13,395 research outputs found

    Visible spectroscopy of the new ESO Large Program on trans-Neptunian objects and Centaurs: final results

    Full text link
    A second large programme (LP) for the physical studies of TNOs and Centaurs, started at ESO Cerro Paranal on October 2006 to obtain high-quality data, has recently been concluded. In this paper we present the spectra of these pristine bodies obtained in the visible range during the last two semesters of the LP. We investigate the spectral behaviour of the TNOs and Centaurs observed, and we analyse the spectral slopes distribution of the full data set coming from this LP and from the literature. We computed the spectral slope for each observed object, and searched for possible weak absorption features. A statistical analysis was performed on a total sample of 73 TNOs and Centaurs to look for possible correlations between dynamical classes, orbital parameters, and spectral gradient. We obtained new spectra for 28 bodies, 15 of which were observed for the first time. All the new presented spectra are featureless, including 2003 AZ84, for which a faint and broad absorption band possibly attributed to hydrated silicates on its surface has been reported. The data confirm a wide variety of spectral behaviours, with neutral--grey to very red gradients. An analysis of the spectral slopes available from this LP and in the literature for a total sample of 73 Centaurs and TNOs shows that there is a lack of very red objects in the classical population. We present the results of the statistical analysis of the spectral slope distribution versus orbital parameters. In particular, we confirm a strong anticorrelation between spectral slope and orbital inclination for the classical population. A strong correlation is also found between the spectral slope and orbital eccentricity for resonant TNOs, with objects having higher spectral slope values with increasing eccentricity.Comment: 11 pages, 9 figure

    The Spectral Slope and Kolmogorov Constant of MHD turbulence

    Full text link
    The spectral slope of strong MHD turbulence has recently been a matter of controversy. While Goldreich-Sridhar model (1995) predicts Kolmogorov's -5/3 slope of turbulence, shallower slopes were often reported by numerical studies. We argue that earlier numerics was affected by driving due to a diffuse locality of energy transfer in MHD case. Our highest-resolution simulation (3072^2x1024) has been able to reach the asymptotic -5/3 regime of the energy slope. Additionally, we found that so-called dynamic alignment, proposed in the model with -3/2 slope, saturates and therefore can not affect asymptotic slope. The observation of the asymptotic regime allowed us to measure Kolmogorov constant C_KA=3.2+-0.2 for purely Alfv\'enic turbulence and C_K=4.1+-0.3 for full MHD turbulence. These values are much higher than the hydrodynamic value of 1.64. The larger value of Kolmogorov constant is an indication of a fairly inefficient energy transfer and, as we show in this Letter, is in theoretical agreement with our observation of diffuse locality. We also explain what has been missing in numerical studies that reported shallower slopes.Comment: 5 pages 3 figure

    Additional spectra of asteroid 1996 FG3, backup target of the ESA MarcoPolo-R mission

    Get PDF
    Near-Earth binary asteroid (175706) 1996 FG3 is the current backup target of the ESA MarcoPolo-R mission, selected for the study phase of ESA M3 missions. It is a primitive (C-type) asteroid that shows significant variation in its visible and near-infrared spectra. Here we present new spectra of 1996 FG3 and we compare our new data with other published spectra, analysing the variation in the spectral slope. The asteroid will not be observable again over the next three years at least. We obtained the spectra using DOLORES and NICS instruments at the Telescopio Nazionale Galileo (TNG), a 3.6m telescope located at El Roque de los Muchachos Observatory in La Palma, Spain. To compare with other published spectra of the asteroid, we computed the spectral slope S', and studied any plausible correlation of this quantity with the phase angle (alpha). In the case of visible spectra, we find a variation in spectral slope of Delta S' = 0.15 +- 0.10 %/10^3 A/degree for 3 < alpha < 18 degrees, in good agreement with the values found in the literature for the phase reddening effect. In the case of the near-infrared, we find a variation in the slope of Delta S' = 0.04 +- 0.08 %/10^3 A/degree for 6 < alpha < 51 degrees. Our computed variation in S' agrees with the only two values found in the literature for the phase reddening in the near-infrared. The variation in the spectral slope of asteroid 1996 FG3 shows a trend with the phase angle at the time of the observations, both in the visible and the near-infrared. It is worth noting that, to fully explain this spectral variability we should take into account other factors, like the position of the secondary component of the binary asteroid 1999 FG3 with respect to the primary, or the spin axis orientation at the time of the observations. More data are necessary for an analysis of this kind.Comment: 4 pages, 3 figures, Accepted in A&A 25 June 201

    The Turbulence Power Spectrum in Optically Thick Interstellar Clouds

    Full text link
    The Fourier power spectrum is one of the most widely used statistical tools to analyze the nature of magnetohydrodynamic turbulence in the interstellar medium. Lazarian & Pogosyan (2004) predicted that the spectral slope should saturate to -3 for an optically thick medium and many observations exist in support of their prediction. However, there have not been any numerical studies to-date testing these results. We analyze the spatial power spectrum of MHD simulations with a wide range of sonic and Alfv\'enic Mach numbers, which include radiative transfer effects of the 13^{13}CO transition. We confirm numerically the predictions of Lazarian & Pogosyan (2004) that the spectral slope of line intensity maps of an optically thick medium saturates to -3. Furthermore, for very optically thin supersonic CO gas, where the density or CO abundance values are too low to excite emission in all but the densest shock compressed gas, we find that the spectral slope is shallower than expected from the column density. Finally, we find that mixed optically thin/thick CO gas, which has average optical depths on order of unity, shows mixed behavior: for super-Alfv\'enic turbulence, the integrated intensity power spectral slopes generally follow the same trend with sonic Mach number as the true column density power spectrum slopes. However, for sub-Alfv\'enic turbulence the spectral slopes are steeper with values near -3 which are similar to the very optically thick regime.Comment: accepted to Ap

    Confronting Synchrotron Shock and Inverse Comptonization Models with GRB Spectral Evolution

    Get PDF
    The time-resolved spectra of gamma-ray bursts (GRBs) remain in conflict with many proposed models for these events. After proving that most of the bursts in our sample show evidence for spectral "shape-shifting", we discuss what restrictions that BATSE time-resolved burst spectra place on current models. We find that the synchrotron shock model does not allow for the steep low-energy spectral slope observed in many bursts, including GRB 970111. We also determine that saturated Comptonization with only Thomson thinning fails to explain the observed rise and fall of the low-energy spectral slope seen in GRB 970111 and other bursts. This implies that saturated Comptonization models must include some mechanism which can cause the Thomson depth to increase intially in pulses.Comment: (5 pages, 3 figures, to appear in Proceedings of the Fourth Huntsville Symposium on Gamma-Ray Bursts

    Some Aspects of Measurement Error in Linear Regression of Astronomical Data

    Full text link
    I describe a Bayesian method to account for measurement errors in linear regression of astronomical data. The method allows for heteroscedastic and possibly correlated measurement errors, and intrinsic scatter in the regression relationship. The method is based on deriving a likelihood function for the measured data, and I focus on the case when the intrinsic distribution of the independent variables can be approximated using a mixture of Gaussians. I generalize the method to incorporate multiple independent variables, non-detections, and selection effects (e.g., Malmquist bias). A Gibbs sampler is described for simulating random draws from the probability distribution of the parameters, given the observed data. I use simulation to compare the method with other common estimators. The simulations illustrate that the Gaussian mixture model outperforms other common estimators and can effectively give constraints on the regression parameters, even when the measurement errors dominate the observed scatter, source detection fraction is low, or the intrinsic distribution of the independent variables is not a mixture of Gaussians. I conclude by using this method to fit the X-ray spectral slope as a function of Eddington ratio using a sample of 39 z < 0.8 radio-quiet quasars. I confirm the correlation seen by other authors between the radio-quiet quasar X-ray spectral slope and the Eddington ratio, where the X-ray spectral slope softens as the Eddington ratio increases.Comment: 39 pages, 11 figures, 1 table, accepted by ApJ. IDL routines (linmix_err.pro) for performing the Markov Chain Monte Carlo are available at the IDL astronomy user's library, http://idlastro.gsfc.nasa.gov/homepage.htm
    • …
    corecore