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ABSTRACT

Context. Near-Earth binary asteroid (175706) 1996 FG3 is the current backup target of the ESA MarcoPolo-R mission, selected for
the study phase of ESA M3 missions. It is a primitive (C-type) asteroid that shows significant variation in its visible and near-infrared
spectra.
Aims. Here we present new visible and near-infrared spectra of 1996 FG3. We compare our new data with other published spectra,
analysing the variation in the spectral slope. The asteroid will not be observable again over the next three years at least.
Methods. We obtained visible and near-infrared spectra using DOLORES and NICS instruments, respectively, at the Telescopio
Nazionale Galileo (TNG), a 3.6 m telescope located at El Roque de los Muchachos Observatory in La Palma, Spain. To compare with
other published spectra of the asteroid, we computed the spectral slope S ′, and studied any plausible correlation of this quantity with
the phase angle (α).
Results. In the case of visible spectra, we find a variation in spectral slope of ΔS ′ = 0.15 ± 0.10%/103 Å/◦ for 3◦ < α < 18◦, which
is in good agreement with the values found in the literature for the phase reddening effect. In the case of the near-infrared, there
seems to be a trend between the reddening of the spectra and the phase angle, excluding one point. We find a variation in the slope of
ΔS ′ = 0.04 ± 0.08%/103 Å/◦ for 6◦ < α < 51◦. Our computed variation in S ′ is in good agreement with the only two values found in
the literature for the phase reddening in the near-infrared.
Conclusions. The variation in the spectral slope of asteroid 1996 FG3 shows a trend with the phase angle at the time of the obser-
vations, both in the visible and the near-infrared. It is worth noting that, to fully explain this spectral variability we should take into
account other factors, like the position of the secondary component of the binary asteroid 1999 FG3 with respect to the primary, or the
spin axis orientation at the time of the observations. More data are necessary for an analysis of this kind.

Key words. minor planets, asteroids: individual: 1996 FG3 – methods: observational – techniques: spectroscopic

1. Introduction

Binary asteroid (175706) 1996 FG3 (hereafter FG3) is currently
the backup target for the ESA MarcoPolo-R mission, selected
for the assessment study phase of ESA M3 missions. This is a
near-Earth binary system with semimajor axis a = 1.054 AU,
eccentricity e = 0.35, and inclination i = 1.98◦, and a mutual or-
bital period of P = 16.135 ± 0.005 h (Scheirich & Pravec 2009).
The primary component has a diameter of about 1.40−1.83 km
and has a fast spin rate (3.6 h). The secondary orbits the primary
with e = 0.05 ± 0.05 and a ∼ 1.4 times the primary’s radius and
has an estimated diameter of 0.43−0.51 km (Pravec et al. 2000;
Mottola & Lahulla 2000; Walsh et al. 2012).

The most recent albedo determination from thermal infrared
observations gives a value of pV = 0.039 ± 0.012 (Walsh et al.
2012), which is consistent with the asteroid being taxonomi-
cally classified as a C-type object. The best meteorite analogs
are CM2 (de León et al. 2011; Popescu et al. 2012) and CV3

(Rivkin et al. 2012) carbonaceous chondrites. This primitive
composition makes this asteroid a particularly interesting target
for a space mission. Primitive asteroids are believed to consist
of carbon-rich and organic materials that have not been altered
by processes such as melting and mixing that occurred during
the early stages of the formation of the solar system. In addition,
the binary nature of the target will allow more precise measure-
ments of mass, gravity, and density than a single object does, and
it will offer additional insights into the geology and geophysics
of the system.

Although the primitive nature of FG3 is not questioned,
spectra obtained by different authors during its close approach
between late 2011 and early 2012 show a significant variation
in spectral slope. Here we present additional visible and near-
infrared spectra of FG3, which are the latest observations ob-
tained of this object. This particular asteroid will not be observ-
able again for at least the next three years, either because it is too
faint or because it will not be visible.
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Fig. 1. Visible spectra of asteroid FG3. Spectra are normalized to unity
at 0.55 μm. The spectrum presented in this work is compared with visi-
ble spectrum from Binzel et al. (2001), which has been vertically offset
for clarity.

2. Observations and data reduction

The visible spectrum of FG3 was obtained on January 3, 2012,
with the 3.6 m Telescopio Nazionale Galileo (TNG) using the
DOLORES spectrograph. The low resolution red (LR-R) grism
was used covering the 0.50−0.95 μm spectral range with a reso-
lution of 2.61 Å/pix. The object was centered in a 2′′ slit, which
was oriented to the parallactic angle to minimize losses due to
atmospheric dispersion. Three spectra of 600 s of integration
time each were obtained, shifting the object 10′′ in the slit direc-
tion between consecutive spectra to better correct the fringing.
Images were bias and flat-field corrected using standard proce-
dures. The two-dimensional spectra were extracted, sky back-
ground subtracted, and collapsed to one dimension. Wavelength
calibration was done using Ne and Hg lamps. The three indi-
vidual spectra of the asteroid, obtained at different positions in
the slit, were averaged. To obtain the asteroid’s reflectance spec-
trum, we observed two solar analog stars from the Landolt cat-
alogue (Landolt 1992) with similar airmass to that of the aster-
oid: SA 98-978 and SA 102-1081. The asteroid spectrum was
divided by the individual spectrum of each solar analog, and the
resulting spectra were finally averaged and normalized to unity
at 0.55 μm. Our final spectrum is shown in Fig. 1, together with
that from Binzel et al. (2001), obtained on January 26, 1998 and
is the only visible spectrum of FG3 published up to now.

Low resolution near-infrared spectra of FG3 were also ob-
tained with the TNG on December 21 and 24, 2011, using
the low resolution mode of Near Infrared Camera Spectrograph
(NICS) and the Amici prism disperser, which covers the
0.8−2.5 μm spectral range. Two different slits were used on
the first and second nights, 2.0′′ and 1.0′′, respectively. The slit
was in both cases oriented along the parallactic angle, and the
tracking was performed at the asteroid’s proper motion. The ac-
quisition consisted of two series of short exposure images off-
setting the object between positions A and B in the slit direc-
tion. This process was repeated and a number of ABBA cycles
were acquired, with a total on-object exposure time of 1440 s.
We observed two solar analog stars from the Landolt cata-
logue: SA 98-978 and SA 115-271. The reduction procedure
followed de León et al. (2010). After a standard bias and flat
field correction, we subtracted consecutive A and B exposures

Table 1. Observational parameters for the FG3’s spectra.

Source Date r α S ′

(AU) (◦) %/1000 Å
Visible
Binzel [1] 26/01/1998 1.382 2.8 –0.600 ± 0.200
This work 03/01/2012 1.222 18.0 1.620 ± 0.300
Near-infrared
Binzel [2] 30/03/2009 1.226 8.3 0.160 ± 0.100
Binzel [2] 27/04/2009 1.083 58.5 –0.469 ± 0.300
de León [3] 10/01/2011 1.354 22.5 1.694 ± 0.500
Binzel [4] 01/12/2011 1.046 51.3 1.859 ± 0.050
Rivkin [5] 06/12/2011 1.075 35.7 1.165 ± 0.060
This work 21/12/2011 1.157 5.8 0.183 ± 0.300
This work 24/12/2011 1.172 6.8 0.572 ± 0.100

Notes. Although errors in S ′ are obtained considering the dispersion of
the data points in relative reflectance, it is important to note that they
are in fact dominated by the division of the spectra of the solar analog.
See text for further details.
References. [1] Binzel et al. (2001); [2] MIT-UH-IRTF (MINUS,
http://smass.mit.edu/minus.html); [3] de León et al. (2011b);
[4] Binzel et al. (2012); [5] Rivkin et al. (2012).

from each ABBA cycle, obtaining individual images from which
1D spectra were extracted and wavelength calibrated. These in-
dividual spectra were then averaged and the result was divided
by the individual spectrum of each solar analog star. The re-
sulting spectra were finally averaged and normalized to unity
at 1.0 μm (see top panel of Fig. 2).

3. Spectral analysis

Comparing the visible and near-infrared spectra of FG3 pre-
sented in this work with the spectra previously published one
can clearly see a slope variation. In this section we analyze how
significant this variation is and present a possible explanation
that could account for it.

3.1. Visible spectra

As mentioned in the previous section, Fig. 1 shows the only
two published visible spectra of FG3: the one presented here
and the one from Binzel et al. (2001). We compute the spec-
tral slope S ′ = (dS/dλ)/S 5500 in units of %/103 Å (Jewitt &
Luu 1990), in the range between 0.55 and 0.90 μm. The result-
ing value for each spectrum is shown in Table 1, together with
the distance to the Sun (r) and the phase angle (α) at the time
of the observation. We note here that the errors in S ′ shown
in Table 1 are computed taking different values of relative re-
flectance around 0.55 and 0.90 μm and checking how the values
of S ′ change, i.e., the greater the dispersion of the data points
in relative reflectance, the larger the error. However, we know
from our observational experience, that division by the spectra
of the solar analog introduces an intrinsic error in the spectral
slope that is not smaller than 0.5%/103 Å. This applies also to
the near-infrared. Therefore, and to be as realistic as possible, we
will use this value, unless the computed errors for S ′ are larger.

The observed difference in spectral slope could be caused
by the difference in the solar phase angle between the two ob-
servations. While the data from Binzel et al. (2001) was ob-
tained in January 26, 1998, with a phase angle of ∼3.0◦, the
visible spectrum presented in this work was taken at a phase
angle of 18.0◦. This corresponds to a change in spectral slope
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Fig. 2. Near-infrared spectra of FG3. a) Two new spectra presented
in this work. Spectra are normalized to unity at 1.0 μm and offset
for clarity. b) Spectra of FG3 previously published: [1] MIT-UH-IRTF
(MINUS, http://smass.mit.edu/minus.html); [2] de León et al.
(2011); [3] Binzel et al. (2012); [4] Rivkin et al. (2012). The spectra
are normalized to unity at 1.0 μm. We note the change in spectral slope.
The red-dashed region is associated with thermal excess.

of ΔS ′ = 0.15 ± 0.10%/103 Å/◦ for 3◦ < α < 18◦, which is
in good agreement with the measured values of the phase red-
dening effect in the visible found in the literature: Lumme &
Bowell (1981) measured ΔS ′ = 0.15 ± 0.17%/103 Å/◦ for a
sample of C-types, while Luu & Jewitt (1990) measured ΔS ′ =
0.18%/103 Å/◦ for 0◦ < α < 40◦ for a sample of near-Earth and
main belt asteroids.

3.2. Near-infrared spectra

In the case of the near-infrared, there are several published
spectra of FG3. References, observational dates, distance to the
Sun (r), and phase angle (α) of these spectra are shown in
Table 1, and the spectra are plotted in Fig. 2b using different col-
ors. From oldest to newest we have: two spectra from March and
April 2009 (MIT-UH-IRTF1), one spectrum from January 2011
(de León et al. 2011), and two spectra from December 2011
(Binzel et al. 2012; Rivkin et al. 2012). The two near-infrared
spectra presented in this work are also from December 2011 (see
Fig. 2a). As in the case of visible wavelengths, we find a signif-
icant variation in the spectral slope. We compute it using the
same definition, but normalizing at 1.0 μm (see also Table 1).
Most of the near-infrared spectra show an increase in reflectance
beyond 2.1 μm, associated with thermal excess. The exception
is the spectrum corresponding to December 6, 2011, which has
been digitized from Rivkin et al. (2012), and that was already

1 smass.mit.edu/minus.html
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Fig. 3. Spectral slope S ′ computed for the near-infrated spectra vs.
phase angle (α). The represented values are listed in Table 1. The red-
dashed line corresponds to a linear fit to the points (excepting the point
at the low-right part of the plot), with ΔS ′ being the slope of that lin-
ear fit.

corrected from thermal excess. Therefore, to compute spectral
slopes in a homogeneous way, we use the range between 0.9
and 2.1 μm. The computed values of S ′ are shown in Table 1.
Figure 3 shows S ′ against phase angle. If one point at the low-
right part of the plot is not considered, the data seem to show
a trend. The computed variation, shown as a red-dashed line in
the plot, is ΔS ′ = 0.04 ± 0.08%/103 Å/◦ for 6◦ < α < 51◦.
We note that we have already taken into account the uncer-
tainties in spectral slope introduced by the division by the so-
lar analogs and described in Sect. 3.1, and we still see a trend
in the data. The phase reddening effect has been mainly stud-
ied at visible wavelengths, but it has also been observed in the
near-infrared region. However, there are just a few references
in the literature to properly compare with our obtained value.
Nathues (2010) analyzed the visible and near-infrared spectra
of 97 asteroids belonging to the Eunomia collisional family, but
they only provide values for ΔS ′ in the visible wavelength range.
Clark et al. (2002) studied the near-infrared spectrometer obser-
vations (0.8 to 2.4 μm) of the S-type asteroid (433) Eros obtained
by the NEAR Shoemaker spacecraft. They computed the spec-
tral slope from 1.49 to 2.36 μm, finding a variation of ΔS ′ =
0.05%/103Å/◦ for 0◦ < α < 100◦. Finally, Sanchez et al. (2012)
studied the effects of phase reddening in the laboratory spectra
of a sample of ordinary chondrites. They computed the spectra
slope fitting a continuum across the 1 μm absorption band (be-
tween ∼0.7 and ∼1.55 μm), and found a variation ranging from
ΔS ′ = 0.04%/103 Å/◦ for LL chondrites to ΔS ′ = 0.02%/103 Å/◦
for H chondrites for 13◦ < α < 120◦. They found that this effect
is more intense for α > 30◦.

4. Conclusions

We have presented here three additional spectra of binary near-
Earth asteroid 1996 FG3, one in the visible and two in the
near-infrared. Treating the two wavelengths separately and com-
paring with previous published spectra, we find in both cases
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a significant change in spectral slope. In the visible region, the
change in spectral slope can be explained by the phase redden-
ing effect, with a quantified variation that is in good agreement
with the values found in the literature. In the case of the near-
infrared spectra, we find a trend between the reddening of the
spectra and the increase in phase angle, but only if we do not take
into account one point. Unfortunately, we do not have access to
the observational details of the spectrum corresponding to that
point, and so we cannot check if there are any problems with it.
Our computed variation in S ′ is in good agreement with the only
two values found in the literature for the phase reddening in the
near-infared. Therefore, although we cannot firmly conclude it,
it seems that the observed variation in the spectral slope in the
near-infrared could also be explained by the phase reddening ef-
fect. In the case of binary asteroid FG3, one should take into
account other factors, like the position of the secondary with re-
spect to the primary, or the spin axis orientation at the time of
the observations. More data needs to be collected and analyzed
in order to properly explain the differences in spectral slope.
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