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Statistical methods of SNP data analysis

with applications

A.V.Bulinski1,2, O.A.Butkovsky1, A.P.Shashkin1, P.A.Yaskov1,3

Abstract

Various statistical methods important for genetic analysis are considered and
developed. Namely, we concentrate on the multifactor dimensionality reduction,
logic regression, random forests and stochastic gradient boosting. These methods
and their new modifications, e.g., the MDR method with ”independent rule”, are
used to study the risk of complex diseases such as cardiovascular ones. The roles of
certain combinations of single nucleotide polymorphisms and external risk factors
are examined. To perform the data analysis concerning the ischemic heart disease
and myocardial infarction the supercomputer SKIF ”Chebyshev” of the Lomonosov
Moscow State University was employed.

Keywords and phrases: Genetic data statistical analysis; multifactor dimensiona-
lity reduction; logic regression; random forests; stochastic gradient boosting; in-
dependent rule; single nucleotide polymorphisms; external factors; ischemic heart
disease; myocardial infarction; supercomputer.

AMS 2010 classification: 92B15, 92D10, 65C20.

1 Introduction

The detection of genetic susceptibility to complex diseases (such as cardiovascular, on-
cological ones etc.) has recently drawn much attention in many leading research cen-
ters, see, e.g., [6] and [43]. According to the forecast of the World Health Organization
(www.who.int), in 2030 the deaths related to cardiovascular diseases will exceed 23 mil-
lions (this year about 17 millions), the oncological diseases will take the lives of more than
11 millions of our planet inhabitants and at least 2 millions of people will be the victims
of the diabetes. Thus this research domain is important since one expects to provide for
each person the prophylactic measures and medical treatment taking into account his/her
genetic peculiarities which increase the risk of some diseases and protect from the oth-
ers, see, e.g., [28]. Individual’s DNA variations are typically described in terms of single
nucleotide polymorphisms (SNP), i.e. the fragments of genetic code where a nucleotide
change is possible. For more details see, e.g., [46]. The first examples of genetically based
diseases (e.g., sicklemia) were related with a single mutation. Contrariwise many hard
diseases such as diabetes, Alzheimer’s disease and others have a complex character as they
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can be provoked by mutations in different parts of the DNA code which are responsible
for the formation of certain types of proteins. Quite a number of recent studies (see, e.g.,
[14], [41] and [40]) support the paradigm that the increasing risks of complex diseases
can be explained by combinations of certain SNP whereas separate mutations have no
dangerous effects.

Thereupon it should be mentioned that there existed a longstanding demand for statis-
tical analysis of biological and medical data. However, only in the first part of the 20th cen-
tury, due to the classical contributions by K.Pirson, R.Fisher, H.Cramér, A.Kolmogorov,
N.Smirnov, A.Wald and other prominent statisticians, the essential progress was achieved
both in theory and applications. The methods developed were sufficient, e.g., for inves-
tigation of the efficiency of new medicaments. The situation has changed radically at
the beginning of the 2000’s when the laboratory methods of DNA analysis provided the
data related to the personal human code structure. The achievements in decoding of
the human genome have led to formation of vast data bases in the frameworks of the
International Research projects, see, e.g., GAW16 [17] and HapMap [20]. Note also that
software engineering plays an important role in such studies, see, e.g., [23] and [49]. The
cost of genomic analysis has fallen considerably in the last 10 years, allowing to collect
large volumes of genetic data for genetic mapping of complex diseases. However statistical
problems arising here require new methods of inference rather than classical ones. Indeed,
the modern statistical models involve huge number of variables, parameters, hypotheses
etc., while the sample size is usually moderate (several hundred or sometimes several
thousand of observations, see, e.g., [24]). The sample design is limited both by costs of
analysis which are still high and by difficulties due to the sample selection. In particular,
the ethnic homogeneity should be taken into account, as well as the influence of external
risk factors such as obesity, smoking etc.

To perform reliable statistical inference, it is necessary to apply new powerful tools de-
veloped in high-dimensional statistics, artificial intelligence, information retrieval, econo-
metrics etc. Some of them have been adapted and further generalized in numerous papers
by biostatisticians. Among the most important SNP analysis methods are the multi-
factor dimensionality reduction (MDR), logic regression (LR), random forests (RF) and
stochastic gradient boosting (SGB). All approaches based on these methods do not im-
pose any strong restrictions on the dependence structure of variables under considera-
tion (apart from independence and identical distribution of observations within certain
groups). Thus a broad class of statistical models is defined and the model providing the
best out-of-sample fit is selected.

If one deals with too many parameters, overfitting is likely to happen, i.e. the esti-
mated parameters depend too much on the given sample. As a result the constructed
estimators give poor prediction on new data. On the other hand, application of a very
sophisticated model may not capture the studied dependence structure of various factors
efficiently. However the trade-off between the model’s complexity and its predictive power
allows to perform reliable statistical inference via new model validation techniques (see,
e.g., [2] and [30]). The main tool of model selection is the cross-validation, see, e.g., [48].
Its idea is to estimate parameters by involving only a part of the sample (training sample)
and afterwards use the remaining observations (test sample) to test the predictive power
of the obtained estimates. Then an average over several realizations of randomly chosen

2



training and test samples is taken, see [21].
There are two closely connected research directions in genomic statistics. The first one

is aimed at the disease risk estimation when the genetic portrait of a person is known (in
turn this problem involves estimation of disease probability and classification of genetic
data into high and low risk domains, see, e.g., [30]). The second trend is to identify
relevant combinations of SNPs having the most significant pathogenic (or, in other way,
protective) influence. Both directions are presented in this paper. Moreover, the authors
propose further development of various statistical methods and apply them to study of
the risks of cardiovascular diseases. For this purpose the new software concerning the
employment of the mentioned statistical methods was designed and used.

Due to high-dimensionality of data many numerical procedures based on the above
mentioned statistical methods are very time consuming. The authors are grateful to the
Chancellor of the Lomonosov Moscow State University (MSU) Professor V.A.Sadovnichy
and to the Deputy Director of the MSU Research Computing Center Professor V.V.Voevo-
din for the opportunity to use the supercomputer SKIF MSU “Chebyshev”.

This investigation was started in the framework of the project headed by Professor
V.A.Tkachuk, the Dean of the Faculty of the Fundamental Medicine of the MSU. An
overview of preliminary results of the work was presented at the International conference
“Postgenomic methods of analysis in biology, and laboratory and clinical medicine” in
the talk by Professor A.V.Bulinski (see [9] and [10]).

2 Methods

We start with some definitions. Let N be the the number of patients in the sample and
the vector Xj =

(
Xj

1 , . . . , X
j
n

)
consist of genetic (SNP) and external risk factors of j-th

individual, j = 1, ..., N . Here n is the total number of factors, and Xj
i is the value of i-th

variable (characterizing SNP or external factor) of j-th individual. These variables are
also called explanatory variables or predictors. If Xi stands for an SNP, we set

Xi =





0, no mutation in i-th SNP,

1, heterozygous mutation,

2, homozygous mutation.

(1)

We assume that the external risk factors also take no more than three values, denoted
by 0, 1 and 2. For example, we can specify a presence or an absence of obesity (or
hypercholesterolemia etc.) by values 1 and 0 respectively. If the external factor takes
more values (e.g., blood pressure), we can divide individuals into three groups according
to its values.

Further on Xj
1 , . . . , X

j
m stand for genetic data and Xj

m+1, . . . , X
j
n for external risk

factors. Let a binary variable Y j (response variable) be equal to 1 for a case, i.e. whenever
j-th individual is diseased, and to −1 otherwise (that is for a control). Set

ξ = (ξ1, . . . , ξN) where ξj = (Xj, Y j), j = 1, . . . , N. (2)

Suppose ξ1, . . . , ξN are i.i.d. discrete random vectors having the same law as a vector
(X, Y ) and independent of this vector. Assume that X = (X1, . . . , Xn). All random
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vectors (and random variables) are considered on a probability space (Ω,F ,P), E denotes
the integration w.r.t. P.

The main problem is to find a function in genetic and external risk factors describing
the phenotype (that is the individual healthy or sick) in the best way.

2.1 Prediction algorithms

Let X := {0, 1, 2}n denote the space of all possible values of explanatory variables. Any
function f : X → {−1, 1} will be called a theoretical prediction function. Define the
balanced or normalized prediction error for the theoretical prediction function f as

Err(f) := E|Y − f(X)|ψ(Y )

where the penalty function ψ : {−1, 1} → R+. Obviously,

Err(f) = 2ψ(−1)P(f(X) = 1, Y = −1) + 2ψ(1)P(f(X) = −1, Y = 1). (3)

Clearly Err(f) depends also on the law of (X, Y ). Following [45] and [48] we put

ψ(y) =
1

4P(Y = y)
, y ∈ {−1, 1}, (4)

the trivial cases P(Y = −1) = 0 and P(Y = 1) = 0 are excluded. Then

Err(f) =
1

2
P(f(X) = 1|Y = −1) +

1

2
P(f(X) = −1|Y = 1). (5)

For a balanced sample considered in [36], P(Y = −1) = P(Y = 1) = 1/2 and Err(f) =
E|Y − f(X)|/2 is equal to the classification error P(Y 6= f(X)).

The reason to consider this weighted scheme is that a misclassification in a more rare
class should be taken into account with a greater weight. Otherwise, if the probability
of disease P(Y = 1) is small, then the trivial function f(x) ≡ −1 may have the least
prediction error. The approach to calculation of the prediction error based on penalty
functions is not the only one possible. Nevertheless Velez et al. [45] showed that for
models with high computational costs it outperforms substantially other methods such as
over- and undersampling.

It is easy to prove that the optimal theoretical prediction function minimizing the
balanced prediction error is given by

f ∗(x) =

{
1, p(x) > P(Y = 1),

−1, otherwise.
(6)

where
p(x) = P(Y = 1|X = x), x ∈ X . (7)

Then each multilocus genotype (with added external risk factors) x ∈ X is classified as
high-risk if f ∗(x) = 1 or low-risk if f ∗(x) = −1.

Since p(x) and P(Y = 1) are unknown, the immediate application of (6) is not possible.
Thus we try to find an approximation of unknown function f ∗ using a prediction algorithm
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that is a function fPA = fPA(x, ξ(S)) with values in {−1, 1} (recall that Y ∈ {−1, 1} a.s.)
which depends on x ∈ X and the sample

ξ(S) = {ξj, j ∈ S} where S ⊂ {1, . . . , N}. (8)

The simplest way is to employ formula (6) with p(x) and P(Y = 1) replaced by their
statistical estimates. For example introduce

p̂(x, ξ(S)) =

∑
j∈S I{Y j = 1, Xj = x}∑

j∈S I{Xj = x} , x ∈ X , (9)

and take

P̂S(Y = 1) =
1

♯S

∑

j∈S

I{Y j = 1} (10)

where I{A} stands for the indicator of an event A and ♯D denotes the cardinality of a
finite set D.

Along with (10) we will consider

P̂S(Y = 1|X ∈ C) =

∑
j∈S I{Y j = 1, Xj ∈ C}∑

j∈S I{Xj ∈ C} , C ⊂ X . (11)

Thus (9) is a special case of (11) for C = {x} with x ∈ X . Note that more difficult way
is to search for the estimators of f ∗ using several subsamples of ξ.

Assume that we constructed a prediction algorithm fPA. Then taking in mind (5) set

Err(fPA(·, ξ(S))) =
1

2

∑

y∈{−1,1}

P (fPA(X, ξ(S)) 6= y|Y = y) . (12)

As a law of (X, Y ) is unknown one can only construct an estimate Êrr(fPA(·, ξ(S)))
of Err(fPA(·, ξ(S))). In Section 3 we use the estimated prediction error of a prediction
algorithm fPA which is based on K-fold cross-validation and has the form

ÊrrK(fPA(·, ξ), ξ) =
1

2

∑

y∈{−1,1}

1

K

K∑

k=1

∑
j∈Sk

I
{
fPA(X

j, ξ(Sk)) 6= y, Y j = y
}

∑
j∈Sk

I{Y j = y} (13)

where

Sk =

{
(k − 1)

[
N

K

]
+ 1, . . . , k

[
N

K

]
I{k < K} +NI{k = K}

}
, (14)

Sk = {1, . . . , N} \ Sk and [a] is the integer part of a ∈ R.
A very important problem is to make sure that the prediction algorithm fPA gives

statistically reliable results. The quality of an algorithm is determined by its prediction
error (12) which is unknown and therefore the inference is based on consistent estimates of
this error. Clearly the high quality of an algorithm means that it captures the dependence
between predictors and response variables, so the error is made more rarely than it would
be if these variables were independent. Consider a null hypothesis H0 that X and Y are
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independent. If they are in fact dependent, then for any significant prediction algorithm
fPA an appropriate test procedure involving fPA should reject H0 at the approximate
significance level α, e.g., 5%. Intuitively, this shows that results of the algorithm could
not be obtained by chance. For such a procedure, we take a permutation test (see [18]).
Its idea is as follows.

Permutation test for a given statistic L̂(ξ) (we consider L̂(ξ) = Êrr(fPA(·, ξ)) is done
by the following steps.

1. Generate B independent random vectors (πb
1, . . . , π

b
N), 1 ≤ b ≤ B, with the uniform

distribution over all permutations ΠN of 1, . . . , N .

2. Compute ÊrrK,b = ÊrrK(fPA, ξ̄b), 1 ≤ b ≤ B, with

ξ̄b =
((
X1, Y πb

1

)
, . . . ,

(
XN , Y πb

N

))
.

3. Find the Monte Carlo p-value (see, e.g., [27, p. 63]):

p̂ = F̂
(
ÊrrK(fPA, ξ)

)
(15)

where F̂ = F̂ (z) is the empirical cumulative distribution function (c.d.f.) defined
by the relation

F̂ (z) =
1

B

B∑

b=1

I
{
ÊrrK,b ≤ z

}
, z ∈ R.

4. If p̂ < α, reject H0, otherwise not.

According to [18], one ideally has to use all permutations belonging to ΠN but this
is impractical in view of computational costs. Thus the Monte Carlo approximations for
the true p-value p = F

(
ÊrrK(fPA, ξ)

)
are employed, here F is the c.d.f. of ÊrrK,b. The

upper bound for |p− p̂| is 1/2
√
B (see [18]). This could be used to determine the number

B of simulations for a desired accuracy.
Note also that if the estimate of the error function for the algorithm fPA(·, ξ) is asymp-

totically optimal, i.e. converges in probability to the error of the optimal prediction func-
tion f ∗ as N → ∞ (ξ depends on N), then the rule of thumb is to suspect overfitting if

ÊrrK(fPA, ξ) is close to 1/2, which is a probability limit of this error under H0 as N → ∞.
We use complementary approaches to analyze dataset related to complex diseases.

Each approach (MDR, LR and machine learning) is characterized by its own way of con-
structing prediction algorithms. For each method one or several prediction algorithms
admitting the least estimated prediction error are found (a typical situation is that there
are several ones with almost the same estimated prediction error). These prediction al-
gorithms provide a way to determine the domains where the disease risk is high or low
(depending on the value of the corresponding prediction function). It is also possible to se-
lect combinations of SNPs and external risk factors whose presence influences the liability
to disease to a great extent. Some methods allow to present such combinations immedi-
ately. Others, which employ more complicated forms of dependence between explanatory
and response variables, need further analysis based on modifications of permutation tests.

Now we pass to the description of various statistical methods and their applications
to the cardiovascular risk detection.
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2.2 Multifactor dimensionality reduction

Ritchie et al. [36] introduced multifactor dimensionality reduction (MDR) as a new
method of analyzing gene-gene and gene-environment interactions. Rather soon the
method became very popular. Since the first publication more than 200 papers applying
MDR in genetic studies were written (see, e.g., references in [45]).

MDR is a flexible non-parametric method not depending on a particular inheritance
model. We give a rigorous description of the method following ideas of [36] and [45]. As
mentioned earlier, the probability p(x) introduced in (7) is unknown. To find its estimate
one can apply maximum likelihood approach assuming that the random variable I{Y = 1}
conditionally on X = x has a Bernoulli distribution with unknown parameter p(x). Then
we come to (9).

A direct calculation of estimate in (9) with exhaustive search over all possible values
of x is highly inefficient, since the number of different values of x grows exponentially with
number of risk factors. Moreover, such a search leads to overfitting. Instead, it is usually
supposed that p(x) non-trivially depends not on all, but certain variables xi. That is,
there exist l ∈ N, l < n, and (k∗1, . . . , k

∗
l ), where 1 ≤ k∗1 < . . . < k∗l ≤ n, such that for

each x = (x1, . . . , xn) ∈ X , the following relation holds:

p(x) = P(Y = 1|Xk∗
1
= xk∗

1
, ..., Xk∗

l
= xk∗

l
). (16)

In other words only few factors influence the disease and the others can be neglected. A
minimal combination of factors (Xk∗

1
, . . . , Xk∗

l
) in formula (16) is called the most signifi-

cant. Clearly it is the most significant combination which has the least prediction error.
Indeed, if we consider any other combination of pairwise different indices k1, . . . , kr and
set

fk1,...,kr(x) =

{
1, P(Y = 1|Xk1 = xk1 , ..., Xkr = xkr) > P(Y = 1),

−1, otherwise,

then we obviously have
Err

(
fk∗

1
,...,k∗

l

)
≤ Err(fk1,...,kr) (17)

where Err(f) is calculated according to (5).
To choose the most significant combination, exhaustive search over all possible combi-

nations of factors is applied. For each {k1, . . . , kr} ⊂ {1, . . . , n} and any x ∈ X consider

Ck1,...,kr(x) = {u = (u1, . . . , un) ∈ X : uki = xki , i = 1, . . . , r}

and for S appearing in (8) define a prediction algorithm (cf. (6)) by

f̂k1,...,kr(x, ξ(S)) :=

{
1, P̂S(Y = 1|X ∈ Ck1,...,kr(x)) > P̂S(Y = 1),

−1, otherwise,
(18)

here we use formulas (10) and (11). It is easy to show that ÊrrK(f̂k1,...,kr , ξ) → Err(fk1,...,kr)
in probability as N → ∞ (ξ depends on N). Consequently, (17) implies that, for any
ε > 0 and all N large enough, with probability close to 1 one has

ÊrrK(f̂k∗
1
,...,k∗

l
, ξ) < ÊrrK(f̂k1,...,kr , ξ) + ε.
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Hence, it is natural to pick one or a few combinations of factors with the smallest empirical
prediction errors as an approximation for the most significant combination.

The last step in MDR is to determine statistical significance of the results. Here we
test a null hypothesis of independence between X and Y i.e. between risk factors X and
a disease Y . This can be done via the permutation test described in Section 2.1.

MDR method with “independent rule”. We propose multifactor dimensionality

reduction with “independent rule” (MDRIR) method to improve the estimate of probabil-
ity p(x). This approach is motivated by Park [35], who deals with classification of large
array of binary data. The principal difficulty with employment of formula (9) is that the
number of observations in numerator and denominator of the formula might be small even
for large N (see, e.g., [26]). This can lead to inaccurate estimates and finally to a wrong
prediction algorithm. Moreover, for some samples the denominator of (9) can equal zero.

The Bayes formula implies that

p(x) =
P(X = x|Y = 1)P(Y = 1)

P(X = x|Y = 1)P(Y = 1) + P(X = x|Y = −1)P(Y = −1)
, (19)

where the trivial cases P(Y = −1) = 0 and P(Y = 1) = 0 are excluded. Substituting (19)
into (6) we obtain the following expression for prediction function:

f ∗(x) =

{
1, P(X = x|Y = 1) > P(X = x|Y = −1),

−1, otherwise.
(20)

As in standard MDR method described above, we will assume that formula (16) holds.
It was proved in [35] that for a broad class of models (e.g., Bahadur model [3], logit model

[13]) the conditional probability P (Xk1 = x1, . . . , Xkr = xr |Y = y ), where y = ±1, can
be estimated in the following way:

P̂S (Xk1 = x1, . . . , Xkr = xr |Y = y ) =

r∏

i=1

P̂S (Xki = xi |Y = y ) , (21)

here (cf. (11))

P̂S (Xki = x |Y = y ) =

∑
j∈S

I{Xj
ki
= x, Y j = y}

∑
j∈S

I{Y j = y} . (22)

Combining (16), (20), (21) and (22) we find the desired estimate of f ∗(x).
A number of observations in numerator and denominator of (22) increases considerably

comparing with (18). It allows to estimate the conditional probability more precisely
whenever the estimate introduced in (21) is reasonable.

Thus, as opposed to standard MDR method, MDRIR uses alternative estimates of
conditional probabilities. All other steps (prediction algorithm construction, prediction
error calculation) remain the same. Let us mention that as far as we know this modifi-
cation of MDR has not been applied before. It is based on a combination of the original
MDR method [36] and the ideas of [35].
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2.3 Logic regression

The logic regression (LR) was proposed in [38]. Further generalizations are given in [16],
[25], [40], [39] and other works. LR is based on the classical binary logistic regression
[22] and exhaustive search for relevant predictor combinations. The main difficulty is
to organize the search efficiently. The LR method was applied to identification of the
most significant SNP combinations in [1], [33] and [40]. Note that for genetic analysis
it is convenient to use explanatory variables taking 3 values. Thus we employ ternary

variables, whereas the authors of the above-mentioned papers employ binary ones.
Let p(x) be the conditional probability of a disease defined in (7). We suppose that

trivial situations when p(x) ∈ {0, 1} do not occur and omit them from the consideration.
To estimate p(x) we pass now to the logistic transform

q(x) = λ (p(x)) (23)

where λ(z) = ln(z/(1 − z)), z ∈ (0, 1), is the inverse logistic function. The logistic

function itself equals to Λ(t) = (1+ e−t)−1, t ∈ R. Note that we are going to estimate the
unknown disease probability with the help on linear statistics with appropriately selected
coefficients. Therefore it is natural to avoid restrictions on possible values of the function
estimated. Thus the logistic transform is convenient, because p(x) ∈ (0, 1) for x ∈ X
while q(x) can take all real values.

Consider a class G of all real-valued functions in ternary variables x1, . . . , xn. We call
a model of the dependence between the disease and explanatory variables any subclass
M ⊂ G. Set

ψ̂(y, ξ(S)) =
1

4P̂S(Y = y)
, y ∈ {−1, 1},

here P̂S(Y = y) was introduced in (10). Define the normalized smoothed score function

L(h, ξ(S)) =
1

♯S

∑

j∈S

φ(−Y jh(Xj))ψ̂(Y j, ξ(S)) (24)

where S is introduced in (8), φ(t) = log2(1 + et) for t ∈ R, and h ∈ M. In contrast to
previous works our version of LR scheme involves normalization (cf. (3)), i.e. taking the
observations with weights dependent on the proportion of cases and controls in subsample
ξ(S).

An easy computation yields that argminh∈M L(h, ξ(S)) equals to

argmax
h∈M

1

♯S

∑

j∈S

(
ln Λ(h(Xj))

I{Y j = 1}
2P̂S(Y = 1)

+ ln(1− Λ(h(Xj)))
I{Y j = −1}
2P̂S(Y = −1)

)
.

That is, minimizing the score function is equivalent to the search of normalized maximal
likelihood estimate of q. Note that estimating the disease probability in this setup is
closely connected with the problem of data classification, i.e. predicting the disease by
the value of x ∈ X . Recall that in standard classification problem instead of the score
function (24) one uses the following normalized estimate of the error probability

L̃(h, ξ(S)) =
1

♯S

∑

j∈S

I{Y jh(Xj) < 0}ψ̂(Y j , ξ(S)).
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Figure 1: A tree T representing a function T (x) = (x1 × x2)× (x3 + x4).

In fact the optimal choice of h for these problems coincide if the underlying model M
is correctly specified (i.e. q ∈ M), see [5]. However the usage of score function L has

an important advantage over L̃ because one has to evaluate the minimum of a smooth
function.

A wide and easy to handle class of models is obtained by taking functions linear in
variables x1, . . . , xn or in their products. In turn these functions admit a convenient rep-
resentation by elementary polynomials. Recall that an elementary polynomial (EP) is a
function T in ternary variables x1, . . . , xn belonging to {0, 1, 2} which can be represented
as a finite sum of products xu1

1 . . . xun
n where u1, . . . , un ∈ Z+. The addition and multi-

plication of ternary variables is considered by modulo 3. Any EP can be represented as
a binary tree4 in which knots (vertices which are not leaves) contain either addition or
multiplication sign, and each leaf corresponds to a variable. Figure 1 provides an example
of a binary tree. Different trees may correspond to the same EP, thus this relation is not
one-to-one. However, it does not influence our problem, so we regain the notation T for
a tree. A finite set of trees F = (T1, . . . , Ts) is called a forest. For a tree T, its complex-

ity C(T ) is the number of leaves. The complexity C(F ) of a forest F is the maximal
complexity of trees constituting F.

It is clear that if g ∈ G then there exists s ≥ 1 such that g has the following form:

g(x1, . . . , xn) = β0 +

s∑

i=1

βiTi(x1, . . . , xn), (25)

here β0, β1, . . . , βs ∈ R and T1, . . . , Ts are EP.
Let us say that function g belongs to a class Gr(s), where s, r ∈ N, if there exist a

decomposition (25) of g such that all trees Ti (i = 1, . . . , s) have complexity less or equal
r. We identify a function g ∈ Gr(s) with pair (F, β) where F is the corresponding forest
and β = (β0, . . . , βs) is the vector of coefficients in (25).

Minimization of L(h, ξ(S)) defined by (24) over all functions h ∈ M ⊂ Gr(s) is done
in two alternating steps. First we find the optimal value of β while F is fixed (which is the
minimization of a smooth function in several variables) and then we search for the best
F . Here one uses stochastic algorithms, since the number of such forests increase rapidly

4For the basic concepts of the graph theory see, e.g., [7].
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when the complexity r grows. For s ∈ N, a forest F = (T1, . . . , Ts) and a subsample ξ(S)
(see (8)) consider a prediction algorithm fF

LR setting

fF
LR(x, ξ(S)) =

{
1, ĥ(x) > 0,

−1, otherwise,

where ĥ = (F, β̂) and

β̂ = argmin
β
L

(
β0 +

s∑

j=1

βjTj(·), ξ(S)
)
. (26)

Define also the normalized prediction error of a forest F = (T1, . . . , Ts) as

ϕ̃(F ) = ÊrrK(f
F
LR(·, ξ), ξ).

A subgraph B of a tree T is called a branch if it is itself a binary tree (i.e. it can
be obtained by selecting one vertex of T together with its offspring). Sum and product
signs standing in a knot of a tree are called operations, thus ∗ stands for sum or product.
Following [38], call the tree T̃ a neighbor of T if it is obtained from T via one and only
one of the following transformations.

1. Changing one variable to another in a leaf of the tree T (variable change).

2. Replacing an operation in a knot of a tree T with another one, i.e. sum to product
or vice versa (operator change).

3. Changing a branch of two leaves to one of these leaves (deleting a leaf).

4. Changing a leaf to a branch of two leaves, one of which contains the same variable
as in initial leaf (splitting a leaf).

5. Replacing a branch B1 ∗B2 with the branch B1 (branch pruning).

6. Changing a branch B to a branch xj ∗B (branch growing), here xj is a variable.

Figure 2 depicts results of these operations applied to the tree T of Figure 1. We say
that forests F and F̃ are neighbors if they can be written as F = {T1, T2, . . . , Ts} and

F̃ = {T̃1, T2, . . . , Ts} where T1 and T̃1 are neighbors. The neighborhood relation defines a
finite connected graph on all forests of equal size s with complexity not exceeding r. To
each vertex F of this graph we assign a number ϕ̃(F ). To find the global minimum of a
function defined on a finite graph we employ the simulated annealing method (see, e.g.,
[19], [32] and [37]). This method constructs some specified Markov process which takes
values in the graph vertices and converges with high probability to the global minimum of
the function. To avoid stalling at a local minimal point the process is allowed to pass with
some small probability to a point F having greater value of ϕ̃(F ) than current one. We
propose a new modification of this method in which the output is the forest corresponding
to the minimal value of a function ϕ̃(F ) over all (randomly) visited points.

11



+

× +

µ´
¶³

µ´
¶³

µ´
¶³

µ´
¶³

x1 x5 x3 x4

.

................
...............
................
................
...............
................
................
...............
................
............

................
................

................
................

................
................

................
................

................
.........

.

..............
..............
..............
..............
..............
..............
..............
..............
..............
..............

..............
..............
..............
..............
..............
..............
..............
..............
..............
......... .

..............
..............
..............
..............
..............
..............
..............
..............
..............
............

..............
..............
..............
..............
..............
..............
..............
..............
..............
...........

Variable change

+

× ×

µ´
¶³

µ´
¶³

µ´
¶³

µ´
¶³

x1 x2 x3 x4

.

................
...............
................
................
...............
................
................
...............
................
............

................
................

................
................

................
................

................
................

................
.........

.

..............
..............
..............
..............
..............
..............
..............
..............
..............
..............

..............
..............
..............
..............
..............
..............
..............
..............
..............
......... .

..............
..............
..............
..............
..............
..............
..............
..............
..............
............

..............
..............
..............
..............
..............
..............
..............
..............
..............
...........

Operator change

+

× x3

µ´
¶³

µ´
¶³

µ´
¶³

x1 x2

.

...............
...............
................
...............
................
................
...............
................
................
.............

................
................

................
................

................
................

................
................

................
.........

.

..............
..............
..............
..............
..............
..............
..............
..............
..............
..............

..............
..............
..............
..............
..............
..............
..............
..............
..............
.........

Deleting a leaf

+

× +

µ´
¶³

µ´
¶³

µ´
¶³

x1 x2 x3 ×

.

................
................
................
................
................
................
................
................
................
.......

...............
...............

...............
...............

...............
...............

...............
...............

...............
............

.

..............
..............
..............
..............
..............
..............
..............
..............
..............
..............

..............
..............
..............
..............
..............
..............
..............
..............
..............
......... .

..............
..............
..............
..............
..............
..............
..............
..............
..............
............

..............
..............
..............
..............
..............
..............
..............
..............
..............
...........

.

..............
..............
..............
..............
..............
..............
..............
..............
..............
..............
..............
..............
.

..............
..............
..............
..............
..............
..............
..............
..............
..............
..............
..............
..............

x6 x7µ´
¶³

µ´
¶³

Splitting a leaf

×

µ´
¶³

µ´
¶³

x1 x2

.

...............
...............
...............
...............
...............
...............
...............
...............
...............
...............
...

...............
...............

...............
...............

...............
...............

...............
...............

...............
...............

...

Branch pruning

+

× ×

µ´
¶³

µ´
¶³

µ´
¶³

x1 x2 x6 +

.

...............
...............
...............
...............
...............
...............
...............
...............
...............
...............
.

...............
...............

...............
...............

...............
...............

...............
...............

...............
.............

.

..............
..............
..............
..............
..............
..............
..............
..............
..............
..............

..............
..............
..............
..............
..............
..............
..............
..............
..............
......... .

..............
..............
..............
..............
..............
..............
..............
..............
..............
............

..............
..............
..............
..............
..............
..............
..............
..............
..............
...........

.

..............
..............
..............
..............
..............
..............
..............
..............
..............
..............
..............
....

..............
..............
..............
..............
..............
..............
..............
..............
..............
..............
..............
...

x3 x4µ´
¶³

µ´
¶³

Branch growing

Figure 2: Neighbors of the tree T.
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Figure 3: CART representing the prediction ((x1 = 2) and (x3 = 2)) or (x4 > 0).

2.4 Machine learning methods

Let us describe (see, e.g., [43]) two among the most popular machine learning methods
– random forests (RF) and stochastic gradient boosting (SGB). They belong to ensemble

methods which combine multiple predictions from a certain base algorithm to obtain
better predictive power (i.e. less estimated prediction error). We use classification and

regression trees (CART) for a base learning algorithm because it showed good performance
in a number of studies (see [21]).

Classification tree T is a binary tree having the following structure. Any leaf of T
contains either 1 or −1 and for any vertex P in T (including leaves) there exists a subset
AP of the explanatory variable space X such that the following properties hold:

1. AP = X if P is the root of T ;

2. if vertices P ′ and P ′′ are children for P , then AP ′ ∪AP ′′ = AP and AP ′ ∩AP ′′ = ∅.

In particular, subsets corresponding to the leaves form the partition of X . To obtain a
prediction of Y given a certain value x ∈ X of the random vector X , one should go along
the path which starts from the root and ends in some leaf turning at each parent vertex P
to that child P ′ for which AP ′ contains x. At the end of the x-specific path, one gets either
1 or −1 which serves as a prediction of Y . Figure 3 provides an example of a classification
tree. Namely, the partition of X is formed by values of boolean functions standing in
parent vertices. For each x starting from the root of the tree we calculate the value of a
boolean function and move along the edge marked with the value obtained (1 or 0). The
left child of the root corresponds to the subset {x ∈ X : x1 = 2}, while the right one to
its complement in X . Next, the leftmost leaf stands for a subset {x ∈ X : x1 = 2, x3 = 2},
and if X falls in this subset, we predict that Y = 1; the rightmost leaf stands for a subset
{x ∈ X : x1 < 2, x4 = 0}, and if X takes values in this subset, we predict Y = −1.

Classification tree could be constructed via CART algorithm (if it is the case, we
will call it CART). The algorithm proceeds iteratively. That is, on the l-th step of the
algorithm (l = 1, 2, . . .), each element A of the current partition Al (A1 = X ) of the set
X is divided into two disjoint parts

A+(i, t) = {(x1, . . . , xn) ∈ A : xi ≤ t} and A−(i, t) = {(x1, . . . , xn) ∈ A : xi > t}

13



minimizing the sum Ĝ(A+(i, t)) + Ĝ(A−(i, t)) over i = 1, . . . , n and t ∈ {0, 1}. Here the
empirical Gini index

Ĝ(C) = 2P̂S(Y = 1|X ∈ C)
(
1− P̂S(Y = 1|X ∈ C)

)

with C ⊂ X and P̂S(Y = 1|X ∈ C) (see (11)) measures the heterogeneity of the subsample
{j ∈ S : Xj ∈ C} w.r.t. response variable Y . Any uninformative partition with

min
(i,t)

(
Ĝ(A+(i, t)) + Ĝ(A−(i, t))

)
> Ĝ(A),

is not made.
The algorithm stops whenever a number of leaves D reaches some critical level which

is chosen via some data-dependent criteria (see [21], page 308). For a subsample ξ(S) of
ξ, each CART defines a prediction algorithm

f(x, ξ(S)) =

D∑

d=1

ad(ξ(S))I{x ∈ Ad(ξ(S))} (27)

where {A1(ξ(S)), . . . , AD(ξ(S))} is the partition of X corresponding to the leaves,

ad(ξ(S)) =

{
1, ♯{j∈S : Y j = 1, Xj∈Ad(ξ(S))} > ♯{j∈S : Y j = −1, Xj∈Ad(ξ(S))};

−1, otherwise.

RF is a non-parametric method of estimating conditional probability p(x). It was
successfully applied to genetics data in a number of papers (see references in [43]). It
could be briefly described as follows (see chapter 15 in [21] for details). Generate B boot-
strap samples from the initial sample where one could choose B = max{[N logN ], 1000}
according to [34]. For b-th bootstrap sample (1 ≤ b ≤ B) construct a CART prediction
algorithm fb : X × (X × {−1, 1})N → {−1, 1} defined according to (27) and take

p̂RF(x, ξ(S)) =
(
B−1

B∑

b=1

fb(x, ξ(S)) + 1
)
/2

as an estimate of p(x).
It is shown in [5] that generally RF method gives consistent estimates of p(x) only

if the number of partitions used in CART grows slower than the sample size. A final
prediction algorithm fRF(x, ξ(S)) is constructed from the estimate p̂RF(x, ξ(S)) similarly
to (6), i.e.

fRF(x, ξ(S)) =

{
1, p̂RF(x, ξ(S)) > P̂S(Y = 1),

−1, otherwise.

The distinctive features of this method are low computational costs and the ability to
extract relevant predictors when the number of irrelevant ones is large (see [4]).

SGB is another non-parametric method of estimating conditional probability p(x).
This method is used in a number of procedures for studying genetics data (see, e.g., [47]).
SGB method can be described as follows ([15]).
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1. Pass on the input of the algorithm5 initial parameters D,M ∈ N and ρ, η ∈ (0, 1).

2. Put m = 0, ξ0(S) = ξ(S) and

f0(x, ξ0(S)) ≡
1

2
ln

P̂S(Y = 1)

P̂S(Y = −1)
.

3. Increase m by 1 and define

Ȳ j
m :=

2Y j

1 + exp{2Y jfm−1(Xj , {ξl(S)}m−1
l=0 )} .

Choose a random subset in ξm(S) = {(Xj, Ȳ j
m)}j∈S with [η♯S] elements. Construct

CART prediction algorithm (with D leaves)
∑D

d=1 a
m
d (ξm(S))I{x ∈ Am

d (ξm(S))} on
the chosen subset. Compute weight coefficients

wm
d (ξm(S)) =

∑
j∈J Ȳ

j
m∑

j∈J |Ȳ
j
m|(2− |Ȳ j

m|)
, d = 1, . . . , D,

where the random set J = {j : Xj ∈ Am
d (ξm(S))}, and put

fm = fm−1 + ρ

D∑

d=1

wm
d (ξm(S))IAm

d
(ξm(S)),

here ρ is the memory relaxation parameter.

4. If m < M , go to Step 3, otherwise determine a final estimate

p̂SGB(x, ξ(S)) =
1

1 + exp{−2fM(x, ξ(S), {ξm(S)}Mm=1)}
.

This algorithm is to be run for several times with different parameters D, M , ρ and η.
Then their optimal values could be chosen via cross-validation (see section 16.3.1 in [21]).
Small values of η (= 0.1, 0.05, 0.0225 etc.) help to get accurate estimates for relatively
noisy data.

Standard RF and SGB work poorly for unbalanced samples. One needs either to
balance given datasets (as in [11]) before these methods are applied or use special mod-
ifications of RF ([8]) and SGB ([29]). To avoid overfitting, permutation test needs to be
done.

A common problem of all machine learning methods is a complicated functional form
of the final probability estimate p̂(x, ξ) (w.r.t. x). In genetic studies, one wants to pick up
all relevant combinations of SNP and risk factors, based on a biological pathway causing
the disease. Therefore, the final estimate p̂(x, ξ) is to be analyzed.

5This algorithm is not to be confused with prediction algorithms.
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We describe one of the possible methods of such analysis within RF framework and
called conditional variable importance measure (CVIM). One could determine CVIM for
each predictor Xi in X and range all Xi in terms of this measure. Following [42], CVIM of
predictor Xi given certain subvector Zi of X is calculated as follows (supposing Zi takes
values zi1, . . . , zim(i)).

1. Construct a vector (l1, . . . , lN), randomly permuting 1, . . . , N in each subset

Aik = {j : Zj
i = zik}, k = 1, . . . , m(i).

2. Generate B bootstrap samples ξb =
(
(Xjb, Y jb), j = 1, . . . , N

)
, b = 1, . . . , B. For

each of these samples, construct a classifier fb(x, ξb) and calculate

CVIMb =
1

|Cb|
∑

j∈Cb

I{Y j = fb(X
j , ξb)} −

1

|Cb|
∑

j∈Cb

I{Y j = fb(X
lj , ξb)}

where Cb = {j ∈ {1, . . . , N} : (Xj , Y j) /∈ ξb}.

3. Compute the final CVIM using the formula

CV IM = B−1

B∑

b=1

CVIMb. (28)

Any permutation (l1, . . . , lN) in the CVIM algorithm destroys dependence between Xi and
(Y, Z−i) where Z−i consists of all components of X which are not in Zi. At the same time
it preserves initial empirical distribution of (Xi, Zi) calculated for the sample ξ. After
that the average loss of correctly classified Y is calculated. If it is relatively large w.r.t.
CVIM of other predictors, then Xi plays important role in classification and vice versa.

For Zi, one could take all components Xk (k 6= i) such that the hypothesis of the
independence between Xk and Xi is not rejected at some significance level (e.g., 5%).
Note also that CVIM-like algorithm could be used to range pairs of SNP and risk factors
w.r.t. the level of association to the disease. This will be done elsewhere.

3 Applications: risks of IHD and MI

We employ here the various statistical methods described above to analyze the influence of
genetic and external factors on risks of ischemic heart disease (IHD) and myocardial infarc-
tion (MI) using the data for 454 individuals (333 cases, 121 controls) and 333 individuals
(165 cases, 168 controls) respectively. These data contain values of seven SNPs (PAI-1,
GpIa, GpIIIa, FXIII, FVII, IL-6, Cx37), as well as four external risk factors, namely,
obesity (Ob), arterial hypertension (AH), smoking (Sm) and hypercholesterolemia (HC).
The age of all individuals in case and control groups ranges from 35 to 55 years, which
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reduces its influence on the risk analysis. For each of considered methods, K-fold cross-
validation is used with K = 6. As shown in [31] and [48], the standard choice of partition
number of cross-validation from 6 to 10 does not change the prediction error significantly.
We take K = 6 as the sample sizes do not exceed 500. The supercomputer SKIF MSU
“Chebyshev” was involved to perform computations. All applied methods have prediction
error less than 0.25, so predictions constructed have significant predictive power. Indeed,
in [12] and [44] the interplay between genotype characteristics and MI development was
also studied, with estimated prediction errors 0.30–0.40. Further on we write prediction
error instead of estimated prediction error.

3.1 MDR and MDRIR methods

Ischemic heart disease

Table 1 contains (estimated) prediction errors of the most significant combinations
obtained by MDR analysis of ischemic heart disease data. At Figure 4 a plot of empirical
distribution function of prediction error is given when the disease is not linked with
explanatory variables. We use here the simulated samples ξb introduced in Section 2.1,
with b = 1, . . . , B where B = 100. One can see that out of these 100 simulations, the
corresponding prediction error was not less than 0.42. Note that Monte Carlo p-value
(15) of all three combinations is less than 0.01 (since their prediction errors are much less
than 0.42), which is usually considered as a good performance.

Factors Prediction error
GpIa, FXIII, AH, HC 0.231
Cx37, AH, HC 0.238
GpIa,Cx37, AH, HC 0.241

Table 1: The most significant combinations obtained by MDR analysis for IHD data.

Table 2 contains the results of MDRIR method, which are similar to results of MDR
method. However, it is worth mentioning that MDRIR method allows to identify addi-
tional combinations with prediction error around 0.24.

Factors Prediction error
FXIII, FVII, AH, HC 0.240
FXIII, AH, HC 0.242
GpIa, Cx37, AH, HC 0.247

Table 2: The most significant combinations obtained by MDRIR analysis of IHD data.

It follows from Tables 1 and 2 that hypertension and hypercholesterolemia are the
most important external risk factors. Indeed, these two factors appear in every of 6
combinations.
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Figure 4: The empirical distribution function of the estimated error for the case when
disease risk and predictors are independent (permutation test), IHD dataset.

To perform a more precise analysis of influence of SNPs on IHD provoking we ana-
lyze gene-gene interactions. We used two different strategies. Namely, we applied MDR
method to a subgroup of individuals who are not subject to any of the external risk fac-
tors (i.e. to non-smokers without obesity and without hypercholesterolemia, 51 cases and
97 controls). Another strategy is to apply MDR method to the whole sample, but to
take into account only genetic factors rather than all factors. Table 3 contains the most
significant combinations of SNPs and their prediction errors.

Method Genetic factors Prediction
Error

MDR on a subgroup of individuals
who do not have any risk factors GpIa, Cx37 0.281
MDR method on the whole group
taking into account only genetic factors GpIa, Cx37 0.343

Table 3: Comparison of the most significant SNP combinations obtained by two different
ways of MDR analysis of IHD data.

It turned out that both methods yield similar results. Combination of SNPs GpIa and
Cx37 has the biggest influence on IHD. Prediction error is about 0.28-0.34, and smaller
error corresponds to a risk-free sample. Moreover it follows from Tables 2 and 3 that
prediction error significantly dropped after additional exogenous factors were taken into
account (the error is 0.247 if additional external factors are taken into account and 0.343
if not).

Thus based on ischemic heart disease data with the help of Tables 1–3 we can make
the following conclusions. Combination of two SNPs (GpIa and Cx37) and two external
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factors (hypertension and hypercholesterolemia) has the biggest influence on IHD. Also
FXIII gives additional predictive power if AH and HC are taken into account.

Myocardial infarction

Prediction errors of the most significant combinations obtained by MDR analysis of MI
data are presented in Table 4. Figure 5 contains the plot of empirical c.d.f. of prediction
error if disease is not linked with risk factors. This curve shows that for all 100 simulations
of ξb the estimated prediction error was not less that 0.38. Note that Monte Carlo p-value
of all combinations is less than 0.01.

Factors Prediction error
GpIIIa, FXIII, Cx37, AH 0.343
GpIIIa, FXIII, FVII, Cx37 0.347
Cx37, Sm 0.356

Table 4: The most significant combinations obtained by MDR analysis of MI dataset.

Figure 5: The empirical c.d.f. of the estimated error for the case when disease risk and
predictors are independent (permutation test), MI dataset.

MDRIR analysis of the same dataset gives a clearer picture (see Table 5).
Apparently, combination of smoking and SNP Cx37 is the most significant. These

two factors appear in all combinations in Table 5. Involving any additional factors only
increases prediction error.

The explicit form of the prediction algorithm based on Cx37 and Sm shows that these
factors interact nonlinearly. Smoking as well as Cx37 homozygote leads to the disease.
However wild-type allele can protect from consequences of smoking, because combination
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Factors Prediction error
Cx37, Sm 0.351
GpIIIa, Cx37, Sm 0.353
GpIIIa, Cx37, Sm, HC 0.355

Table 5: The most significant combinations obtained by MDRIR analysis of MI dataset.

of smoking and Cx37 wild-type is a protective one (i.e. value of prediction algorithm of
this combination is -1).

3.2 Logic regression

We performed several research procedures both for IHD and MI data, with different
restrictions imposed on the statistical model. To describe these models set

(X1, . . . , Xn) = (Z1, . . . , Zm, R1, . . . , Rk)

where variables Z = (Z1, . . . , Zm) stand for SNP values (PAI-1, GpIa, GpIIIa, FXIII,
FVII, IL-6, Cx37 respectively) and R = (R1, . . . , Rk) denote external risk factors (Ob,
AH, Sm, HC), m = 7, k = 4. We consider four different models in order to analyze both
total influence of genetic and external factors and losses in predictive force appearing when
some factors are excluded. In our applications we will take s = 3, as search over larger
forests for samples with modest sizes can give very complicated and unreliable results.

Model 1. We consider the class M (see Section 2.3) consisting of the functions h
having a form

h(Z,R) = β0 +

s∑

v=1

βvTv(Z1, . . . , Zm) +

k∑

v=1

βs+vRv

where the coefficients βi ∈ R and Ti are polynomials identified with trees. In other words
we require that external factors are present only in trees consisting of one variable.

Model 2. Now we assume that any function h ∈ M has the representation

h(Z,R) = β0 +

s∑

v=1

βvTv(Z1, . . . , Zm, R1, . . . , Rk) (29)

where βi ∈ R and Ti are polynomials identified with trees. Thus we allow the interaction
of genes and external factors in order to find significant gene-environment interactions.
However we impose additional restrictions to avoid too complex combinations of external
risk factors. We do not tackle here effects of interactions where several external factors
are involved. Namely, we consider only the trees satisfying the following two conditions.

1. If there is a leaf containing external factor variable then the root of that leaf contains
product operator.

2. Moreover, another branch growing from the same root is also a leaf and contains a
genetic (SNP) variable.
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Models 3 and 4 have additional restrictions that polynomials Tv (v = 1, . . . , s) in
(29) depend only on external factors and only on SNPs respectively. These models are
considered to compare their results with ones obtained with all information taken into
account, in order to demonstrate the importance of genetic (resp. external) data for risk
analysis.

Ischemic heart disease

We have the following results.

Model 1 2 3 4
Prediction error 0.19040 0.20364 0.22812 0.33990

Table 6: Results of LR for IHD dataset.

Note that prediction error in Model 1 is only about 0.19. For the same model we
performed also fast simulated annealing search of the optimal forest which is much more
time-efficient, and a reasonable error of 0.23 was obtained. Model 3 application shows
that external factors play an important role in IHD genesis, as classification based on
external factors only gives the error less than 0.23, while usage of SNPs only (Model 4)
lets the error grow to 0.34.

Model 1 gave the minimal prediction error. For the optimal forest (T1, . . . , R4) the

function ĥ(Z,R) given before formula (26) with S = {1, . . . , N} is provided by the ex-
pression

−0.597T1 − 0.354T2 + 0.521T3 − 0.444R1 + 1.311R2 − 0.146R3 + 2.331R4 − 0.226 (30)

where6

T1 = (Z4Z3 + Z6Z7 + Z2Z2 + Z3Z7)(Z1)
2Z3Z7,

T2 = Z1(Z3)
2(Z6Z7 + Z7(Z4)

2Z2), T3 = Z2 + 2Z2(Z6)
2Z7.

The external factors 2 and 4 (i.e. AH and HC) are the most influential since the
coefficients at them are the greatest ones (1.311 and 2.331). As was shown above, MDR
yields the same conclusion. If the gene-environment interactions are allowed (Model 2),
no considerable increase in predictive force has been detected. However we list the pairs
of SNPs and external factors present in the best forest: Z7 and R2, Z7 and R1, Z7 and
R4, Z5 and R1. It is seen that Cx37 SNP is of substantial importance as it appears in
combination with all risk factors except for smoking.

As formula (30) is hard to interpret, we select the most significant SNPs via a variant
of permutation test. Consider a random rearrangement of the column with first SNP in
IHD dataset. Calculate the prediction error using these new simulated data and the same
function ĥ as before. The analogous procedure is done for other columns (containing the

6The sums and products are modulo 3.
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values of other SNPs) and the errors found are given in Table 7. It is seen that the error
increases considerably when the values of GpIa and Cx37 are permutated. The statement
that they are the main sources of risk agrees with what was obtained above by MDR
method.

Prediciton error
for Model 1

GpIa Cx37 IL-6 PAI-1 GpIIIa FXIII FVII

0.19040 0.26283 0.25987 0.22590 0.21212 0.20798 0.20173 0.19040

Table 7: The SNP significance test for IHD in Model 1.

Myocardial infarction

For the MI dataset, under the same notations that above, the following results for our
four models were obtained.

Model 1 2 3 4
Prediction error 0.30526 0.33058 0.39057 0.36455

Table 8: Results of LR for IHD dataset.

To comment the Table 8 we should first underline that external risk factors play less
important role compared with IHD risk: if they are used without genetic information, the
error increases by 0.09, see Models 1 and 3 (while the same increase for IHD was 0.03).

The function ĥ(Z,R) defined before formula (26) with S = {1, . . . , N} is is equal to

−1.144T1 + 0.914T2 − 0.45T3 − 0.285R1 − 0.675R2 + 0.828R3 − 0.350R4 − 0.055

where
T1 = Z1Z3(Z5)

2, T2 = Z7, T3 = Z4 + Z3 + Z7 + Z6.

Thus the first tree has the greatest weight (coefficient equals -1.144), the second tree (i.e.
Cx37 SNP) is on the second place, and external factors are less important.

As for IHD we performed a permutation test to compare the significance of different
SNPs. Its results are presented in Table 9.

Prediciton error
for Model 1

Cx37 GpIIIa IL-6 FXIII FVII PAI-1 GpIa

0.30526 0.44420 0.35345 0.33998 0.32761 0.32427 0.31918 0.30526

Table 9: The SNP significance test for MI in Model 1.

As seen from this table, the elimination of Cx37 SNP leads to a noticeable increase in
the prediction error. This fact agrees with results obtained by MDR analysis of the same
dataset.
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3.3 Results obtained by RF and SGB methods

The given datasets were unbalanced w.r.t. response variable and we first applied the re-
sampling technique to them. That is, enlargement of the smaller of two groups case-control
in the sample by additional bootstrap observations till the final proportion case:control
would be 1:1. We also employed modifications of RF by [8] and SGB by [29] for unbal-
anced samples, but those worked poorly for permutation tests and we do not give their
results here. Note that due to the resampling techniques the following effect arise. Some
observations in small groups (case or control) appear in the new sample more frequently
than other ones. Therefore, we took the average over 1000 iterations.

Ischemic heart disease

Data RF SGB
with SNP 0.20/0.454 0.134/0.473
without SNP 0.23/0.51 0.261/0.503

Table 10: Prediction error/prediction error in permutation test calculated via cross-validation
for IHD dataset with employment of RF and SGB methods.

Results of RF and SGB methods are given in Table 10. It shows that RF and SGB
methods give statistically reliable results (prediction error in the permutation test is close
to 50%). Moreover, additional SNP information improves predicting ability on 11% and
13% (SGB). It seems that SGB method is better fitted to IHD data than RF.

Computing CVIM for each Xi, we constructed Zi as follows. We included in Zi all
predictors Xj , j 6= i, for which χ2-criteria rejected hypothesis of independence between
Xj and Xi at 5% significance level. Since the genetic information has second order effect
on prediction of Y comparing to the risk factors, we ran the program 1000 times and then
took the average CVIM to get a reliable estimate. An error over different runs of the
program was around 0.01. The results are given in Table 11.

AH HC Cx37 Ob FXIII Sm GpIa FVII PAI-1 GpIIIa IL-6
8.9 5.3 5.1 0.56 0.53 0.11 0.1 0.07 0.03 0.02 0.01

Table 11: Predictors are ranged in terms of their CVIM for IHD dataset.

Thus, the most relevant predictors for IHD are AH, HC and Cx37.

Myocardial infarction

Results of RF and SGB methods are given in the following table.
Table 12 shows that RF and SGB methods give statistically reliable estimates (predic-

tion error in the permutation test is close to 50%). Moreover, additional SNP information
improves predicting ability on 10%.
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Data RF SGB
with SNP data 0.36/0.497 0.399/0.53
without SNP data 0.473/0.527 0.482/0.562

Table 12: Prediction error/prediction error in permutation test calculated via cross-validation
for MI dataset with employment of RF and SGB methods.

Cx37 Sm AH GpIIIa FVII FXIII HC GpIa Ob IL-6 PAI-1
7.5 2 1.86 0.03 0.02 ≈0 ≈0 ≈0 ≈0 ≈0 ≈0

Table 13: Predictors are ranged in terms of their CVIM for MI dataset.

CVIM was calculated according to (28) and is given below.
Thus, the most relevant predictors for MI are Cx37, Sm and AH.

4 Conclusions and final remarks

Let us briefly summarize the main results obtained. The analysis of IHD dataset showed
that two external risk factors out of four considered (AH and HC) have a strong connection
with the disease risk (the error of classification based on external factors only is 0.25–0.26
with p-value less than 0.01). Also, the classification based on SNPs only gives a relatively
low error of 0.28. Moreover, the most influential SNPs are Cx37 and GpIa (FXIII also
enters the analysis only when AH and HC are present). Prediction error decreases to
0.13 if both SNP information and external risk factors are taken into account. Note that
excluding any of the 5 remaining SNPs (all except for two most influential) from data
increases the error by 0.01–0.02 approximately. So, while the most influential data are
responsible for the situation within a large part of population, there are smaller parts
where other SNPs come to effect and provide a more efficient prognosis (“small subgroups
effect”).

The MI dataset gave the following results. The most significant factors of MI risk are
the Cx37 SNP (more precisely, homozygous mutation) and smoking with a considerable
gene-environment interaction present. The smallest prediction error of methods applied
was 0.33–0.35 (with p-value less than 0.01). The classification based on external factors
only yields a much greater error of 0.42. Thus genetic data improves the prognosis quality
essentially. While two factors are of great importance, other SNPs considered actually do
not improve the prognosis essentially, i.e. no small groups effect is observed.

The conclusions given above are based on several complementary methods of modern
statistical analysis. These new data mining methods allow to analyze other datasets as
well. The study can be continued with larger datasets, in particular, involving new SNP
data.
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