briefly describe how the quantum Orlicz spaces mentioned above may
be constructed for a σ-finite von Neumann algebra M with an fns state φ
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by means of the crossed-product technique. For such algebras one has (cf.
[36])

L1(M) = closure(h
1
2
φ Mh

1
2
φ ) ∼= M∗ (6.3)

where h
1
2
φ is an unbounded operator (equal to the Radon–Nikodym deriv-

ative of the extension φ̃ of φ on the crossed-product A = M �σ IR with
respect to the canonical trace τA on A).

Starting from L1(M), we can now define the required quantum Orlicz
spaces. Let Ψ,Φ be a pair of the complementary Young’s functions. To
define the quantum Orlicz space LΨ(M), we first make use of the norm of
the Köthe dual (namely LΦ(0,∞)) of LΨ(0,∞) to define the function

θΦ(t) = |||χ[0,t]|||Φ t ≥ 0.

(The precise form of the norm on LΦ(0,∞) will depend on the norm we start
with on LΨ(0,∞).) The function θΦ is the so-called fundamental function
of LΦ(0,∞) (cf. [2]). In the case of Lp(0,∞) spaces, the associated funda-
mental function is just θp(t) = t1/p. Using θΦ, we now define the quantum
Orlicz space LΨ(M) to be the space of all (possibly unbounded) operators
f in Ã for which θΦ(h)1/2fθΦ(h)1/2 ∈ L1(M). For such spaces the quan-
tity μ1(f) turns out to be a quasi-norm in terms of which all convergence
properties can be described. If we apply this construction to a semifinite
algebra M equipped with an fns trace τM, we end up with a space which is
an exact copy of the space LΨ(M̃) produced using the techniques described
in Sect. 5. Details of the above construction may be found in [20].

Analogous to the commutative case, we get the following conclusion.

Corollary 6.11. Either of the pairs

〈Lcosh −1, L log(L+ 1)〉
or

〈Lexp, L logL〉
provides an elegant rigorous framework for the description of non-commutative
regular statistical systems, where now the Orlicz (and Zygmund) spaces are
non-commutative.

We wish to close this section with an examination of von Neumann
entropy S(�) = −Tr(� log �), where � is a density matrix (on a Hilbert space
H) and Tr is the canonical trace on B(H) (so the entropy is considered on

B(H)). In this case B̃(H) = B(H), i.e. from non-commutative measure the-
ory the von Neumann algebra B(H) presents an exceptional case (see the last
paragraph of Sect. 5). We already mentioned that from a physical point of
view, type I von Neumann algebras are not well suited for the description of
infinite quantum systems. Nevertheless, the von Neumann quantum entropy
plays so important a role in the description of simple systems (see [23,37]) that
the proposed examination is justified.
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The final paragraphs of Sect. 5 and the proposed approach imply that the
set of regularized states will be given by L log(L+1)(B(H)), with particularly
good behaviour as far as entropy is concerned, exhibited by those states which
also belong to L1(B(H)), where L1(B(H)) stands for the trace-class operators
(we remind that trace class operators form the predual of B(H) and that
L1 ≈ M∗). Let 0 ≤ � ∈ L1 be given. Hence � =

∑
λiPxi

, λi ≥ 0,
∑
λi < ∞,

where Pxi
is an orthogonal projector onto the unit vector xi ∈ H, and where

{xi} forms an orthonormal system in H. We may additionally assume that the
λis are arranged in decreasing order. But then we must have that λi decreases
to 0 (or else

∑
λi < ∞ will fail). Since log is increasing on [1,∞), this in turn

ensures that

0 ≤ λi log(λi + 1) ≤ Kλi for all i (6.4)

where K = log(λ1 + 1). But then
∑

λi log(λi + 1) < ∞,

which by the discussion in Sect. 5 ensures that � ∈ L log(L+ 1). Thus in this
exceptional case one gets that L1 ⊂ L log(L + 1). Since for any α ∈ [0, 1] we
have that α ≤ α1/2, it similarly follows that L1/2 ⊂ L1 in this case.

Repeating the argument given in Sect. 4, one gets: S(�) is bounded from
below on L1, and from above on the subspace L1/2. Thus if on the basis of
Propositions 4.3 and 6.8 one prefers the space L1 ∩L log(L+1) to L log(L+1)
in our approach, then for this very exceptional case it will yield the pair

〈B(H), L1(B(H))〉. (6.5)

Thus, the approach presented in this paper canonically extends the elementary
quantum theory based on the above pair.

To elucidate the peculiarity of the considered case we note:

1. The Banach function space �Φ(N) is defined on infinite, completely atomic
measure space (with all atoms having equal measure). Therefore the inclu-
sions given by (2.10) are valid for B(H).

2. Observe that here

L1 ≈ L1(B(H)) ⊂ L log(L+ 1) ⊂ B(H) ≈ L∞ (6.6)

which is completely opposite to (2.11).
3. The considered quantization of simple models leads to (6.6)
4. The above argument is not valid for large systems described by factors of

type III and II.
5. For a non-atomic measure space, as considered in Sect. 4, inclusions of type

(6.6) are not true.

Finally, we note that the arguments given in Sect. 4 and (6.4) imply that the
functionals Sε(�) = −Tr(� log(�+ε), ε > 0 provide well-defined approximations
of the von Neumann entropy S(�).
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7. Summary and Closing Remarks

We have argued that statistical physics of regular systems, both classical and
quantum, should be based on the pair of Orlicz spaces 〈Lcosh −1, L log(L+ 1)〉
(or pairs equivalent to this one) (see Corollaries 3.4 and 6.11).

We begin with a review of some standard facts in theory of Orlicz
spaces with a specific emphasis on the Orlicz spaces and Young’s functions
relevant to our approach. In particular, a close examination of the pair
〈Lcosh −1, L log(L + 1)〉 was given. Furthermore, a study of the behaviour of
the entropy function with respect to this pair naturally splits into two cases:
the finite and infinite measure case. The finite measure case is easier to deal
with in the proposed scheme, with the entropy function being finite-valued
in this case (see Remark 2.8(2) and Corollary 2.9). The latter case by con-
trast requires greater care and more subtle bounds (see Propositions 4.1 and
4.3). In this case one needs to allow for the possibility of the entropy function
assuming arbitrarily large negative values. In view of the fact that for exam-
ple the classical Shannon entropy may take negative values, it is important
to put in place a theory which is able to deal with such eventualities. The
corresponding results for quantum systems are given in Propositions 6.8 and
6.9.

The quantization of regular statistical models is described in Sect. 6 (see
Definition 6.3 and Theorem 6.7). It reveals the sharp difference between the
quantization of small systems and large systems. For small systems, the set of
observables is typically described by the set of all bounded linear operators on a
Hilbert space. Thus, in that case observables are given by type I factors (totally
atomic von Neumann algebras with trivial centre). On the other hand, for large
systems, observables are described by non-atomic von Neumann algebras. This
is well known, see e.g. Thirring’s statement in [33, Remark 1.4.17(1), pp 40–41],
or Haag’s book [14]. We emphasize that our quantization dovetails perfectly
with the above feature. This feature stems both from different structures of
non-commutative measurable operators for B(H) on the one hand, and non-
atomic von Neumann algebras on the other (see for example the remark at
the end of Sect. 6); a difference which mimics the theory of (classical) Banach
function spaces, where the specific structure of the Banach function space in
view, is often strongly dependent on the nature of the underlying (resonant)
measure space.

Finally, note that although the condition f ∈ L log(L + 1) seems to be
optimal in ensuring that the entropy function is well defined, this does not in
itself exclude other selections of state spaces. This can be easily seen for the
finite measure case (see inclusions given in Theorem 2.6). To see this in the
general case, one can use Theorem 3, p 155 in [26].

Apart from the Orlicz type “regularization” of states, finite moment
conditions can also be imposed (cf. [6,35]). To be more precise, in Boltz-
mann theory, finite moment conditions guarantee the finiteness of (bulk)
velocity and temperature. This is necessary for the correct definition of
Maxwellian velocity densities (cf. [6]). In that case estimates in L log(L + 1)
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combined with the moment estimate ensure an L1 control of the entropic
functional and so provide a rigorous definition of important thermodynamical
quantities.
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