129 research outputs found

    Security-aware Resource Allocation for Space-Air-Ground Integrated Network using Deep Reinforcement Learning

    Get PDF
    A Space-Air-Ground Integrated Network (SAGIN) has been proposed to extend communication network service coverage to consumer-oriented and industrial sectors where communication network coverage is either limited or unavailable. To effectively use the space, air, and ground hardware resources, Network Function Virtualization (NFV) is introduced into SAGIN. NFV enables the deployment and management of services that are represented as Virtual Networks (VN) composed of Virtual Network Functions (VNF) onto the SAGIN hardware through hardware virtualization. This enables SAGIN to support services with distinct demands from both consumer-oriented and industrial sectors. However, by introducing NFV into SAGIN, new security vulnerabilities arise. For instance, if a malicious entity gains access to the virtualized hardware, all services utilizing the hardware are exposed to attack. When deploying a VN onto the SAGIN hardware, also known as the Substrate Network (SN), it must be decided which SN Node (SNN) should host each VN Node (VNN) and which SN Links (SNL) should host each VN Link (VNL), also known as the Virtual Network Embedding (VNE) problem. This thesis proposes a solution to VNE in SAGIN using Deep Reinforcement Learning (DRL) while accounting for the security concerns related to NFV. To our knowledge, this has yet to be explored by other works. We compare our solution with the well-known Global Resource Capacity (GRC) solution strategy using the acceptance rate, revenue, cost, and revenue-to-cost metrics. Our DRL-based solution strategy shows competitive performance in all metrics

    Multi-objective Optimization of Space-Air-Ground Integrated Network Slicing Relying on a Pair of Central and Distributed Learning Algorithms

    Full text link
    As an attractive enabling technology for next-generation wireless communications, network slicing supports diverse customized services in the global space-air-ground integrated network (SAGIN) with diverse resource constraints. In this paper, we dynamically consider three typical classes of radio access network (RAN) slices, namely high-throughput slices, low-delay slices and wide-coverage slices, under the same underlying physical SAGIN. The throughput, the service delay and the coverage area of these three classes of RAN slices are jointly optimized in a non-scalar form by considering the distinct channel features and service advantages of the terrestrial, aerial and satellite components of SAGINs. A joint central and distributed multi-agent deep deterministic policy gradient (CDMADDPG) algorithm is proposed for solving the above problem to obtain the Pareto optimal solutions. The algorithm first determines the optimal virtual unmanned aerial vehicle (vUAV) positions and the inter-slice sub-channel and power sharing by relying on a centralized unit. Then it optimizes the intra-slice sub-channel and power allocation, and the virtual base station (vBS)/vUAV/virtual low earth orbit (vLEO) satellite deployment in support of three classes of slices by three separate distributed units. Simulation results verify that the proposed method approaches the Pareto-optimal exploitation of multiple RAN slices, and outperforms the benchmarkers.Comment: 19 pages, 14 figures, journa

    Cooperative Multi-Type Multi-Agent Deep Reinforcement Learning for Resource Management in Space-Air-Ground Integrated Networks

    Full text link
    The Space-Air-Ground Integrated Network (SAGIN), integrating heterogeneous devices including low earth orbit (LEO) satellites, unmanned aerial vehicles (UAVs), and ground users (GUs), holds significant promise for advancing smart city applications. However, resource management of the SAGIN is a challenge requiring urgent study in that inappropriate resource management will cause poor data transmission, and hence affect the services in smart cities. In this paper, we develop a comprehensive SAGIN system that encompasses five distinct communication links and propose an efficient cooperative multi-type multi-agent deep reinforcement learning (CMT-MARL) method to address the resource management issue. The experimental results highlight the efficacy of the proposed CMT-MARL, as evidenced by key performance indicators such as the overall transmission rate and transmission success rate. These results underscore the potential value and feasibility of future implementation of the SAGIN

    Free Space Optical Communication for Inter-Satellite Link: Architecture, Potentials and Trends

    Full text link
    The sixth-generation (6G) network is expected to achieve global coverage based on the space-air-ground integrated network, and the latest satellite network will play an important role in it. The introduction of inter-satellite links (ISLs) can significantly improve the throughput of the satellite network, and recently gets lots of attention from both academia and industry. In this paper, we illustrate the advantages of using the laser for ISLs due to its longer communication distance, higher data speed, and stronger security. Specifically, space-borne laser terminals with the acquisition, pointing and tracking mechanism which realize long-distance communication are illustrated, advanced modulation and multiplexing modes that make high communication rates possible are introduced, and the security of ISLs ensured by the characteristics of both laser and the optical channel is also analyzed. Moreover, some open issues such as advanced optical beam steering, routing and scheduling algorithm, and integrated sensing and communication are discussed to direct future research

    A Universal Attenuation Model of Terahertz Wave in Space-Air-Ground Channel Medium

    Full text link
    Providing continuous bandwidth over several tens of GHz, the Terahertz (THz) band (0.1-10 THz) supports space-air-ground integrated network (SAGIN) in 6G and beyond wireless networks. However, it is still mystery how THz waves interact with the channel medium in SAGIN. In this paper, a universal space-air-ground attenuation model is proposed for THz waves, which incorporates the attenuation effects induced by particles including condensed particles, molecules, and free electrons. The proposed model is developed from the insight into the attenuation effects, namely, the physical picture that attenuation is the result of collision between photons that are the essence of THz waves and particles in the environment. Based on the attenuation model, the propagation loss of THz waves in the atmosphere and the outer space are numerically assessed. The results indicate that the attenuation effects except free space loss are all negligible at the altitude higher than 50 km while they need to be considered in the atmosphere lower than 50 km. Furthermore, the capacities of THz SAGIN are evaluated in space-ground, space-sea, ground-sea, and sea-sea scenarios, respectively

    Generative AI for Space-Air-Ground Integrated Networks (SAGIN)

    Full text link
    Recently, generative AI technologies have emerged as a significant advancement in artificial intelligence field, renowned for their language and image generation capabilities. Meantime, space-air-ground integrated network (SAGIN) is an integral part of future B5G/6G for achieving ubiquitous connectivity. Inspired by this, this article explores an integration of generative AI in SAGIN, focusing on potential applications and case study. We first provide a comprehensive review of SAGIN and generative AI models, highlighting their capabilities and opportunities of their integration. Benefiting from generative AI's ability to generate useful data and facilitate advanced decision-making processes, it can be applied to various scenarios of SAGIN. Accordingly, we present a concise survey on their integration, including channel modeling and channel state information (CSI) estimation, joint air-space-ground resource allocation, intelligent network deployment, semantic communications, image extraction and processing, security and privacy enhancement. Next, we propose a framework that utilizes a Generative Diffusion Model (GDM) to construct channel information map to enhance quality of service for SAGIN. Simulation results demonstrate the effectiveness of the proposed framework. Finally, we discuss potential research directions for generative AI-enabled SAGIN.Comment: 9page, 5 figure

    UAV-Assisted Space-Air-Ground Integrated Networks: A Technical Review of Recent Learning Algorithms

    Full text link
    Recent technological advancements in space, air and ground components have made possible a new network paradigm called "space-air-ground integrated network" (SAGIN). Unmanned aerial vehicles (UAVs) play a key role in SAGINs. However, due to UAVs' high dynamics and complexity, the real-world deployment of a SAGIN becomes a major barrier for realizing such SAGINs. Compared to the space and terrestrial components, UAVs are expected to meet performance requirements with high flexibility and dynamics using limited resources. Therefore, employing UAVs in various usage scenarios requires well-designed planning in algorithmic approaches. In this paper, we provide a comprehensive review of recent learning-based algorithmic approaches. We consider possible reward functions and discuss the state-of-the-art algorithms for optimizing the reward functions, including Q-learning, deep Q-learning, multi-armed bandit (MAB), particle swarm optimization (PSO) and satisfaction-based learning algorithms. Unlike other survey papers, we focus on the methodological perspective of the optimization problem, which can be applicable to various UAV-assisted missions on a SAGIN using these algorithms. We simulate users and environments according to real-world scenarios and compare the learning-based and PSO-based methods in terms of throughput, load, fairness, computation time, etc. We also implement and evaluate the 2-dimensional (2D) and 3-dimensional (3D) variations of these algorithms to reflect different deployment cases. Our simulation suggests that the 33D satisfaction-based learning algorithm outperforms the other approaches for various metrics in most cases. We discuss some open challenges at the end and our findings aim to provide design guidelines for algorithm selections while optimizing the deployment of UAV-assisted SAGINs.Comment: Submitted to the IEEE Internet of Things Journal in June 202
    • …
    corecore