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Abstract

A Space-Air-Ground Integrated Network (SAGIN) has been proposed to extend com-
munication network service coverage to consumer-oriented and industrial sectors where
communication network coverage is either limited or unavailable. To effectively use
the space, air, and ground hardware resources, Network Function Virtualization (NFV)
is introduced into SAGIN. NFV enables the deployment and management of services
that are represented as Virtual Networks (VN) composed of Virtual Network Functions
(VNF) onto the SAGIN hardware through hardware virtualization. This enables SAGIN
to support services with distinct demands from both consumer-oriented and industrial
sectors.

However, by introducing NFV into SAGIN, new security vulnerabilities arise. For instance,
if a malicious entity gains access to the virtualized hardware, all services utilizing the
hardware are exposed to attack.

When deploying a VN onto the SAGIN hardware, also known as the Substrate Network
(SN), it must be decided which SN Node (SNN) should host each VN Node (VNN) and
which SN Links (SNL) should host each VN Link (VNL), also known as the Virtual
Network Embedding (VNE) problem. This thesis proposes a solution to VNE in SAGIN
using Deep Reinforcement Learning (DRL) while accounting for the security concerns
related to NFV. To our knowledge, this has yet to be explored by other works.

We compare our solution with the well-known Global Resource Capacity (GRC) solution
strategy using the acceptance rate, revenue, cost, and revenue-to-cost metrics. Our
DRL-based solution strategy shows competitive performance in all metrics.
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2 CONTENTS

0.1 Commonly used Acronyms

Acronym Definition
IoT Internet of Things
ITS Intelligent Transportation Systems
BS Base Station

SAGIN Space-Air-Ground Integrated Network
NF Network Function

NFV Network Function Virtualization
VNF Virtual Network Function
VM Virtual Machine

VNF-FG VNF-Forwarding Graph
NFVI NFV Infrastructure

VNF-FGE VNF-FG Embedding
VNFP VNF Placement

TR Traffic Routing
InP Infrastructure Provider
SP Service Provider

VNE Virtual Network Embedding
SN Substrate Network

SNN Substrate Network Node
SNL Substrate Network Link
IDL Inted-Domain Link
VNR Virtual Network Request
VN Virtual Network

VNN Virtual Network Node
VNL Virtual Network Link
DRL Deep Reinforcement Learning
MDP Markov Decision Process
PPO Proximal Policy Optimization
CSPF Constrained Shortest Path First
LTR Long Term Average Revenue
LTC Long Term Average Cost
LRC Long Term Revenue Cost Ratio
ACR Acceptance Rate
GRC Global Resource Capacity
DSP Dijkstra Shortest Path
SB3 Stable-Baselines3
NN Neural Network

DSTPP Distance from Previous Placement

Table 1: Commonly used acronyms.



Chapter 1

Introduction

The need for secure and ubiquitous communication services is witnessing a significant
surge in demand. This heightened demand can be explained by the rapid growth and
proliferation of various applications, encompassing both consumer-oriented and industrial
sectors. Specifically, this trend is driven by technologies such as the Internet of Things
(IoT) [1].

IoT interconnectivity extends beyond traditional computing devices, encompassing a wide
range of objects, appliances, and systems, such as Intelligent Transportation Systems
(ITS) and home appliances [1][2]. With IoT applications becoming increasingly prevalent
in homes, industries, and cities, there is a growing demand for ubiquitous and secure
communication services to support these interconnected ecosystems.

However, in many scenarios, the ground-based wired and wireless infrastructure is
falling behind in providing consumer and industrial-grade service coverage in challenging
environments, such as rural cities, ocean-based industries, and air transport [1][3]. For
instance, ocean-based industries such as oil platforms require expensive subsea cables to
provide network service coverage. Additionally, fixed cable communication is entirely
infeasible for mobile ocean-based applications such as shipping. As an alternative to
fixed cable communication, wireless Base Stations (BS) communication can be used. For
instance, in a densely populated area, wireless BSs can provide service coverage to a
large customer base making the BSs economically feasible. However, in a rural area, the
customer base might be small and dispersed over a wide area, thus making BS coverage
financially unviable. Therefore, we need a financially viable method of providing service
coverage in these challenging areas. For this purpose, a Space-Air-Ground Integrated
Network (SAGIN) has been proposed as a solution [1][2][4].

3



4 Chapter 1 Introduction

1.1 SAGIN

SAGIN aims to solve the mentioned issues by merging space, air, and ground-based
networks into a single unified network, capable of far greater coverage than ground-based
networks [5]. By leveraging this expanded coverage, SAGIN can support services for
remote cities, shipping, air transport, and much more, where traditional ground-based
networks are lacking.

To visualize SAGIN, we use figure 1.1. The figure shows the networks that are part of
SAGIN, usually referred to as the space, air, and ground domains, and the capabilities
of hardware components in each domain [2]. Firstly, the SAGIN ground domain consists
of standard fixed network hardware nodes connected by wired or wireless BSs links.
As we know, the ground domain alone is insufficient to support the modern service
requirements of both consumer-oriented and industrial sectors. As such, SAGIN also
utilizes the air domain. In the air domain, aerial vehicles include high-speed networking
equipment, allowing air domain hardware nodes to forward and process communication
network traffic for consumer-oriented and industrial sectors [5]. However, providing
service coverage to all regions is infeasible with the air domain alone because many
aerial vehicles are required and their inherent need to take off and land periodically. As
such, SAGIN also considers the space domain, which adds networking infrastructure in
the form of satellite hardware nodes. If placed in a stable orbit, satellites will provide
long-lasting massive service coverage [5].

Satellites have very different capabilities than infrastructure in other domains, mainly
regarding communication delay, range, and hardware node capabilities such as processing,
memory, and storage [5]. In terms of communication delay and range, Low Earth Orbit
(LEO) satellites have limited coverage1 due to the earth’s curvature but give lower
communication delay than Medium Earth Orbit (MEO) satellites due to their closer
proximity to Earth [5]. For example, the distance from a ground domain BS to an LEO
satellite is a minimum of 160km, while MEO is at a minimum of 2000km [5]. Hence,
MEO experiences increased delay. Moreover, the increased delay is even more prevalent
for Geostationary Orbit (GEO) satellites placed even farther from the BS than MEO
satellites at 35786km [5].

Regarding satellite hardware, satellite launches use rockets which incur huge expenses.
The more hardware added to a satellite, the larger the weight, meaning a heavier lift
rocket is used, incurring even more significant expenses. As such, satellites typically have
limited hardware capabilities relative to the air and ground domains.

1Limited coverage relative to MEO and GEO.



Chapter 1 Introduction 5

Figure 1.1: Visualization of a SAGIN network.

Considering these factors, it is crucial to recognize that satellite networks offer unique
advantages and face specific limitations when compared to air and ground-based networks.
Understanding the disparities in communication delay, coverage, and hardware capabilities
is vital in leveraging the benefits of satellite communication and effectively integrating
satellite networks within the broader communication infrastructure in SAGIN.

1.1.1 NFV

When communications network traffic is forwarded through the hardware nodes and links
in SAGIN, we say each hardware node performs some "processing" on the traffic, also
known as performing a Network Function (NF) [6]. As an example, consider a network
user requesting a web page. In this example, two necessary NFs could be a DNS NF
for domain name lookup and a routing NF for forwarding the communication network
traffic2 [7].

Furthermore, when NFs process communications network traffic, this is typically done
in an ordered fashion, which is referred to as providing a service [7]. Hence, to provide
a service in SAGIN, NFs can be deployed at space, air, and ground domain hardware.
Moreover, depending on the order of NF processing required by a service, the service

2Many more NFs exist [7].
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traffic can be forwarded through multiple space, air, and ground hardware nodes, where
each hardware node performs an NF required by the service [2][7].

Naturally, when an NF performs some processing for a service, the NF requires sufficient
processing, memory, and storage resources to perform the processing, which also varies
in scale from one NF to another [6][7]. For instance, a firewall NF might require
more computing resources than a DHCP NF. Hence, different services generally have
heterogeneous resource requirements, and it is often necessary to scale the available
SAGIN hardware resources to accommodate new services or changes to services.

However, scaling and managing NF resources effectively in a traditional network is
infeasible due to a lack of management control and each NF utilizing dedicated hardware
[7][8]. This results in inefficient use of NF resources. For example, an NF might not
be fully utilized, thus wasting resources. Alternatively, the NF might have insufficient
resources to support a new service, leading to difficulties deploying the new service.

However, the Network Function Virtualization (NFV) standard proposes a solution to
these problems [9]. In NFV, NFs no longer utilize dedicated hardware. Instead, each
NF is represented as a Virtual NF (VNF), which is a software representation of the NF.
Moreover, by incorporating a virtualization layer in general-purpose hardware, as shown
in figure 1.2, VNFs can be hosted on any hardware node [6][8]. This opens the possibility
of dynamically scaling VNF resources when required and allows placing VNFs when and
whenever required [7].

NFV also provides some obvious advantages for SAGIN. For example, consider the space
domain of SAGIN. Before NFV, placing multiple NFs on a satellite would be infeasible
due to the weight of dedicated hardware. However, NFV allows any VNFs to be deployed
to general computing hardware on the satellite such that any NF can be performed.

NFV Operation

We now know that services such as web browsing require an ordering of multiple VNFs.
As such, a common method of representing a service is to use a Directed Acyclic Graph
(DAG), more often known as a VNF-Forwarding Graph (VNF-FG) in NFV terminology
[6][8]3.

We visualize the VNF-FG of a service in figure 1.3. The figure depicts VNFs as circles
with hardware requirements such as processing, memory, and storage. Furthermore, the
ordering of VNFs is reflected through the chain of VNFs, where a virtual directed link
connects each consecutive VNF. The directions of the arrows indicate that traffic must

3Also known as a Service Function Chain (SFC)[6].
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Figure 1.2: Server hardware in figure 1.1 now runs multiple VNFs on one or more VMs.

Figure 1.3: A visual representation of a VNF-FG.

flow from the left ingress, represented as a triangle, towards the right and out the egress
[9]. Once the traffic exits through the egress, all processing required by the service is
completed.

A VNF-FG can be considered a blueprint for a service because it defines every service
requirement, such as the number of VNFs, types of VNFs, and resource demands. However,
given that a VNF-FG is only a blueprint, we also need a method for realizing the VNF-FG
on physical hardware, also known as the NFV Infrastructure (NFVI). This process is
called the VNF-FG Embedding (VNF-FGE) problem [6].
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VNF-FGE

The first challenge of VNF-FGE is related to the VNF Placement (VNFP). The goal of
VNFP is to find NFVI hardware nodes that have sufficient available resources for hosting
VNFs [6]. The available resources of NFVI hardware nodes are jointly decided based on
the capabilities of the hardware and already hosted VNFs. For example, consider an
NFVI hardware node with high processing, memory, and storage resources. If the node is
already hosting multiple VNFs, then the node likely has low remaining resources. Hosting
additional VNFs onto the same node will likely overburden the hardware, thus reducing
the performance of the hosted VNFs. Hence, it is essential to account for already hosted
VNFs during VNFP.

The next step of VNF-FGE is to find appropriate NFVI hardware links that can be used
to represent each of the VNF-FG directed virtual links. This is referred to as the Traffic
Routing (TR) problem [6][8][10].

During TR, each consecutive virtual link within the VNF-FG must be realized using one
or more NFVI links with sufficient bandwidth resources and delay [10]. For example,
consider a VNF-FG with three VNFs connected by two virtual links, as shown in figure
1.3. Next, consider each consecutive VNN to be placed in the space, air, and ground
SAGIN domains, respectively4. To solve TR in this scenario, a path of ground-to-air
NFVI links must be found to represent the "VNF1-VNF2" virtual link5. Next, a path of
air-to-space NFVI links must be found to represent the "VNF2-VNF3" virtual link. If all
NFVI links part of each path satisfy the demands of the virtual link, then a valid TR
solution has been found [10].

Once the VNFP and TR problems are solved, the service can be hosted on the NFVI
hardware using the solutions to VNFP and TR, completing VNF-FGE [6]. However,
note that solving VNF-FGE is only one of several tasks which must be performed to
provide a service. For example, once a VNF-FG is embedded, it must be monitored,
maintained, and eventually discarded [7]. Other tasks involve the management of physical
NFVI hardware, such as updating operating system software and virtualization software
management [9]. The NFV architecture incorporates all these tasks into a general NFV
management component known as Management and Orchestration (MANO) [9].

Due to the direct connection between the physical hardware and the MANO, we say that
the owner of the NFVI hardware incorporates the MANO component, which is known as
the Infrastructure Provider (InP) [9][11]. Furthermore, Service Providers (SP) want to

4VNFP is already solved.
5Although we consider the placement of ingress and egress in this thesis, we exclude them from the

example for simplicity.



Chapter 1 Introduction 9

provide services to their tenants within the consumer-oriented and industrial sectors. As
such, SPs pay the InPs to implement their services [8]. This interaction between SPs and
InPs is generally represented as service requests sent by SPs that includes the requested
VNF-FG [7][11].

1.1.2 VNE

All services should typically be well-defined to know the exact purpose of the service.
For instance, a service should concretely state which VNFs are required and their exact
ordering. However, as a means to represent the wide range of possible VNFs and services,
this thesis instead considers a general representation of services from the viewpoint of
the Virtual Network Embedding (VNE) problem [12].

In VNE, we refer to services as Virtual Networks (VN) [12]. A VN uses a general
representation of the VNFs, such that each VNF can be any arbitrary VNF6 [6]. We
refer to these general VNFs and their connections as VN Nodes (VNN) and VN links
(VNL) [12]. Furthermore, due to services being represented as VNs, the terminology of
the service request changes to VN Request (VNR) [12].

Figure 1.4: A visual representation of three VNs.
6i.e., each VNF provides an unknown function.
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Since each VNN represents an unknown NF, we are not aware of the specific hardware
requirements for each VNN. Therefore, the arrangement or ordering of the VNNs can be
arbitrary.

To illustrate this, let’s consider the VN1 shown in figure 1.4. In this case, the VNNs
within VN1 are arranged randomly. Since we don’t have prior knowledge of the specific
NF associated with each VNN, there are no predetermined rules dictating their order.
Therefore, the VNNs can be arranged in any order, as their NFs are unknown.

Furthermore, due to the general representation of services, the specific number of VNNs
required for the service is also arbitrary. Figure 1.4 visualizes this point. Firstly, "VN1"
arbitrarily has three VNNs, which represent some unknown "service A". Next, "VN2"
arbitrarily includes an additional VNN, representing some other "service B". Lastly,
"VN3" shows how a service could contain any number of VNNs.

Generally, works on VNE do not consider the ordering of VNNs and hence include no
directed links [6][12]. However, since we define our VN as providing an arbitrary service
where ordering is important, we consider VNE in terms of both the VNFP and TR
problems.

Lastly, we provide Figure 1.5 as an illustration of VNE. Figure 1.5 depicts a potential
embedding solution of a VNR. The VNR includes VNNs with a processing resource
demand and VNLs with a bandwidth resource demand7. Next, Figure 1.5 includes the
Substrate Network (SN), which is the alternative terminology for NFVI used in VNE
[12].

7We limit the resources considered in the example to processing and bandwidth for simplicity.
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Figure 1.5: A simplified visual representation of VNE.

The SN in Figure 1.5 is represented as a graph structure, where SNNs and SNL represent
physical hardware in SAGIN’s space, air, or ground domains. Each VNN is placed onto
an SNN with equal or greater available resources than the demands made by the VNN.
Next, based on these placements, a path of SNLs is found for each VNL. Each SNL
satisfies the bandwidth resource demands of the VNL.

Online and Offline VNE

Solving the VNE problem aims to find an efficient solution strategy viable for deployment
at a real-world InP. For instance, the VNE solution strategy should embed as many
VNRs as possible while using the least amount of InP resources, such that the InP gains
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maximum profits. Moreover, the time spent calculating the VNE solution should be as
low as possible, which allows the InP to handle high rates of received VNRs [12].

However, even if a VNE solution strategy is able to prove high effectiveness, the value of
the VNE solution strategy decreases if a real-world scenario is not considered. Hence, we
highlight three important considerations for representing a real-world scenario, starting
with the online or offline approaches [12].

Figure 1.6: Visualization of online and offline approach.

Figure 1.6 (a) depicts the offline approach with four VNR arrivals and one departure
represented as rectangles. An arrival represents a time when a VNR must be embedded
into the SN, and a departure represents when an embedded VNR should be removed
from the SN [12].

In the case of the offline approach shown in Figure (a), the InP has all VNRs available and
may choose to embed in any order. Given that the InP knows the resource requirements
of all VNRs, the InP can calculate the optimal ordering of embeddings such that as many
VNRs are embedded as possible [12].

In contrast, Figure (b) shows the online approach, where the ordering is decided by a
specific arrival time. Hence, the InP can no longer find an optimal embedding solution
for all VNR since the InP is unaware of arrivals in subsequent time slots. This accurately
depicts how a real-world SP would send VNRs to the InP at different times [12].

Dynamic and Static VNE

Secondly, we note the distinction between dynamic and static VNE approaches [12].

The dynamic approach simulates how computing hardware in a real network may be
added, removed, or upgraded during the network’s lifetime. This can be represented as
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dynamically adding, removing, or modifying SNNs, SNLs, and their resources between
VNR embeddings. However, if these dynamic events are impossible, we say the VNE
problem is static [12].

To provide an example of a dynamic SN, we use figure 1.7. Figure 1.7 visualizes a removal
event, where an SNN is removed from the SN.

At a discrete time t0, "VNR1" is already embedded into the SN. However, at t1, the
dynamic nature of the SN results in the removal of an SNN hosting V NN3. Hence,
V NN3 no longer has a valid placement, and the InP must re-embed "VNR1".

Figure 1.7: Visualization of the possible dynamic events in a VNE scenario.

Distributed and Centralized VNE

Based on our earlier description of the SN, it is owned by a single InP. However, real-world
InPs typically don’t have a monopoly on SN resources and the ability to provide services.

Instead, we can represent a more realistic VNE scenario by introducing the distributed
approach, where multiple SPs send VNRs to multiple InPs, each performing VNE on
their own SN [12].
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Figure 1.8: Visualization of a distributed InPs. Small SN graphs are used for simplicity.

Figure 1.8 visualizes the distributed approach and arbitrarily includes two SPs and three
InPs, although any number of SPs and InPs could be included. The figure assumes
each InP is entirely separate from other InPs, and each InP must solve VNE separately.
However, as noted in [12], in some even more realistic scenarios, InPs could work together
to decide where each VNR should be embedded in order to achieve mutual benefits [12].

Approach Description

Online VNRs arrive at
discrete time steps.

Offline VNRs have
no arrival time

Dynamic SN experiences
changes over time

Static SN experiences
no changes

Distributed SN is owned by
multiple InPs

Centralized Single InP has a
monopoly on SN resources

Table 1.1: Overview over the VNE approaches.
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1.2 Security

NFV brings several benefits through its virtualization of NFs but, unfortunately, also
brings some security concerns [9].

Consider some customer premises equipment part of a business. Before NFV, the CPE
would include non-virtualized NFs managed and purchased by the business [7]. As
such, the business had physical control over the hardware components, making them
responsible for the security of their network.

However, with the introduction of NFV, the NFs run on virtual machines located at
the InP’s premises. The InP has physical access to the SN hardware and is therefore
responsible for providing security to the hardware hosting the VNNs. However, if the
InP is malicious or has failed to provide security, attacks could be performed directly on
the hardware [13][14].

Furthermore, InPs could also be attacked by its hosted SP tenants or other outside
entities such that malicious actors gain access to SN hardware. In such a scenario, the
malicious actor would have direct access to VNNs of multiple VNs [13].

Due to these new kinds of attack vectors added by NFV, SP tenants rely on safety
measures provided by the InP to mitigate or prevent attacks. Depending on the kinds
of attacks each SP tenant needs protection from, the SP can equip VNRs with security
demands. Based on these demands, the InP can provide security by embedding VNNs
onto SNNs that implement protective measures8 [13][15].

1.3 Reinforcement Learning

This thesis utilizes Deep Reinforcement Learning (DRL) to make VNN placement decisions
when solving VNE. The choice of DRL comes down to its ability to solve complicated
decision-making problems effectively, such as optimizing moves in complex video games
like Dota 2 [16]. Similarly, we also face a complex task in this thesis, namely VNE, which
multiple papers state as NP-hard [2][4]. Therefore, we require a suitable solution, such
as DRL, to solve SAGIN VNE effectively. Additionally, DRL has already proven its
capabilities through existing works such as [2], [4], or [17], providing further merits for
choosing a DRL solution.

The following sections give an introduction to DRL concepts. We list all notations in
table 1.2.

8A more thorough introduction to security is given when reviewing the related works in section 2.2.1.
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Notation Description
t Discrete time step. t ≥ 0.
S Set of possible states in the environment.
St A particular state at time step t of the environment.
s A particular state s ∈ St.
A Set of possible actions the agent might take.
At A particular action at time step t.
a A particular action at a ∈ At.
R Reward function
Rt Reward received at time step t, represented as a random variable.
Rt+1 Immediate reward when leaving state at t.
r A particular reward given at Rt. r ∈ Rt.
π(a|s) The policy for choosing action a at state s.
γ Discount factor used when finding return.
Gt Discounted Return.
P (s′, r|s, a) State transition probability from current state and action.
Vπ(s) State value. Expected reward starting from s ∈ St.
Qπ(s, a) Action value. Expected reward starting from a ∈ At.
πθ(a|s) Policy represented as a neural network using weights and biases θ.
J(θ) Gives a score to θ in policy network πθ(a|s).
dπ(s) On-policy stationary distribution given policy π

Table 1.2: Notations used for describing RL concepts.

1.3.1 Environment

We say the VNE problem can be viewed as a Markov Decision Process (MDP) [17].
Generally speaking, an MDP represents an iterative approach to solving a decision-making
problem where multiple possible solutions are explored. The aim is to explore enough
solutions such that the MDP can reliably choose the optimal solution in any variation of
the problem [18].

Firstly, in an MDP, we consider an environment. The environment represents a virtual
space that contains information related to a given problem [18]. For instance, in the
VNE problem, the environment includes information about the SN, VNRs, and their
resources [17]. Or in other words, all the information required to represent the VNE
problem.

Whenever we perform a VNN embedding in the environment, we say we update the
environment state, going from a particular state s ∈ St at discrete time t to a new state
s′ ∈ St+1 at time t + 1. This results in a change in the environment [18]. For example, if
a VNN is embedded during VNE, the environment now includes an additional VNN that
changes the state of the available SN resources. State changes such as this occur once
every time step t→ t + 1 until the last terminal state is reached in time step T [18].
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Any given state s can transition to a large set of possible states, part of the state space
S [18]. For instance, a VNN has several possible embeddings in the SN, where each
possible embedding results in a unique state.

Furthermore, we know from our previous discussions on VNE that embeddings only
rely on the currently available resources in the SN. Hence, the SN resources of earlier
states St−1 are not considered when embedding a VNN in the current state St. When
this property holds, the Markov Property is satisfied, which is a requirement of MDPs
[17][18].

1.3.2 Agent

We now understand the concept of an MDP environment and how it transitions through
a series of states. However, if we want the series of states to end up at an optimal
embedding solution, we must carefully decide on each state transition. For example, we
would like to avoid a state where an embedded VNN restricts future placements or where
the SN resources are not effectively utilized.

To tackle these issues, we require an intelligent system that is capable of deciding the
best series of state transitions. Such a system is referred to as a DRL agent [18].

An agent is responsible for triggering each state transition through its actions a ∈ At,
which are made based on the current environment state [18]. Based on the current state,
the agent gets an overview of the remaining SN resources, part of the state, and can
make an intelligent placement action to utilize the SN resources efficiently. Once the
agent has made its action, the environment transitions to the new state based on a state
transition probability dependent on the current state and action [18]:

P (s′|s, a) = P{St+1 = s′|St = s, At = a}

Finding the best action in any state is typically challenging. For instance, there are many
possible actions a ∈ At for any state s ∈ St that must be considered. Secondly, even
if an action initially triggers a beneficial state change s′ ∈ St+1, the agent might only
have unbeneficial actions in subsequent states. As such, the agent must also be aware
of possible future disadvantages of choosing an action. This must be learned through
training the agent’s policy [18].

The past experiences required to make beneficial actions are stored in what’s referred to
as a policy π [18]:
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π(a|s)

The policy is often represented as a Neural Network (NN), which is also known as a policy
network [17]. The agent inputs the current state s ∈ St and receives the probability of
choosing a ∈ At among all other actions available in At [17]. Alternatively, the policy
can be set to output a fixed action per state. These two policy types are called stochastic
and deterministic policies, respectively [18].

Figure 1.9: Visualization of how an agent utilizes a stochastic policy in order to make
its actions.

Based on these descriptions, we see that a stochastic policy involves exploring other
actions since the choice of action, determined by the policy, is stochastic. In contrast, a
deterministic policy always exploits the action it views as best. Therefore, the deterministic
policy will never find a better route if the agent has a false view of the optimal solution.
This is the DRL exploitation vs. exploration problem [18][19]. We will only consider
stochastic policies in the following sections compared to deterministic policies.

1.3.3 Reward

Initially, an agent does not know which actions are best due to its policy being untrained.
Hence, we must train the policy network to increase the probability of good actions9.
However, we cannot adjust the policy network without a metric for state transitions and
actions, i.e., whether the agent performed a good or a bad embedding. To solve this
issue, DRL includes the concept of rewards [18].

Whenever the agent chooses an action, a reward r ∈ Rt+1 is given when moving from
a state St → St+1. This is referred to as an immediate reward. Immediate rewards
accumulate throughout all state transitions until reaching a terminal state ST [19]. This

9Actions that use SN resources effectively.
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is known as a trajectory, and the accumulated rewards during the trajectory discounted
by γ ∈ [0, 1] are known as the return Gt [18][19].

Figure 1.10: Figure showing the huge range of possible states.

Based on the concept of return, the agent can now quantify the disadvantage of making an
earlier action. To illustrate this point, imagine the agent has the following trajectory10:

s1 ∈ St → s2 ∈ St+1 → s3 ∈ St+2 → s4 ∈ St+3 → . . .

If the agent wants to know whether its action that triggered s2 ∈ St+1 was a good choice,
then the agent can find the trajectory return starting from state s1, indicating whether
the future state transitions were bad.

However, as figure 1.10 illustrates, this is only one of several possible trajectories starting
from s. As such, a more accurate return value can be found by combining all these
trajectory returns into an average value. This concept of calculating returns for all
trajectories from state s is known as the value of the state Vπ(s), or state-value.

Alternatively, we can limit the possible actions At available in a given state s ∈ St to a
single action a ∈ At, giving us an action-value Qπ(s, a) instead [19].

The state and action values are typically not calculated directly, they are instead estimated
using several trajectories. Based on this, the state value can be defined as [19]:

Vπ (s) = Eπ[Gt|St = s] (1.1)
10For simplicity, actions, and rewards are not shown.
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And the action value as [19]:

Qπ (s, a) = Eπ[Gt|St = s, At = a] (1.2)

Given a state s ∈ St, we can now find two types of values for that state. The state-value,
which is based on the estimated return from multiple trajectories from a given starting
state, and the action-value, which starts its trajectories with a particular action available
in the state. As such, the state-value is a more general value than action-value.

Based on this, the state-value will capture both good and bad trajectories from all actions.
We can use this value to give an estimate of whether a particular action a generally
outperforms any other action in state s. This is known as the advantage and is defined
as follows [18]:

Âπ(s, a) = Qπ(s, a)− Vπ(s) (1.3)

1.3.4 Bellman Equations

Above, we mentioned how the Vπ and Qπ values must be estimated based on several
possible trajectories. Since most problems will include a huge number of possible
trajectories, this estimation is a slow process.

However, one important property provides a solution: If we are calculating Vπ or Qπ for
a state St, then we can re-use previously calculated Vπ or Qπ values to find the value
of St. The value of St can be calculated directly from these existing values and the
immediate rewards. This property is captured through the Bellman equations [18][19]:

Bellman State-Value Equations

Vπ(s) = Eπ[Gt|St = s]

= Eπ[Rt+1 + γRt+2 + γ2Rt+3 + . . . |St = s]

= Eπ[Rt+1 + γ(Rt+2 + γRt+3 + . . .)|St = s]

= Eπ[Rt+1 + γ(Gt+1)|St = s]

= Eπ[Rt+1 + γVπ(St+1)|St = s]

(1.4)
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Bellman Action-Value Equations

Qπ(s, a) = Eπ[Gt|St = s, At = a]

. . .

= Eπ[Rt+1 + γ(Gt+1)|St = s, St = a]

= Eπ[Rt+1 + γVπ(St+1)|St = s, At = a]

(1.5)

Using the Bellman equations, the agent is now able to rely on previously calculated values
when performing value estimation, significantly improving estimation time in equation
1.4.

Note that the state value Vπ(s) is based on trajectories starting from any action a with
policy π. Since the action value Qπ(s, a) defines the value of each action, we can rewrite
Vπ(s) as the sum of all action values multiplied by its policy probability [19]:

Vπ(s) =
∑
a∈A

π(a|s)Eπ[Rt+1 + γVπ(St+1)|St = s, At = a] (1.6)

Vπ(s) =
∑
a∈A

π(a|s)Qπ(s, a) (1.7)

1.3.5 Training

When we train the DRL agent, we run several epochs. During an epoch, multiple
trajectories are started from random states until reaching a final state. The time step
of the final state is referred to as the horizon of the trajectory and is specified as a
parameter in the epoch. After each epoch finishes, the returns are compared and used to
adjust the policy [20]. The connection between epoch, trajectories, and the horizon is
seen in Figure 1.11.
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Figure 1.11: Figure showing the connection between epoch, trajectory, and horizon.

This thesis considers the Proximal Policy Optimization (PPO) method for adjusting the
policy network used to make VNE decisions11.

PPO is referred to as a policy gradient method. In policy gradient methods, the
trajectories contained in each epoch are used to update the weights and biases θ of the
policy network. This is achieved using the gradient of a reward function J(θ). Based
on the direction of the gradient, the weights and biases θ of the policy network can
be adjusted using back propagation such that the agent is more likely to choose the
beneficial actions and less likely to choose bad actions following policy πθ [21].

Since a policy is represented as a NN, the parameters θ of the NN must be updated to
improve the policy πθ. To give a score to a specific configuration of the parameters θ,
the formula 1.8 can be used. Note also how the formula can be expanded using formula
1.7 [21]:

J(θ) =
∑
s∈S

dπ(s)Vπ(s) =
∑
s∈S

dπ(s)
∑
a∈A

πθ(a|s)Qπ(s, a) (1.8)

11See section 5 for specific details on PPO.
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Moreover, note that equation 1.8, sums over all states s ∈ S when calculating the score
of the policy. This is required since the overall policy score must be based on the values
of all states. However, the sum of state value Vπ(s) alone is insufficient to represent
a policy score. Hence, Vπ(s) is multiplied by the stationary distribution dπ(s). This
ensures that state values are scaled appropriately such that unlikely states dπ(s′) ≈ 0
with high values Vπ(s′) don’t contribute much to the overall policy score [21].

Furthermore, the gradient of equation 1.8 is given by equation 1.9 [18][21]. Note that
the proof for equation 1.9 can be found in [21]:

∆J(θ) = Eπ[∇θ ln πθ(a|s)Qπ(s, a)] (1.9)

Lastly, given the gradient, we can improve the policy [19]:

θ = θold + α∆J(θ) (1.10)

1.4 Objectives

The main goal of this thesis is to solve the VNE problem in SAGIN while accounting
for the issues related to NFV security. To achieve this goal, we will cover the following
points:

• We review the related works to gain insight into the VNE problem, the security
aspect, and SAGIN.

• Describe and define our VNE problem including the evaluation metrics and our
objectives.

• Implement a simulator that is capable of simulating our version of the VNE problem.

• Evaluate the performance of our solution strategy compared to other solutions.

The thesis is divided into the following sections: Firstly, we discuss the related works
in section 2. Secondly, we describe and define our problem in the approach section
3. Thirdly, we describe the implementation in section 4. Next, section 5 contains an
evaluation of our performance compared to the existing solutions. Lastly, we conclude
our work in section 6.
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Related Works

This section provides a review of the related works. This section aims to provide insight
into how the VNE, security, and SAGIN are considered by the related work on which
our work is based.

The related works section is divided into the following sub-sections:

• Fundamental considerations for VNE: These works cover fundamental considerations
related to the VNE problem.

• Security-aware VNE: These works focus on enhancing the security of VNE solutions.

• SAGIN-aware VNE: Works that provide solutions to VNE in the context of SAGIN.

2.1 Fundamental Considerations for VNE

In the earlier works on VNE research, most works did not focus on security or SAGIN.
Nevertheless, early works researched essential aspects of the problem that should still be
considered today. For example, early works provided the foundations for future works
by proposing SNN and SNL parameters1 that adequately describe real networks and
objectives that reflect the goals of VNE.

For instance, the work done by Nogueira et al. [22] proposes a solution to VNE with
extensive processing parameters, such as CPU frequency, CPU cores, and CPU load, for
their SNNs. Although this provides a good description of SNN processing capabilities,
most network applications don’t have requirements related specifically to CPU frequency
or core count. As such, most works consider these processing parameters to be surplus

1Such as processing, memory, and storage.

25
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to requirements and only consider the more generalized processing (CPU) parameter
instead [15][23].

Furthermore, Nogueira et al. [22] proposes SNN memory (RAM) and SNL bandwidth
parameters. RAM is important since SNNs need to perform the processing of data. For
instance, a VNN performing DNS may require RAM for processing. As such, VNE works
should include CPU and RAM parameters to avoid congestion of SNNs. The same holds
for the bandwidth parameter since SNLs are likewise limited in capacity and should
not be utilized if congested. However, [22] does not mention whether their bandwidth
resource is based on wired or wireless SNLs. Moreover, an identical bandwidth is used
for all SNLs, which does not accurately depict the available SNL bandwidth in a real
network.

A general description of the VNE solution proposed by Nogueira et al. [22] is as follows.
Firstly, [22] implements a custom algorithm that scans the SN for remaining SN resources
and makes VNN placements based on VNNs with the most available resources. However,
when placing the VNLs, [22] uses a Constrained Shortest Path First (CSPF) algorithm
to select SNLs with sufficient remaining resources. This approach, which separates VNN
and VNL placement, is commonly known as a "two-stage" approach in VNE terminology
[12].

We highlight another work that is proposed by Zhang et al. [24], which improves the
aspects of Quality-Of-Service (QoS) and resiliency, which is not covered by [22]. Firstly,
Zhang et al. [24] does not include either processing, memory, or bandwidth parameters
since their focus is solely on resiliency and QoS. Instead, [24] proposes to include the
SNL delay parameter. The delay parameter is essential for QoS since it represents the
time spent transmitting data from the ingress VNN to the egress VNN. This is important
for some delay-sensitive applications, such as video streaming, where response times are
affected by the delay. By introducing delay into SNLs, the VNE solution provided by
[24] is able to ensure high QoS for its embedded VNRs.

Secondly, the work by Zhang et al. [24] addresses the issue of resiliency, which was
not covered in the previous work by Nogueira et al. [22]. Resiliency is a critical aspect
to consider when dealing with failure-sensitive applications. In the event of failures
occurring on SNNs hosting VNs, the VNs may become dysfunctional, making resiliency
an essential factor to consider.

Lastly, the simulation environment of both the [24] and [22] works has room for improve-
ment. Firstly, neither [22] nor [24] provides an online environment, thus considerably
reducing the value of their simulation in terms of applying their solution to a real network.
Furthermore, neither [22] nor [24] mentions that a dynamic or distributed approach is
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used, so one can assume that both works use a static and centralized approach. As such,
both solutions may prove incapable of maintaining VNs in a more challenging real-world
environment where the dynamism and scale of the environment would likely result in
significantly lower embedding performance.

Paper
Approach

SAGIN Security Objective
Parameters Environment

Algorithm Stages SNN SNL
Online/
Offline

Dynamic/
Static

Distributed/
Centralized

[22] Heuristic
Two-stage

CSPF
× ×

Even distribution
of

SN resources

CPU Load
CPU Freq.
CPU Cores

RAM
Storage

VMs

BW Offline Static Centralized

[24] Exact & Heuristic
Two-stage

BFS
× × QoS and resiliency Degree Delay Offline Static Centralized

Table 2.1: Overview over reviewed early works.

The table 2.1 provides an overview of the main considerations made by [22] and [24].

2.2 Security-Aware VNE

We have now gained an overview of some parameters and considerations in earlier works.
However, none of these works consider security, which is a vital consideration for any
service. The subsequent sections will review how security is considered by related works
that cover security.

2.2.1 Security Levels

Section 1.2 gave a high-level description of the vulnerabilities faced by NFV. These
vulnerabilities have prompted the creation of several works proposing VNF-FGE and
VNE solution algorithms capable of ensuring security. Such works are said to provide
security-aware solutions to the VNE problem [23]. This section primarily focuses on how
these works consider security.

Gong et al. [13] provides a security-aware solution to VNE and provides a high-level
definition of attacks and some defenses in VNE. In terms of attacks, [13] highlights
attacks between the VNE actors, namely the tenants, SPs, and InPs. The management
roles of SPs and InPs make them candidates for malicious activity. InPs can access the
physical hardware of the SN and can therefore perform any malicious actions directly on
the hardware. In addition, the SP can perform similar attacks due to its control over the
leased VNs [13].
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Gong et al. [13] also notes that InPs are susceptible to attacks by SP tenants who operate
at InP virtualized hardware. Since SP tenants operate in a VM, they should not have
any control or overview over their host OS. However, if the protection provided by the
VM is insufficient, the SP tenant could perform attacks directly on the host OS. Some
works refer to this general type of attack as a VM escape [14].

Regarding mitigation strategies, [13] gives a limited description. For example, [13] states
a list of security NFs, such as Intrusion Prevention Systems (IDS) and firewalls, which
could detect and protect against attacks. However, this is not a comprehensive list of
NFV security mechanisms [14].

To reflect these general security mechanisms, [13] combines them into a security level
parameter. However, [13] does not directly map these security mechanisms to the security
levels.

SNN Security Level

In order to incorporate the security levels into their VNE simulation, Gong et al. [13]
firstly incorporates the security level parameter in their SNNs. Secondly, a security
demand parameter is included in the VNNs, which limits the possible embeddings to
SNNs of equal or higher security level [13]. This combination of security and demand
provides an accurate representation of how SPs request higher security in VNRs when
demanded by SP tenants.

We highlight why it is logical to include security levels in SNNs based on the work by Lal
et al. [14], who provides a comprehensive review of NFV attacks and mitigations. Most
mitigation techniques noted by [14] involve direct implementations on SNN hardware2,
highlighting why security levels on SNNs accurately represent NFV security.

For example, [14] notes the possibility of hypervisor introspection. This gives the InP
additional monitoring capabilities over VMs running VNFs. Suppose a VNF behaves
maliciously, such as attempting a VM escape. In that case, the InP will be able to detect
the activity and react before significant damage can be done to the InP or other hosted
VMs [14]. Figure 2.1 visualizes the implementation of hypervisor introspection on the
OS, as described by Pattaranantakul et al. [25].

We highlight a second security technique presented by [14], which could also be applied to
SNNs. This security technique protects against the problem of InP employees tampering
with VMs. For instance, if an InP employee attempts to access data from a VM, then the
data should not be readable. In [14], it is therefore stated that the InP should encrypt

2Not inside VMs.
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Figure 2.1: Visualization of hypervisor introspection on SN hardware based on the
description by [25].

all stored data. Furthermore, [14] notes the possibility of signing VNF images, which are
used to instantiate VNFs. When the images are signed, employees cannot add malicious
software to the image without this being detected by InP management.

The two security techniques mentioned above are only two of several security techniques
presented by [14] that could be applied to SNNs. Hence, we argue the security levels in
SNNs proposed by [13] gives a good abstract description of SN security measures.

VNN Security Level

Secondly, Gong et al. [13] proposes security levels also in its VNNs that must match the
security demand of the host SNN. Gong et al. [13] claims this is required for protecting
the underlying SNN and other co-hosted VNNs.

However, we argue security levels in VNNs and security demand in SNNs are not required
to represent SN security. We base this argument on the NFV security overview provided
in [14]. In their overview, [14] presents multiple security techniques that could be applied
directly to the SNNs, not VNNs. Hence, we argue security levels in VNNs do not add
any additional benefits when representing the security issues introduced in NFV.

Additionally, the purpose of the VNN security level is not properly defined. For example,
consider a VNN. If we say the VNN arbitrarily represents a firewall VNF, which we know
is located inside a VM, then how can the VNN provide any protection to the SNN when
isolated by the VM? This is not mentioned in [13].

As such, we highlight the work by Zhao et al. [26], who proposes an alternative utilization
of security levels. In [26], security levels are not associated with the VNNs, and SNNs
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have no demanded security from their hosted VNNs. We argue this is a more accurate
representation of NFV security. In addition, [26] includes security levels in SNLs, which
is not covered in [13].

2.3 SAGIN-aware VNE

Until now, we have seen works with some differences in parameters, solution algorithms,
and simulation considerations. However, most of these works describe their SN as a single
domain, which does not accurately represent SAGIN [2]. Therefore, this section reviews
works that consider VNE in the context of SAGIN, which we call SAGIN-aware works.
Our review highlights how these works represent SAGIN and which VNE considerations
that are essential for representing SAGIN.

2.3.1 SAGIN SN Representation

The first SAGIN work we consider is proposed by Zhang et al. [2]. Their simulation
description highlights how special considerations must be taken for SAGIN compared
to non-SAGIN works. Firstly, earlier works such as [22] sampled their SNN and SNL
parameters using fixed-range probability distributions for a single domain only. As a
result, every SNN and SNL parameter value would be within the same distribution range
as all other SNNs and SNLs.

However, as we know from the description of hardware resources in SAGIN from section
1, this parameter configuration would be inadequate for SAGIN due to the hardware
differences between the domains [2]. As such, Zhang et al. [2] proposes an alternative
representation of the SN by defining it as three main graph components representing
the domains. Moreover, [2] gives each domain unique parameter ranges to each domain,
providing the unique accommodations required for each SAGIN domain [2].

However, since SAGIN aims to create an integrated network, each SN domain cannot be
disconnected from the other. Hence, [2] defines the concept of inter-domain links (IDL)
as a way of connecting SN domains into a single integrated SN. Figure 2.2 visualizes
IDLs as red connections.
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Figure 2.2: Visualization IDLs.

Regarding parameters, [2] applies the SNN CPU parameter to all SNNs, with unique
sampling ranges based on the domain of each SNN. However, [2] does not consider storage
or memory parameters. Next, [2] notes that SAGIN inherits QoS challenges related to
the physical nature of the space domain, where satellites must communicate through
vast distances, thus incurring transmission delays [2]. Due to this issue, [2] also considers
the delay parameter in all SNLs.

We also consider a second work on SAGIN proposed by Wang et al. [17], who considers
a similar problem as [2] but with some differences regarding parameters and VNE
environment considerations. One of the differences in the parameters is the candidate
domain proposed by [17].

Candidate domains are based on how SAGIN SNNs and SNLs are inherently given a
domain label based on which domain they are located in. In [17], this domain label is
used to give further capabilities to VNRs by including a set of domains in each VNN,
indicating which domains each VNN can be embedded in, referred to as their candidate
domains [17]. The concept of candidate domains is also interesting for the security
aspect since it could potentially be used to provide physical security. For example, air or
space-based equipment is inherently difficult to access physically. It could therefore be
considered a potential security measure to request VNNs in the space or air domains3.

3We will not consider candidate domains as a security measure in the problem of this thesis.
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Similarly to the parameters in [2], [17] includes most of the basic parameters besides the
candidate domain parameter. However, the RAM parameter is replaced by a storage
parameter not considered by [2].

2.3.2 VNE Considerations for Representing SAGIN

We have now seen how two works that accommodate SAGIN by modifying the structure
of the SN and by including the appropriate parameters for SAGIN. This section instead
highlights the differences in the VNE environment considerations, listed in table 1.1, of
both works.

Firstly, the non-SAGIN works we’ve seen in sections 2.1 and 2.2 all consider a static
environment instead of a dynamic one. Based on the assumption that these works
utilize a single ground-domain SN, then using a static representation is suitable since
ground-based hardware can be assumed to be mostly physically static.

However, for SAGIN, this conclusion no longer holds due to the inclusion of the air and
space domains, which are inherently dynamic [17]. For example, when a satellite or air
vehicle leaves its original position after some time, it may break the SNL connected to
it, thus also breaking VNs embedded in the SNL. As such, SAGIN works should ideally
consider a dynamic environment to simulate SAGIN effectively [17].

Although both the [2] and [17] works state the importance of using a dynamic environment,
neither actually considers the dynamic environment and instead considers a simplified
static environment. The argument for this approach provided by both works is that air
vehicles and satellites will not move much during a smaller time frame [2][17]. Therefore,
both [2] and [17] essentially use a static environment.

As we know, SAGIN includes additional VNNs and VNLs compared to a single-domain
network. Hence, the SAGIN network is much larger than a single-domain network.
Furthermore, since satellites can be anywhere around Earth, a SAGIN network could
also span the entire Earth. Due to the size of SAGIN, a logical assumption would be that
multiple InPs would perform embeddings. Hence, Wang et al. [17] proposes a distributed
SAGIN solution. Their solution includes splitting their SN even further into local areas
of SNLs and SNNs. Furthermore, each area is incorporated into their DRL solution by
using multiple DRL agents, where each agent is responsible for their area of the network.
Using this setup, [17] can closely resemble how the embeddings would be handled in a
real-world deployment of VNE in SAGIN.



Chapter 2 Related Works 33

Paper
Approach

SAGIN Security Objective
Parameters Environment

Algorithm Stages SNN SNL
Online/
Offline

Dynamic/
Static

Distributed/
Centralized

[2] DRL
Two-stage

BFS
×

Maximize
profits

CPU
Avg. distance

BW
Delay

Online
Static

for
time t

Centralized

[17] DRL
Two-stage

BFS
×

Maximize
profits

Candidate
domains

CPU
Storage

Avg. distance

BW Online
Static

for
time t

Distributed

Table 2.2: Overview over review related works on SAGIN.

The table 2.2 provides an overview of the main considerations made by the reviewed
works on SAGIN.

2.4 Thesis Contributions

In the review of the related works, we have seen both security-aware works and SAGIN-
aware works. However, none of these works or other works that we are aware of consider
both security and SAGIN. Hence, the main contribution of this thesis is to effectively
solve VNE when considering both SAGIN and security using a DRL solution approach.





Chapter 3

Problem Description and
Formulation

Based on the background sections and our review of related works, we now have the
required background knowledge to define and implement a simulator for our variation of
the VNE problem. This chapter is divided into three main sections:

1. Problem Description: General problem description.

2. Problem Formulation: Concrete mathematical definitions of our problem.

3. Implementation: Description of essential simulation details, design, and chal-
lenges encountered during implementation.

35
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3.1 Problem Description

The core of our problem is to provide a security-aware solution to VNE in SAGIN using
DRL.

The following sections provide the details of our VNE problem.

3.1.1 Bossiness Model

Our business model can be described with the help of Figure 3.1. The figure shows an
SP that needs a new service for one of its tenants. As such, the SP generates a new VNR
satisfying the service and all its requirements.

The SP sends the VNR to an InP, who deploys the VN to the SN using a DRL solution to
the VNE problem. If the InP successfully embeds the VN, it gains revenue based on the
number of resources used, which is paid by the SP. Moreover, the InP incurs operational
costs1 related to the maintenance and operation of the leased hardware. However, if the
InP fails to embed the VN, no revenue is gained and the InP incurs no maintenance costs
related to the VNR.

Figure 3.1: Visualization of a typical interaction between tenants, SP, and InP. InP
receives revenue and costs from embedding.

The main objective of this thesis is focused on the InP. Specifically, we can state our
objective as minimize InP cost while maximizing InP revenue. In other words, optimal
usage of SN resources.

The following problem description sections will highlight our VNE considerations.
1Cost serves as an indicator of how effectively the InP uses its resources.
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3.1.2 SN Description

The SN represents the resources that can be leased by the SP. This section describes the
assumptions we make regarding the SN.

SAGIN Description

We extend the traditional SN representation with SAGIN domains, a recent development
for extending communication network service coverage.

We consider our SN to have three separate domains, namely the ground, air, and space
domains. Note that the GEO, MEO, and LEO satellites discussed in section 1.1 are
considered part of a single more general space domain for simplicity.

We number the ground, air, and space domains as 1, 2, and 3, respectively.

Each domain is represented as a network of SNNs and SNLs, as described in section
1.1.2. However, the domains have the following unique characteristics:

• The air and space domains have fewer hardware resources to represent the costs
and difficulty of placing hardware in these domains.

• The air domain has fewer SNNs and SNLs than the ground domain.

• The space domain has fewer SNNs and SNLs than the air domain.

Next, we consider all domains to be connected using IDLs to create an integrated SN,
which is one of the goals of SAGIN. Figure 2.2 shows a visualization of IDLs. The ground
domain connects to the air domain, and the air domain connects to the space domain.

Security

As discussed in sections 1.2 and 2.2.1, NFV includes various security threats. As such,
we consider the abstract security levels measure to indicate how much protection is given
in SNNs:

• Level 3 → High Security

• Level 2 → Medium Security

• Level 1 → Low Security
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Furthermore, we want tenants to be able to specify their level of security. Hence, we
assume tenants provide information to SPs regarding desired security. This is reflected
by a security demand in the VNNs.

Figure 3.2: Visualization of how security levels and security demand constraints VNN
placements.

We illustrate the interaction between the security levels and the security demand in figure
3.2. If the security demand is not matched with an adequate security level, embedding is
impossible.

3.1.3 VNR Description

A VNR represents a VN and its requirements requested by an SP. This section describes
the assumptions we make regarding VNRs.

We consider the online approach for VNRs. As such, we extend our VNRs with an
arrival time and lifetime:

• VNR Arrival: When a tenant requests a VNR in the real world, the request may
occur at any time. The VNR arrival depicts this time. To assign each VNR an
arrival time slot, we use the Poisson probability distribution, commonly used to
represent arrival events [3][23][27]

• VNR Lifetime: Besides the arrival time, we consider each VNR to have an associated
lifetime. The lifetime is essential for releasing resources over time. For example, if
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no VNRs are removed over time, the SN will become completely congested. We use
the exponential distribution for sampling lifetimes, as it is commonly used to find
time between the Poisson arrivals [4][27]. Furthermore, we can scale the intensity
of the distribution to simulate more or less embedded VNR congestion in the SN.

Candidate Domain

We include the candidate domain constraint suggested by [17].

Each VNN includes a single candidate domain, signifying the VNN’s only embeddable
domain. Hence, the candidate domain is measured using SAGIN domain levels:

1. Embeddable in the ground domain.

2. Embeddable in the air domain.

3. Embeddable in the space domain.

By including the candidate domain, we add an additional novelty to the thesis and
increase the difficulty of our problem. Furthermore, adding the candidate domain gives
further capabilities to the SP who creates VNRs. In a scenario where the SP would like
its VNNs in specific domains, we can accommodate such a VNR.

Ingress and Egress

Section 1.1.1 introduced the concept of ingress and egress. We include an ingress VNN to
represent the ingress point of network traffic into the VN and an egress VNN to represent
the outgoing traffic from the VN.

By including ingress and egress VNNs, we ensure embeddings are placed in relation to
the network traffic source into the VN and the traffic destination out of the VN, which
is required for the operation of the service. This is visualized in Figure 3.3 where the
ingress is placed at the source, and the egress is placed at the destination in the SN.
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Figure 3.3: Visualization of how the ingress is embedded onto the SN traffic source and
the egress onto the SN traffic destination.

We consider the ingress and egress to have no resource demands. Moreover, since most
SP tenants are located in the ground domain, we consider SN source SNNs only in the
ground domain, while SN destination SNNs are in any domain.

3.1.4 Parameter Description

We choose our parameters using the following points:

• The parameters should give a realistic representation of real-world resources.

• The parameters should support the research goals of this thesis.

SN Parameters

We describe our SNN parameters as follows:

• CPU: All computations performed by SNNs use the CPU. Hence, when hosting a
new VNN onto an SNN, evaluating whether CPU resources are available is essential.

• Security Level: Represents the protection level.

• Domain: Represents the SAGIN domain in which the SNN is located.
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We describe our SNL parameters as follows:

• Bandwidth: Max available bandwidth in an SNL.

• Delay: We consider delay as the travel time over SNLs, which is especially relevant
for distant satellites communicating over significant distances.

The notations for the above parameters are listed in table 3.1. Note that table 3.1
categorizes each parameter as either a resource or a constraint. This signifies whether
the parameter is a spendable resource or an embedding constraint.

SNN

Parameter Type Measure Data type Description

CPU Resource Utilization integer CPU resources
SLA Constraint security level integer Security Level Available (SLA)
DOM Constraint domain integer Domain the SNN is part of

SNL

Parameter Type Measure Data type Description

BW Resource Mb/s integer Available bandwidth
DLY Constraint ms integer Travel time between nodes

Table 3.1: SN parameter notations.

VNR Parameters

We describe our VNN parameters as follows:

• CPU: VNNs demand CPU resources from SNNs to meet their computational
requirements.

• Security Demand: Demanded security from the SNN used to embed the VNN.

• Candidate Domain Specifies the domain in which the VNN can be embedded.

• Ingress Whether the VNN is an ingress or not.

• Egress Whether the VNN is an egress or not.

And the following VNL parameters:
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• Bandwidth: VNL bandwidth requirement.

• Delay Maximum VNL delay requirement.

The notations for the above parameters are listed in table 3.2.

VNN

Parameter Type Measure Data type Description

CPU Resource Utilization integer CPU resource demand
SLD Constraint security level integer Security Level Demand (SLD)
CAN Constraint domain integer Candidate domain
IN Constraint 1/0 bool VNN is an ingress
EG Constraint 1/0 bool VNN is an egress

VNL

Parameter Measure Data type Description

BW Resource Mb/s integer Bandwidth demand
DLY Constraint ms integer Max delay demand

Table 3.2: VN parameter notations.

3.1.5 Evaluation Metrics

Before a VNE solution algorithm can be deployed in a real network, it must be rigorously
tested and evaluated based on its objectives. This is essential to avoid introducing a
low-quality embedding algorithm onto a real network, potentially wasting resources and
reducing profits.

Acceptance Rate

The first metric is the acceptance rate, which captures the problem of failed embeddings.
Failed embeddings are a common occurrence due to the limited resources found in the
SN and the constraints imposed on the solution algorithm [12]. For example, if a VNN
requires an SLD not supported by the SLA in any SNN, then the VNR cannot be
embedded due to security constraints.

A solution algorithm with a low acceptance rate indicates the embedding algorithm is
not intelligently utilizing the SN resources. To illustrate this point, figure 3.4 shows
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how a lower acceptance rate is achieved due to a bad V NR1 embedding causing another
V NR2 to fail2. An alternative solution is shown in figure 3.5, which results in a higher
acceptance rate. The second solution is preferable for the InP due to higher resource
utilization.

Figure 3.4: Visualization of how one embedding might cause the next to fail.

Figure 3.5: Improved embedding solution compared to figure 3.4.

Long Term Average Revenue

To evaluate our goal of maximizing revenue, we include the Long Term Average Revenue
(LTR) metric. The LTR metric considers the average revenue of all embedded VNRs up

2Note that the ingress and egress of V NR1 and V NR2 are not shown for simplicity.
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to a simulation time t. LTR is a good metric for comparing how revenue improves over
time for different embedding scenarios [17].

Long Term Average Cost

To evaluate the overall profits, we must consider both revenue and cost. Hence, we
include a similar metric to LTR, but with revenue replaced by cost, termed the Long
Term Average Cost (LTC) [17].

Long Term Average Revenue To Cost Ratio

We use the Long Term Revenue Cost Ratio (LRC) to measure the ratio between revenue
and cost for a given time t [17]. LRC indicates whether the InP is earning or losing
money based on recordings up to time t. For instance, if the ratio between revenue and
cost is below one, the InP loses money. Moreover, if the InP achieves an LRC close to or
above one, then the InP uses an efficient VNE solution strategy that limits the overall
costs and maximizes revenue.

3.2 Problem Formulation

The previous section 3.1 provided the informal problem description. This section provides
the formulation:

1. SN Formulation.

2. VNR Formulation.

3. Parameter Formulation.

4. Metrics Formulation.

3.2.1 SN Model

Since the SN consists of SNNs and SNLs, a graph is ideal for representing the SN network
using nodes and edges. This is visualized in figure 3.6.

We denote A as the SN graph containing all SNNs in a set N and all SNLs in a set
E. These sets contain all SNNs and SNLs that are part of every domain, including
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Figure 3.6: Visualization of how a real SAGIN network can be represented as a graph.

IDLs connecting the domains. Additionally, we define A as undirected since SNLs are
bi-directional:

A = {NA, EA} (3.1)

When referring to a specific SAGIN domain, we include a superscript d ∈ {1, 2, 3}, which
represents the domain levels. The space, air, and ground domains are represented by
domain level 3, 2, and 1, respectively. However, to make the notation more readable,
we use the following letters to represent the domain levels: s = 3, a = 2, g = 1. Hence,
d ∈ {s, a, g}:

Ad = {NAd
, EAd} (3.2)

Next, in order to access a specific SNN, we use the following notation where an SNN ni

is extracted from the set of all SNNs NA
i using the set index i:

ni = NA
i (3.3)

When extracting an SNN from a specific domain, we use the following notation:

ni = NAd

i (3.4)

To access the parameter value of an SNN, we use a superscript denoting which parameter
we are accessing:

nCP U
i nSLA

i nDOM
i (3.5)
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Regarding the SNLs, we use a similar notation when extracting a specific SNL:

e(ni,nj) = EA
(ni,nj) (3.6)

In the notation above, we extract a specific SNL between the SNNs ni and nj .

Furthermore, accessing the parameter value of an SNL is identical to accessing the SNN
parameter value as follows:

eBW
(ni,nj) eDLY

(ni,nj) (3.7)

The notations above are listed in table 3.3.

Notation Description

d Specifies the domain of the SN graph

A SN graph including all domains

NA Set of SNNs in all domains

EA Set of SNLs in all domains including IDLs

Ad SN graph of domain d

NAd Set of SNNs in domain d

EAd Set of SNLs in domain d

ni Extracted SNN with index i

nCP U
i Available computational resources in SNN ni

nSLA
i SLA in SNN ni

nDOM
i Domain of SNN ni

e(ni,nj) SNL between ni and nj

eBW
(ni,nj) Available bandwidth resources in SNL e(ni,nj)

eDLY
(ni,nj) Delay of SNL e(ni,nj)

Table 3.3: SN notations.

We also require notation for specifying the amounts of SNNs and SNLs in the SN or the
number of some other element. For this purpose, we always use the η symbol. We list
the SN η notations and their descriptions in table 3.4.
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Notation Description

ηs Number of space domain nodes

ηa Number of air domain nodes

ηg Number of ground domain nodes

η(da,db) Number of IDLs between domains da and db

Table 3.4: SN additional notations.

3.2.2 VNR Model

The set of all VNRs is defined as R, and each specific VNR part of R is defined as ri

where i is the index of a specific VNR:

R = {ri, ri+1, ri+2, . . .} (3.8)

Each VNR contains three main parts, the VN denoted as B, the time of arrival denoted as
ta, and the time of departure3 denoted as td. We can access these parts using superscripts
on ri:

rB
i , rta

i , rtd

i (3.9)

We refer to the difference between ta and td as the lifetime of the VNR:

∆t = td − ta (3.10)

Since we consider our VN as a chain of ordered VNFs, we represent the VN using a
linearly directed graph denoted as B with a set of VNNs V B and a set of VNLs LB as
follows:

B = {V B, LB} (3.11)

We access a specific VNN using index f on the set of VNNs:

vf = V B
f (3.12)

3The departure is the sum of the arrival time and the lifetime.
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Moreover, we can access the parameter demands of a VNN as follows:

vCP U
f vSLD

f vCAN
f vIN

f vEG
f (3.13)

Next, we can access a specific VNL between two VNLs vf and vh as follows:

l(vf ,vh) = LB
(vf ,vh) (3.14)

Moreover, we can access the parameter demands of a VNL as follows:

lBW
(vf ,vh) lDLY

(vf ,vh) (3.15)

The notations above are listed in table 3.5.

Notation Description

R Set of all VNRs

ri VNR with index i

rta

i Time of arrival for a VNR

rtd

i Time of departure for a VNR

r∆t
i VNR Lifetime

rAccept Whether the VNR is accepted

B VN graph

V B Set of VNNs

LB Set of VNLs

vf VNN with index f

vCP U
f Computing resource demand in VNN vf

vSLD
f SLD in VNN vf

vCAN
f Candidate domain of VNN vf

vIN
f Whether the VNN is an ingress

vEG
f Whether the VNN is an egress

l(vf ,vh) VNL between VNNs vf and vh

lBW
(vf ,vh) VNL bandwidth demand

lDLY
(vf ,vh) VNL delay demand

Table 3.5: VN notations.
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Lastly, we include table 3.6, which includes additional VNR-related notations.

Notation Description

ηmax
v Maximum length of VN

ηmin
v Minimum length of VN

ηR
train Number of training requests

ηR
sim Number of requests for simulation

ηl
(vi,vj) Number of SNLs used to embed VNL l(vi,vj)

Table 3.6: VN additional notations.

3.2.3 Metrics

Acceptance Rate Function

We denote Rt as a set containing all VNRs that have arrived up to time t. All VNRs
ri ∈ Rt are assumed to be either accepted4 or rejected5 at time t. If some VNR ri is
accepted, then rAccept = 1. If ri was rejected, then rAccept = 0. This gives the following
function for calculating the acceptance rate at time t:

ACR(Rt) =
∑|Rt|

i=0 rAccept
i

|Rt|
∗ 100 (3.16)

Revenue Function

Long-term average revenue can be calculated using the revenue gained from all accepted
VNRs up to time t. Therefore, we must first define the VNR revenue function. Further-
more, to define the VNR revenue function, we must also define the revenue of successfully
embedding a single VNN and VNL.

We define the revenue of successfully embedded VNN as the allocated processing resources:

VNN Revenue(vf ) = sCP U vCP U
f (3.17)

Note that the parameter value vCP U
f in equation 3.17 is normalized based on its maximum

value specified in table 5.5. Hence, parameters with a high maximum value contribute
equally to the revenue as parameters with a low maximum value.

4The VNR was successfully embedded.
5The VNR could not be embedded.
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Furthermore, each normalized value is scaled according to a revenue scale s, which can
be used to tune the revenue gained by each parameter [28]. We base our own revenue
scales shown in table 3.8 on the values proposed by related works in table 3.76.

Parameter
[28] [11] [29]

Revenue
Scale

Cost
Scale

Revenue
Scale

Cost
Scale

Revenue
Scale

Cost
Scale

CPU 0.5 - 1 - 1 -
BW 0.5 - 1 - 1 -

Table 3.7: Scaling factors used in related works.

Parameter Revenue Scale s Cost Scale c

CPU 1 1
BW 1 1

Table 3.8: Scaling factors based on values from related works in table 3.7.

In terms of revenue gained by embedding a VNL, we consider the normalized bandwidth
usage scaled by sBW :

VNL Revenue(l(vf ,vh)) = sBW lBW
(vf ,vh) (3.18)

Based on equations 3.17 and 3.18, we get the following revenue per VNR r over its
lifetime ∆t:

Revenue(ri) = r∆t

|V B |∑
f=0

VNN Revenue(vf ) +
∑

l(vf ,vh)∈LB

VNL Revenue(l(vf ,vh))


(3.19)

Lastly, we use equation 3.19 to define LTR:

LTR(Rt) =
∑|Rt|

i=0 Revenue(ri)
t

(3.20)

Cost Function

Long-term average cost can be calculated using the costs associated with all embedded
VNRs up to time t. Again, we first define the cost associated with a single VNN and a
single VNL.

6Note that in a real-world scenario, these scales would be set by an InP.
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We define the cost associated with a successfully embedded VNN vf as the sum of the
normalized processing resources. Similarly to the revenue calculations, we use a cost
scaling factor c shown in table 3.8:

VNN Cost(vf ) = cCP U vCP U (3.21)

Next, we define the cost of an embedded VNL. Each VNL may require more than one
SNL to fully connect two VNNs, referred to as link splitting [17]. We denote the number
of SNLs used to embed a VNL l(vf ,vh) as ηl

(vf ,vh). We must sum over the number of SNLs
used to embed the VNL to find the cost:

VNL Cost(l(vf ,vh)) =
ηl

(vf ,vh)∑
i=0

lBW
(vf ,vh) (3.22)

Based on equations 3.21 and 3.22, we get the following cost per VNR ri:

Cost(ri) = r∆t

|V B |∑
i=0

VNN Cost(vf ) +
∑

l(vf ,vh)∈LB

VNL Cost(l(vf ,vh))

 (3.23)

Lastly, we use equation 3.23 to define LTC:

LTC(Rt) =
∑|Rt|

i=0 Cost(ri)
t

(3.24)

LRC Function

We can define LRC using equations 3.20 and 3.24 as follows:

LRC(Rt) = LTR(Rt)
LTC(Rt)

(3.25)

3.2.4 Constraints

Objective Function

Our objective is stated in section 3.1. By using our definitions of the ACR, LTR, LTC,
and LRC metrics, re-state our objective as:

• Maximize ACR such that as many requests are embedded as possible

• Maximize LTR such that the InP can achieve a higher profit.
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• Minimize LTC such that the InP can achieve a higher profit.

• Maximize LRC such that the InP can achieve a higher profit.

Constraints

1. Resource Constraints
For a VN B, each VNN and VNL in B includes resource demands7.

To embed B into some SN A, the resource demand of every VNN and VNL in B

must be satisfied by an equal or greater amount of resources in the host SNNs and
SNLs. This constraint must hold for all VNNs and VNLs in B for the successful
embedding of B.

Resource constraint for VNNs:

nCP U
i ≥ vCP U

f (3.26)

Resource constraint for VNLs:

eBW ≥ lBW (3.27)

2. Delay Constraint
Every VNL contained within some VN has a limit for the maximum acceptable
delay, denoted as lDLY

(vf ,vh). Hence, for a VNL to be embeddable onto an SNL, the
following constraint must hold:

eDLY
(ni,nj) ≤ lDLY

(vf ,vh) (3.28)

3. Candidate Domain Constraints
Each VNN specifies a candidate domain vCAN

i . This limits the possible VNN
embeddings to SNNs of the same domain as the candidate domain. Hence, for
a VNN vf to be embeddable on an SNN ni, the domain of ni must match the
candidate domain of vf :

nDOM
i = vCAN

f (3.29)

4. Security Constraint
Given a VNN vf , the following security constraint must hold for the VNN to be
embeddable on an SNN ni:

nSLA
i ≥ vSLD

f (3.30)
7Table 3.2 list all parameters considered as resources.
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5. Ingress Constraint
If a VNN is an ingress, it is denoted as vIN

f = 1. Moreover, if a VNN is an ingress,
it is only embeddable on a ground domain SNN. Hence, to embed an ingress
VNN onto an SNN, the SNN must have a domain equal to the ground domain:
nDOM

i = g.

3.3 Evaluation Objective

Our main evaluation objective is to assess how effective the DRL approach is in maximizing
our objectives8 using the ACR, LTR, LTC, and LRC metrics.

Furthermore, we compare our results with the well-known heuristic Global Resource
Capacity (GRC) algorithm proposed by Gong et al. [11] to evaluate how our DRL solution
compares to alternative solutions. The GRC algorithm is tested on our problem, and we
measure its performance against our own using the ACR, LTR, LTC, and LRC metrics.
Additionally, we measure the time spent embedding both solution approaches to evaluate
whether the solution could be applied to a real-world scenario.

Lastly, we evaluate the performance of both PPO and GRC in a scenario with heavy
network congestion, which simulates both approaches would handle congestion in a
real-world network. This is achieved by increasing the VNR arrival rate and lifetime.

Based on our findings, we state whether our DRL solution outperforms the GRC heuristic.
Section 5 gives specific details on the evaluation setup, GRC, and performance evaluation.

8See the section 3.2.4





Chapter 4

Implementation Setup

In this section, we will delve into the specifics of the implementation and how the
challenges encountered along the way were handled.

This chapter describes the following components of the implementation:

1. Generation of a multi-domain SN.

2. Generation of VNRs.

3. Embedding VNRs into a generated SN.

4. Implementation of the environment used for training and simulating the DRL
agent.

4.0.1 Implementation Overview

To give a high-level overview of the implementation components, we use figure 4.1. The
figure shows the components required to achieve training and testing of a DRL agent
solving the VNE problem. Each component represents a set of functions used to perform
the desired task of the component.
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Figure 4.1: Figure showing the high-level design of the implementation components.

The main component in figure 4.1 is the environment that represents the SN, the VNRs,
reward signal, and other functionality required by the agent1. This environment is used
by the DRL agent when training and simulating VNE.

The environment relies upon several sub-components to generate its SN and VNRs.
These are handled by the SN generator, which contains the required functions to generate
an SN, and the VNR generator, which contains the required methods to generate VNRs.

Furthermore, each SN and VNR must be created based on the simulation configuration
specified in the evaluation section 5. The configuration includes settings such as the
number of domain nodes, the value ranges of parameters, and so on. These configurations
are stored using the JavaScript Object Notation (JSON) format, which is represented as
the stored configuration component in the figure.

Furthermore, once the environment has generated the SN and the VNRs, the placement
tasks of each VNR are given to a solver. This solver represents the DRL agent used to
find VNN placements and the shortest path algorithm used to find VNL placements.
Placement solutions are given to an embedder that updates the state of the SN with
the new placements such that the placements are embedded. If the agent is currently
training, then the environment provides rewards to the agent used for learning.

1More details in section 4.0.6.
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4.0.2 Programs and Libraries

The implementation uses the Python2 programming language. This language was chosen
for its ease of implementation. Furthermore, Python has a wide range of RL and network
libraries which we will use extensively in our implementation. We list the main libraries
we use in table 4.1.

Library Description
networkx3 Used when generating SN and VNs.

stable-baselines34 Provides the implementation of the training algorithm.
Gym5 Provides the environment interface required by the training algorithm.

matplotlib6 Used for various visualizations.
numpy7 Used for various calculations.

tensorboard8 Used for visualizing training and testing performance.

Table 4.1: Python libraries.

4.0.3 Generating the SN

According to our SN definition in section 3.2.1, the SN should be represented as an
undirected graph with parameters added to SNNs and SNLs. To create such a graph, we
use the networkx library.

Networkx is a Python library for working with graph structures and includes predefined
functions for creating graphs, nodes, and edges, which we use for representing our SN
and VNs [30]. Additionally, networkx enables us to assign attributes to each VNN and
VNL, which is ideal for representing parameters such as CPU and bandwidth.

When creating our SN graph with networkx, we can choose from a list of graph generation
algorithms. Since our SN is supposed to represent a real-world physical network, we
must pick an algorithm that closely mimics a real network. For this purpose, we use the
Waxman graph generator [31].

The Waxman graph generator mimics how nodes in a real network are connected by
including distance in its node connection probability calculations [31]. This mimics how
real network nodes typically connect to other nearby nodes, as seen in figure 4.2.

2https://www.python.org/
3https://networkx.org/
4https://stable-baselines3.readthedocs.io/
5https://www.gymlibrary.dev/
6https://matplotlib.org/
7https://numpy.org/
8https://www.tensorflow.org/tensorboard
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Figure 4.2: Figure showing two example graphs. Graph (b) includes distance in its
connection probability and is better at mimicking a real network while graph (a) does

not and includes only random connections.

We are interested in the following parameters when we generate the Waxman graph:
Firstly, we adjust the α ∈ [0, 1] and β ∈ [0, 1] values, which relate to the connection
probability function [31]:

p = βe− d
αL (4.1)

From this formula, β scales the entire connection probability p and can be used to limit
the maximum possible probability. Secondly, α scales the distance d, making nodes less
likely to connect if α is close to zero. Note there is also the parameter L, which is set
automatically by networkx [31]. We provide the exact α and β values used by this thesis
in the evaluation section 5.

Graph Connectivity

An issue encountered when generating Waxman graphs was that outputted graphs could
contain multiple components leading to a disconnected graph. This happens because
the node connection probability in equation 4.1 only gives a probabilistic guarantee of a
connected graph. For example, consider a graph with three nodes as shown in figure 4.3.
Each pair of nodes has a probability p of connection. If any node or group of nodes are
not connected by edges, the entire graph becomes disconnected. Figure 4.3 shows one
such scenario where a single node is created as a separate component.
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Figure 4.3: Figure showing how a Waxman graph might be generated as a disconnected
graph.

If a disconnected graph is used as the SN, we encounter the following issues:

• Each component of the SN graph would represent separate networks. However, we
want a single integrated network.

• A VNR can only be embedded into one component due to a lack of connections to
the other components. Hence, the other components’ resources are unavailable for
that VNR, reducing embedding performance.

• Based on the previous point, the agent would have to learn to place entire VNRs
within one component. This would increase the learning difficulty of the agent.

To avoid the possibility of using a disconnected SN graph, we re-generate the Waxman
graph until the graph is connected. This will be highlighted further when we introduce
algorithm 4.1.

Multi-Domain

To accurately depict SAGIN, we must ensure the SN is generated with a specific number
of SNNs in the space, air, and ground domains. Furthermore, we must ensure the
SNNs and SNLs in each domain are given parameter values sampled according to the
distributions associated with the domain. In the subsequent sections, we refer to these
parameters as the domain-specific parameter values. Table 5.4 in the evaluation section
lists the domain-specific value ranges used by this thesis.
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Intuitively, the domains of the SN could be generated by running the Waxman graph
generator three times, generating each domain separately before joining the domains into
a single SN graph with IDLs. Some benefits of this approach are:

• Number of SNNs in the respective domain can be provided to the Waxman graph
generator. Hence, each domain graph could be generated using only a few lines of
code.

• Can specify different connectivity for each domain if desired. For instance, the
Waxman generator could generate each domain with different α and β values.

However, this approach considerably reduced the speed of SN generation when creating
smaller graphs, like the space domain graph. This decrease in speed was due to the
connectivity problem mentioned in section 4.0.3, which is more pronounced for smaller
graphs due to a higher probability of a disconnected graph, resulting in several costly
re-generation steps.

To illustrate this point, consider two graphs of a and b with three and four nodes,
respectively, shown in figure 4.4.

Figure 4.4: Illustration of two graphs with different probabilities of being connected.

Additionally, consider a simplified fixed connection probability between any two nodes
in each graph as p = 0.5. The probability of a single node being disconnected from
any other node is given by (1 − p)n−1. Hence, the probability of a single node being
disconnected in the graph a is given in equation 4.2 as Pa and similarly for b in equation
4.3 as Pb.

Pa = (1− 0.5)3−1 = 0.25 (4.2)

Pb = (1− 0.5)4−1 = 0.125 (4.3)
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As such, it is clear that each node has a lower probability of being disconnected when
considering larger graphs. Hence, when the SN was generated as three small graphs,
it often resulted in either of the graphs containing multiple components. Domain re-
generation was then performed multiple times, significantly reducing the generation
time.

The running time was tested using sixty ground SNNs, thirty air SNNs, and ten space
SNNs. Furthermore, the α and β Waxman graph parameters were set to 0.5.:

Generation of ground domain took 5.99 ms

Generation of air domain took 0.99 ms

Generation of space domain did not complete

Although the ground and air domains were generated quickly, the Waxman graph
generator could not create a connected graph for the smaller space domain after running
for over 15 seconds.

In order to avoid this problem, we employed a slightly different approach to generate the
multi-domain SN. Instead of the abovementioned method, the SN is created as a single
Waxman graph. The number of SNNs in this graph nwaxman is set to be equal to the
sum of SNNs across all domains:

nwaxman = ηs + ηa + ηg = Sum of SNNs in all domains (4.4)

Once the graph is generated, the domain graphs are extracted using a BFS node selection
and the selected nodes are removed from the original graph. The selected nodes are
subsequently used to form the new domain graph.

By generating the graph in this way, we ensure the Waxman graph generator can create
all domains, even if some domains only include a few nodes. With the new setup, the
Waxman graph generation only took 10ms:

Generation of the combined graph took 9.99 ms

Algorithm 4.19 shows the steps to generate our SN. The algorithm starts by generating
the entire SN graph that contains the SNNs of all domains using the Waxman graph

9Note that we refer to the stored configuration using the config keyword in our algorithms. The config
can be assumed as globally accessible.
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Algorithm 4.1 GenerateSN

1: α← config[waxman_alpha_value]
2: β ← config[waxman_beta_value]
3:
4: ηs ← config[number_of_SN_space_nodes]
5: ηa ← config[number_of_SN_air_nodes]
6: ηg ← config[number_of_SN_ground_nodes]
7: ω ← ηs + ηa + ηg

8:
9: {Generate Waxman graph using networkx (nx)}

10: Ag ← nx.generateWaxmanGraph(ω, α, β)
11: if isConnected(Ag) = false then
12: return GenerateSN()
13: end if
14:
15: Ag, Aa ← splitGraph(Ag, ηa)
16: if isConnected(Ag) = false then
17: return GenerateSN()
18: end if
19:
20: Ag, As ← splitGraph(Ag, ηs)
21: if isConnected(Ag) = false then
22: return GenerateSN()
23: end if
24:
25: {Set domain-specific parameter values}
26: As ← setDomainParameters(As, s)
27: Aa ← setDomainParameters(Aa, a)
28: Ag ← setDomainParameters(Ag, g)
29:
30: A← addInterDomainLinks(Ag, Aa, As)
31:
32: return A

generator (line 9). We initially call this graph Ag since it will eventually represent the
ground domain graph. However, at this point in the algorithm, Ag contains the nodes of
all domains.

Next, if the generated Waxman graph Ag is disconnected, it is re-generated using a
recursive step to avoid the previously mentioned problems of a disconnected graph (lines
10-13). Once the graph is connected, the domains are split from the graph using algorithm
4.2 (line 15, 20).

Algorithm 4.2 takes as input the graph and the number of SNNs to split from the graph.
Once called, the algorithm selects an arbitrary starting SNN ni in the graph (line 2) and
then runs a BFS selection of nodes starting from ni (line 4). The BFS algorithm stops
when the required number of SNNs is picked. Using networkx, the selected nodes are
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Algorithm 4.2 splitGraph
Input: Current ground domain graph Ag ← {Ng, Eg}, Number of nodes η to split

1:
2: ni ← {Pick random node from Ag}
3:
4: nodeSelection← BFSNodeSelection(Ag, η)
5: subGraph← nx.subgraph(Ag, nodeSelection)
6: Ad ← nx.Graph(subGraph)
7:
8: Ag ← nx.remove_nodes_from(Ag, nodeSelection)
9:

10: return Ag, Ad

formed into a subgraph, which includes the selected SNNs and all SNLs connecting the
SNNs (line 5). The subgraph is then used to form a new graph Ad representing the new
domain (line 6), and all SNNs and SNLs part of the subgraph are removed from the
original graph Ag (line 8).

Algorithm 4.1 calls algorithm 4.2 twice, once for the air domain (line 15) and once for the
space domain (line 20). Note that for each split, another connectivity check is required
on Ag (lines 16-18,20-22). This is required since the removed nodes might split the Ag

graph into two components, as shown in figure 4.5. Although this scenario is unlikely
for medium to large-sized graphs, the issue should still be addressed by including the
connectivity checks to avoid program exceptions during simulation.

Figure 4.5: Illustration of how domain generation might create a disconnected graph.

Once all domains are generated as separate graphs, algorithm 4.3 is called (lines 26-28)
to set the domain-specific parameter values of each SNN and SNL for each generated
domain As, Aa, and Ag. This is performed by iterating over each SNN and SNL in the
provided graph and then assigning them the sampled parameter values according to the
configurations specified in table 5.4.

Lastly, we join the SAGIN domains into a single SN using IDLs as shown in algorithm
4.4. Ground-air IDLs are added by randomly selecting two SNNs, one from the ground
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Algorithm 4.3 setDomainParameters
Input: SN graph A← {NA, EA}, domain d

1:
2: for ni ∈ NA do
3: nCP U

i ← {Sample CPU from SN domain d config}
4: nSLA

i ← {Sample SLA from SN domain d config}
5: nDOM

i ← d
6: end for
7:
8: for e(vi,vj) ∈ EA do
9: eBW

(vi,vj) ← {Sample BW from SN domain d config}
10: eDLY

(vi,vj) ← {Sample DLY from SN domain d config}
11: end for
12:
13: return B

Algorithm 4.4 addInterDomainLinks
Input: Domain graphs Ag ← {Ng, Eg}, Aa ← {Na, Ea}, and As ← {N s, Es}

1: η(g,a) ← {Get number of ground-to-air IDLs from config}
2: η(a,s) ← {Get number of air-to-space IDLs from config}
3:
4: A← nx.Union(Ag, Aa, As) {Join graphs using networkx}
5:
6: for η(g,a) iterations do
7: ni ← {Pick a random node from Ag}
8: nj ← {Pick a random node from Aa}
9:

10: nx.add_edge(A, ni, nj)
11: e(ni,nj) ← E

(g,a)
(ni,nj) {Get the newly created edge}

12: eBW
(ni,nj) ← {Sample BW from ground-to-air config}

13: eDLY
(ni,nj) ← {Sample DLY from ground-to-air config}

14: end for
15:
16: for η(a,s) iterations do
17: ni ← {Pick a random node from Aa}
18: nj ← {Pick a random node from As}
19:
20: nx.add_edge(A, ni, nj)
21: e(ni,nj) ← E

(a,s)
(ni,nj) {Get the newly created edge}

22: eBW
(ni,nj) ← {Sample BW from air-to-space config}

23: eDLY
(ni,nj) ← {Sample DLY from air-to-space config}

24: end for
25:
26: return A
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Figure 4.6: High-level visualization of SN generation.

domain and one from the air domain (lines 7-8). A new IDL is added to the graph A

using networkx between the selected SNNs (line 10). The IDL is subsequently provided
with bandwidth and delay sampled according to the configuration (lines 12-13). Once
all ground-air IDLs are created, the air-space IDLs are added in a similar fashion (lines
16-24).

Figure 4.6 gives a high-level visualization of the abovementioned SN generation process.

Lastly, we provide a visualization of two generated SN topologies in figure 4.7 with the
help of the networkx drawing method. The figure shows a small network to the left which
includes only a few nodes and edges. On the right, a larger network is shown.
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Figure 4.7: Visualization of two generated SN topologies.

4.0.4 Generating VNRs

A VNR consists of a VN, an arrival time, and a departure time. This section provides
details on how the following parts are generated:

• How the VN is generated.

• VNR arrival and departure times.

Generating the VN

According to our VN definition in section 3.2.2, the VN should be represented as a linear,
directed acyclic graph with parameters added to VNNs and VNLs. This graph is also
created using networkx.

Algorithm 4.5 shows the steps used to generate a new VN. Initially, the length of the new
VN is decided by sampling from the uniform distribution ranging from the minimum
ηmin

v and maximum ηmax
v VN length, as specified in the configuration (lines 1-3).

Sampling from U(ηmin
v , ηmax

v ) ensures that our VNs are of arbitrary length, which
simulates the arbitrary number of VNNs required for different services.

To generate the graph, a list of VNN IDs is created by iterating from i = 0 up to the
sampled VN length i = V NLength and storing the VNN ID i at each step. Furthermore,
a tuple (i, i + 1) is stored to represent the VNL between the current and subsequent
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Algorithm 4.5 GenerateVN
1: ηmin

v ← {Get min VN length from config}
2: ηmax

v ← {Get max VN length from config}
3: V NLength← U(ηmin

v , ηmax
v ) {Draw sample}

4:
5: B ← nx.DiGraph() {Initialize empty graph}
6:
7: {Initialize empty Python lists for storing the SNNs and the SNLs}
8: nodes← []
9: edges← []

10:
11: for i = 0 to i = V NLength− 1 do
12: nodes.append(i)
13: edges.append((i, i+1))
14: end for
15: nodes.append(V NLength− 1) {Add last node not included in the for-loop}
16:
17: {Add nodes and edges to B}
18: B ← nx.addNodesFrom(B, nodes)
19: B ← nx.addEdgesFrom(B, edges)
20: B ← setV NParameters(B)
21:
22: return B

VNN (lines 11-14). Using networkx, the list of VNN ID and VNL tuples can be added to
the graph, as shown in lines 18-19. Figure 4.8 visualizes the process used to generate the
VN graph.

Figure 4.8: Visualization of VN generation.

The VN graph topology is finished at this stage, but its VNN and VNL parameter values
are yet to be sampled and added. As such, we sample the parameter values of VNNs
and VNL according to table 5.5 using algorithm 4.6.

Algorithm 4.6 takes as input the VN and iterates over all VNNs (line 2) and VNLs (line
18) and applies parameter values sampled according to the configuration.
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Algorithm 4.6 setVNParameters
Input: VN graph B ← {V B, LB}

1:
2: for vf ∈ V B do
3: if f = 0 or f = |V B| − 1 then
4: vCP U

f ← 0
5: vSLD

f ← 1
6: else
7: vCP U

f ← {Sample CPU from VNN config}
8: vSLD

f ← {Sample SLD from VNN config}
9: end if

10:
11: if f = 0 then
12: vCAN

f ← 1 {Ingress candidate domain is ground only}
13: else
14: vCAN

f ← {Sample CAN from VNN config}
15: end if
16: end for
17:
18: for l(vf ,vh) ∈ LB do
19: vBW

(vf ,vh) ← {Sample BW from VNL config}
20: vDEL

(vf ,vh) ← {Sample DEL from VNL config}
21: end for
22:
23: return B

Note that the first and last VNNs part of any VN represents the ingress and egress,
respectively. Hence, we consider these VNNs to have no resource or security requirements.
Moreover, ingress VNNs should only be located in the ground domain. Due to these
factors, algorithm 4.6 sets CPU = 0 and SLD = 1 (line 4-5) for ingress and egress
VNNs. Moreover, ingress VNNs are given a candidate domain in the ground domain
(lines 11-13).

Arrival and Departure Times

Following the VNE online approach, each VNR should be associated with an arrival time
and a departure time. As such, we include the following in the implementation:

1. A timer that keeps track of the simulation time. We refer to the current time at
any point during training or testing as the simulation time.

2. A function generateV NRs for generating a set of VNRs. The function should also
ensure each VNR is given a simulation time for its arrival and a simulation time
for its departure.
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Algorithm 4.7 generateVNRs
Input: Number of requests to generate ηR

1: λP oisson ← {Get arrival rate from config}
2: λExp ← {Get expected lifetime from config}
3: R←Map()
4: arrivalsAtT ime←Map()
5: departuresAtT ime←Map()
6:
7: {Generate requests without arrival or departure times}
8: for i = 0 to i = ηR do
9: rB

i ← GenerateV N() {Create request ri and set its VN B}
10: R[i]← ri

11: end for
12:
13: {Set arrival and departure times}
14: i← 0
15: time← 0
16: while i < |R| do
17: nArrivals← Poisson(λP oisson).sample()
18: arrivalRequestIDs← []
19: for nArrivals do
20: arrivalT ime← time
21: departureT ime← time + Exponential(λExp).sample() + 1
22: ri ← R[i]
23: rta

i ← arrivalT ime

24: rtd

i ← departureT ime
25:
26: arrivingV NRs[time].append(ri)
27: departingV NRs[time].append(ri)
28:
29: i + +
30: end for
31: time + +
32: end while
33: return R, arrivingV NRs, departingV NRs

The generateV NRs function is shown in algorithm 4.7, which initially creates three
maps (lines 3-5):

1. R: A map using VNR ID as the key. Used for storing and retrieving a specific
VNR.

2. arrivalsAtT ime: A map using simulation time as the key. Used for storing and
retrieving a list of VNR IDs arriving at a specific simulation time.

3. departuresAtT ime: A map using simulation time as the key. Used for storing and
retrieving a list of VNR IDs departing at a specific simulation time.
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By using maps for storing requests, arrivals, and departures, we ensure a quick retrieval
time of O(1) when storing and retrieving VNRs during training and testing.

Once the maps are created, algorithm 4.7 iteratively generates the VN of each VNR
using algorithm 4.5 (lines 8-11). Each VN is stored in the R map with a key equal to
the ID i of the current VNR.

To sample the arrival and departure times, we create two counters, one representing time
(line 15) and one representing the current request (line 14). Next, we sample the Poisson
distribution, which returns the number of arrivals for a single simulation time unit (line
17). Hence, if there are more than zero arrivals for the current time unit, a for-loop
iteratively applies the current simulation time as the arrival time of each subsequent
VNR (lines 19-27).

Moreover, whenever a VNR is given an arrival time, the departure time is also sampled
using the Exponential distribution (line 21). The sample from the Exponential distribution
represents the number of time units the VNR should be embedded in the SN, known
as the lifetime. The departure time is calculated by adding the arrival time with the
sampled lifetime.

An additional +1 is added to the departure time (line 21). This addition fixes an issue
related to sampling zero lifetime from the exponential distribution, which caused some
VNRs to arrive and depart at the same simulation time. These VNRs would therefore be
removed immediately after being embedded and thus have no impact on the simulation.
Hence, adding one ensures all VNRs have a nonzero lifetime.

4.0.5 Embedding

We refer to embedding as the process of allocating SNN and SNL resources based on
VNN placement decisions made by the agent and VNL placement decisions made by a
shortest path first algorithm.

By "allocating resources," we refer to reserving SN resources for a specific VNN or VNL
placement.

We consider embedding in terms of the following stages:

• The VNN embedding stage: The DRL agent decides the SNN placement location of
all VNNs, part of a VNR. If all placements are valid, the VNNs are subsequently
embedded into the SNNs.
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When we say "the placements are valid," we refer to whether the placements satisfy
the constraints listed in section 3.2.4. We use algorithm 4.8 to verify whether a
VNN placement decision is valid. The algorithm checks each constraint (lines 2-5)
listed in section 3.2.4 and returns true if all constraints are satisfied.

• The VNL embedding stage: A shortest path first algorithm finds the shortest path
of SNLs that can represent the VNL connections in a VN. The VNL is subsequently
embedded into the chosen SNLs if a valid path is found.

Algorithm 4.8 verifyVNN
Input: SNN chosen by the agent ni, VNN to embed vj

1:

2: CPUbool ← nCP U
i ≥ vCP U

j

3: STObool ← nST O
i ≥ vST O

j

4: SLDbool ← nSLA
i ≥ vSLD

j

5: CANbool ← nDOM
i = vCAN

j

6:

7: if CPUbool and STObool and SLDbool and CANbool then
8: return true
9: end if

10: return false

The following subsections include specifics on how we handle each stage of the embedding
process.

Embedding VNNs

We use algorithm 4.9 to embed valid VNN placements. The algorithm performs the
following steps:

• The resources demanded by the VNN vf are subtracted from the SNN chosen for
placement (line 2). This ensures that subsequent placements cannot use the same
SNN resources.

• Once the SNN resources are allocated to the VNN, we say the VNN is embedded.
Algorithm 4.9 stores all embedded VNNs in a map called storedVNNs.

The map stores which SNN has been used for embedding each VNN. This informa-
tion is essential for the de-allocation stage later when the lifetime of the respective
VNR expires. When a VNR expires, we can access each SNN used to host VNNs
using the storedVNNs map and de-allocate the resources.
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Algorithm 4.9 embedVNN
Input: SN graph A← {N, E}
Input: SNN ni to embed onto, VNN vf to embed
Input: Map of all VNN embeddings called storedV NNs

1:

2: nCP U
i ← nCP U

i − vCP U
f {Allocate SNN resources}

3: storedV NNs[vf ]← ni {Store node embedding for later de-allocation}

Embedding VNLs

Once the VNN embedding stage has concluded successfully, we move on to the VNL
embedding stage. In the VNL embedding stage, each VNL, part of some VNR, must
be embedded into one or more SNLs that satisfy the bandwidth and delay constraints
of the VNL. Furthermore, the SNLs chosen for embedding must connect the previously
placed VNNs.

Figure 4.9 visualizes the VNL embedding process using a simplified SN graph structure:

Figure 4.9: Visualization of how the VNL embedding stage can use multiple SNLs.

In part (X) of the figure, the VNN embedding stage has concluded successfully. Hence,
all VNNs are embedded. Subsequently, the VNL embedding stage must now place V NL1

to connect the ingress (a) and VNN (b). Part (X) shows a possible SNL path denoted as
"A" that connects (a) and (b). We assume this is a valid path, and the VNL is embedded
into SNL "A". In this case, a one-to-one embedding was found between the SNL and the
VNL.

In part (Y), V NL2 must be embedded such that VNN (b) and VNN (c) are connected.
In this case, a one-to-one mapping is impossible since VNN (c) is placed so that at least
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two SNL links are required to embed V NL2. In cases like this, we can use two SNLs,
"B" and "C", to embed V NL2.

Both "B" and "C" must satisfy the resource demands of V NL2. Moreover SNLs "B" and
"C" must both allocate the demanded bandwidth resources to V NL2. Hence, the InP
incurs additional costs for the extra SNL usage while no additional revenue is gained.
Therefore, VNN placement decisions during the VNN embedding stage should always
place VNNs closely grouped to avoid additional costs. Lastly, part (Z) of the figure
embeds V NL3 using a one-to-one mapping.

Regarding the choice of which SNLs should be used for embedding each VNL, several
approaches could be applied:

• A shortest path first algorithm can be used to find a path between each pair of
VNNs placed during the VNN embedding stage. This ensures the least amount of
SNLs are used to embed the VNLs which minimizes the costs.

• The DRL agent could perform the placement decisions for both the VNNs and
VNLs. With this approach, the agent could learn the optimal strategy for placing
VNLs, potentially increasing LRC and ACR.

We choose to use the shortest path algorithm due to the following points:

• Although the DRL agent is not directly learning how to embed VNLs, it can still
indirectly learn how VNLs impact performance. For instance, the agent could learn
that placing multiple VNNs in close proximity can provide higher LTR and ACR.
Hence, the agent should be able to learn VNN placements that reduce SNL usage
and costs.

• Ease of implementation: The shortest path algorithm was chosen for its ease of
implementation. This allowed for more work on optimizing the VNN placements.

We use the networkx implementation of the Dijkstra Shortest Path (DSP) algorithm to
find valid SNL paths for VNLs.

The DSP algorithm takes the source and destination SNNs as input and iteratively
explores the SNL weights starting from the source. The weights are stored in a priority
queue which is updated based on the current shortest path. Once all SNLs are explored,
the shortest path is returned.

The DSP algorithm assumes each SNL includes a weight represented by a single value.
However, our SNLs are represented by two weights: the available bandwidth and the
delay. Hence, we create a custom function for calculating the SNL weight.
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We provide the DSP algorithm with the custom SNL weight function as shown in
algorithm 4.10. The function takes the current VNL10 l(vf ,vh) being placed and the
current SNL being explored e(ni,nj). Based on the resource demands of l(vf ,vh), algorithm
4.11 returns true if the current SNL has sufficient resources or false otherwise.

If the SNL has sufficient resources, then the custom SNL weight is set as one in algorithm
4.10 (line 2). Hence, the shortest path is the path with the least number of SNLs.

If the SNL has insufficient resources, then the custom SNL weight is returned as None

in algorithm 4.10 (line 4). This instructs the DSP algorithm to ignore the current SNL.
Hence, all SNLs with insufficient resources are ignored, which ensures all SNL paths
found are valid.

Algorithm 4.10 customSNLWeight
Input: SNL edge e(ni,nj), VNL edge l(vf ,vh)

1: if verifyEdge(e(ni,nj), l(vf ,vh)) then
2: return 1
3: end if
4: return None

Algorithm 4.11 verifySNL
Input: SNL e(ni,nj), VNL l(vf ,vh)

1: BWbool ← eBW
(ni,nj) ≥ lBW

(vf ,vh)

2: DELbool ← eDEL
(ni,nj) ≤ lDEL

(vf ,vh)

3:

4: if BWbool and DELbool then
5: return true
6: end if
7: return false

Lastly, we use algorithm 4.12 to perform the VNL embedding for an entire VNR. The
algorithm iterates over each VNL part of the VNR and tries to find a valid path of
SNLs using DSP. If a valid path is found for all VNLs, then the VNLs are embedded by
allocating the demanded bandwidth resource from the SNLs, and we say the VNR is
accepted. However, if no valid path is found for at least one VNL, the VNR is rejected,
and no SNL resources are allocated.

10For example V NL2 in figure 4.9.
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Algorithm 4.12 embedVNLs
Input: SN graph A← {NA, EA}, VN graph B ← {V B, LB}
Input: Map of all VNN embeddings called storedV NNs

Input: Map of all VNL embeddings called storedV NLs

1:

2: for l(vf ,vh) ∈ LB do
3: ni ← storedV NNs[vf ] {Get SNN ni used to host VNN vf }
4: nj ← storedV NNs[vf ] {Get SNN nj used to host VNN vh}
5: path← nx.dijkstra_path(A, ni, nj) {Find SNL path}
6: if path is empty then
7: return false
8: else
9: for SNN source na and SNN destination nb part of SNL in path do

10: e(na,nb) ← EA
(na,nb) {Get SNL from SN}

11: eBW
(na,nb) ← eBW

(na,nb) − lBW
(vf ,vh) {Allocate SNL resources}

12: storedV NLs[l(vf ,vh)]← path {Store path for later de-allocation}
13: end for
14: end if
15: end for
16: return true

4.0.6 Environment

In this section, we describe the environment used during training and testing.

Environment Interface

To implement our environment, we implement the environment interface provided by the
Gym11 RL library in Python.

Gym was chosen due to the following points:

• Gym provides a class interface for implementing the environment [32] which limits
the scope of our environment implementation.

• By implementing the Gym environment interface, we can utilize the RL algorithms
that are implemented in the Stable-Baselines3 (SB3)12 Python library. The RL

11https://www.gymlibrary.dev/
12https://stable-baselines3.readthedocs.io/en/master/
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algorithms, such as PPO, implemented by SB3 take an environment following the
Gym interface as input. Hence, by using the Gym interface, we can utilize existing
implementations of PPO and have more time to improve the model performance.

The environment interface provided by Gym requires the following environment methods
to be implemented following the interface [32]:

1. Environment initialization: The environment initialization is used to prepare the
environment for training or testing. This includes tasks such as generating the SN
and VNRs.

2. Environment step method: For our VNE problem, each action the agent performs
represents a VNN placement decision. The step method handles the placement
decisions made by the agent. Furthermore, the method gives the agent the updated
state based on the placement and the reward for the placement used during training.

3. Environment reset method: We iterate through a training set of VNRs and perform
embedding during training. Once all VNRs are embedded, we must reset the
environment state to resume training on the test set. This task is performed by
the reset method [32].

Environment Initialization

When initializing the environment before training or testing, we perform the following
operations:

• Generate the SN.

• Generate the VNRs.

• Initialize the current simulation time as zero.

• Get the first arriving VNR.

• Specify action space and observation space.

As specified in the last point, the Gym environment interface requires an action space
and an observation space to be defined during the initialization [32].

The action space represents which actions can be performed by the agent [32]. For our
problem, the possible actions are the possible placements of a VNN, which are all SNNs.
Therefore, we define our action space as Discrete(0, ηs + ηa + ηg) space [33]. Or in other
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words, each possible action is represented as a discrete value ranging from zero to the
number of SNNs. Each discrete value represents the ID of an SNN.

The observation space13 represents the dimensions of the observable state of the environ-
ment14 that is provided to the agent during both training and testing to make placement
decisions [32]. Any environment state provided to the agent during training or testing
should adhere to the dimensions of the observation space.

Specifying the dimensions of the observation space depends on how much information we
want to provide to the agent such that the agent can learn to make optimal placements.
For our problem, we should at least provide the agent with information about the
available SN resources and the demands of VNNs such that the agent can learn to make
valid placements:

1. For every SNN, we include the available CPU, SLA, and domain to give the agent
information about available resources. This extends the observation space with
4 ∗ (ηs + ηa + ηg) entries.

2. We include the demanded CPU, SLD, and candidate domain of the next VNN to
be placed, which gives the agent information regarding the placement demands.
This extends the observation space by three additional entries.

Based on the observation space entries specified above, we initially have a total of
entries = 4 ∗ (ηs + ηa + ηg) + 4 entries. Hence, we define our default observation space
as a Gym Box(min = 0, max = 1, dim = (entries, 1)) space [33]. Or in other words, we
define our observation space as a column vector with 4 ∗ (ηs + ηa + ηg) + 4 normalized
entries.

Note that we refer to this as the "default" observation space since we later experiment
with adding additional entries to the observation space, which are described in the
evaluation 5. However, for the purposes of describing the implementation, we stick with
this "default" observation space for simplicity.

We visualize the default observation space and its connection with the policy network
and action space in figure 4.10. The figure shows a state provided to the agent on the
left, which has the dimensions of the observation space. The state includes three data
entries for every SNN representing the available CPU, SLA, and domain. Moreover, the
three final entries represent the CPU, SLD, and candidate domain of the next VNN to
be placed.

13"Observation space" is a term defined by Gym [32][33].
14Which we refer to as the state of the environment.
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Figure 4.10: Connection between the observation space, policy network, and the action
space.

The state is fed into the input layer of a deep NN, which represents the policy network,
where the input layer has the exact dimensions as the observation space. Moreover, the
output layer has the exact dimensions of the action space, defined as discrete values
ranging from zero to the max number of SNNs. Each output value represents a possible
action.

Lastly, we provide the pseudocode for initializing the environment in algorithm 4.13.

Algorithm 4.13 InitializeEnvironment
Input: Number of rows in observation space vector nRows

1: PRNG.setSeed(config[seed])
2: A← GenerateSN()
3: R, arrivingV NRs, departingV NRs = GenerateV NRs()
4:

5: actionSpace← Discrete(0, ηs + ηa + ηg)
6: observationSpace← Box(min = 0, max = 1, dim = calculateDim())
7:

8: timer ← 0 {Simulation time}
9: currentV NR← getCurrentV NR()

10: currentV NN ← 0
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Algorithm 4.14 getCurrentVNR
1: while no arrivals in arrivingV NRs[timer] do
2: timer + +
3:

4: {De-allocate the resources for all departing VNRs}
5: if timer in departingV NRs then
6: for departing VNR ri in departingV NRs[timer] do
7: deAllocateResources(ri)
8: end for
9: end if

10:

11: {Check if the current simulation time exceeds the time of the last arrival}
12: if timer > maxKey(arrivalT imes) then
13: return -1 {No more arrivals}
14: end if
15: end while
16: ri ← arrivingV NRs[timer][0] {Get first arrival in current time}
17: delete arrivingV NRs[timer][0]
18: return ri

Algorithm 4.13 sets the seed for all Pseudo Random Number Generators (PRNG) to
the seed defined in the config and generates the SN and VNRs using this seed (lines
1-3). This seeding ensures we can re-generate identical SN and VNRs, which is useful
when comparing different training setups. Next, the action and observation spaces are
specified15.

Lastly, algorithm 4.13 initializes three new variables:

• timer : Keeps track of the current simulation time.

• currentVNR: Keeps track of the current VNR. Represents the VNR that should be
embedded next using the VNN and VNL embedding stages.

• currentVNN : The ID of the currently selected VNN. Represents the next VNN for
which the agent should find a valid placement.

After the environment initialization, currentVNR should be the first VNR arrival. How-
ever, the first arrival is likely not at timer = 0. Hence, algorithm 4.14 is used to increment

15Note that the dimension of the observation space depends on the amount of information provided to
the agent. This is specified in the configuration and is used to calculate the dimensions of the observation
space.
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the current simulation time until the time of the first arrival (lines 1-17). Once an arrival
is found, the arrival is removed from the arrivals map (line 17). This ensures that future
calls to getCurrentVNR will not return the same arrival.

A second important detail in algorithm 4.14 is that for every increment to the simulation
time timer + +, we check for any departing VNRs. If the current simulation time has
any departing VNRs, then the resources of each VNR are deallocated by adding the
allocated resources reserved by the VNR back to the SN.

Environment Step

During training and testing, the agent is given the state of the environment such that a
new VNN placement is made. This results in an action being returned from the agent.

The main purpose of the step method is to process the action performed by the agent.
By "process" we refer to the following points:

• Embed the VNN according to the placement decision.

• Embed VNLs.

• Calculate the reward that should be given to the agent based on its placement
decision.

• Signal the start of a new trajectory. We consider each VNR to be a single trajectory.

We visualize the general flow of the step method in figure 4.11:
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Figure 4.11: General flow of the step method.

Firstly, a step is triggered by the environment once the agent has performed an action.
The action represents the ID of an SNN that should be used to place the next VNN part
of the currently selected VNR.

The action chosen by the agent is sometimes invalid16. Hence, we perform a check
validating whether the placement is valid:

• The placement is invalid: The current VNR is rejected. Get the next arriving VNR
and get the first VNN part of that VNR. Generate a new state, give no reward for
the invalid placement, and start a new trajectory by setting the done flag to true
[32].

• The placement is valid: Proceed to VNN embedding.

Whenever we embed a valid VNN placement, we encounter the following two cases:

• All VNNs part of the current VNR are placed: Start the VNL embedding stage.
16Invalid means the VNN demands are not met by the selected SNN.
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• Not all VNNs part of the current VNR are placed: Continue the current trajectory
by setting the done flag to false and generate a new state for the next VNN part of
the same current VNR. A small placement reward is given to incentivize further
valid VNN placements during training.

In the case that all VNNs have valid placements, the VNL embedding stage is started.
This results in two further cases:

• One or more VNLs could not find a valid path of SNLs: The current VNR is
rejected. Get the next arriving VNR and get the first VNN part of that VNR.
Generate a new state, give no reward, and start a new trajectory.

• A valid path of SNLs was found for each VNL in the current VNR: The VNR is
accepted. Get the next arriving VNR and get the first VNN part of that VNR.
Generate a new state, give a reward for the accepted VNR, and start a new
trajectory.

The pseudocode for the step method is provided in algorithm 4.15. The step algorithm
implements the logic described in figure 4.11.
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Algorithm 4.15 step
Input: Action chosen by the agent represented as an ID i for SNN ni

1: done← false
2: reward← 0
3:

4: {Is the placement valid?}
5: if verifyV NN(ni, vf ) = true then
6: embedV NN(A, ni, vf , storedV NNs)
7: reward← reward + config[V NNPlacementReward]
8:

9: {Are all VNNs in the current VNR embedded?}
10: if vcurrentV NN is the last VNN in rcurrentV NR then
11: isV alidPathFound← embedV NL(A, rB

currentV NR)
12:

13: {Were the VNLs embedded successfully?}
14: if isV alidPathFound then
15: reward← reward + calculateV NRReward()
16: else
17: deAllocateResources(rcurrentV NR) {Release all allocated resources}
18: end if
19: done← true
20: else
21: currentV NN = currentV NN + 1
22: end if
23: else
24: deAllocateResources(rcurrentV NR) {Release all allocated resources}
25: end if
26:

27: if done then
28: currentV NR← getCurrentV NR()
29: currentV NN ← 0
30: end if
31: obs← getEnvironmentState()
32: return reward, obs, done
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Environment Reset

Whenever the step method completes a trajectory by returning done = true, the environ-
ment automatically calls the reset method [32].

The purpose of the reset, as defined by Gym, is to bring the environment state back to
some starting state [32]. For example, if the environment were a chessboard part of some
chess game, then the reset would be to reset the position of the chess pieces back to their
starting location before starting a new game.

Similar to the chessboard example, we use the reset method to deallocate all allocated
SN resources so that the SN returns to its initial state. However, we only want to reset
the SN once all arrivals are accepted or rejected. Hence, the reset method serves two
purposes:

1. If not all arrivals are processed: Retrieve next arrival and state.

2. If all arrivals are processed: Reset the state of the SN. Retrieve first arrival and
state.

We visualize the flow of the reset method in figure 4.12. Every time the reset is called,
the next arrival is retrieved. If no arrival was found, then the environment is reset to its
initial state and the first arrival is retrieved. Note also that the reset method returns
a new state. This is used by the agent when performing the first action in the new
trajectory [32].

Figure 4.12: General flow of the reset method.

The pseudocode for the reset method is provided in algorithm 4.16.



Chapter 4 Implementation Setup 85

Algorithm 4.16 reset
1: if no more arrivals in arrivingV NRs then
2: {Restore by performing a copy on the stored original copy}
3: arrivingV NRs← restoreArrivals()
4: A← restoreSN()
5: end if
6: currentV NR← getCurrentV NR() {Get next (or first) arrival}
7: return getEnvironmentState()

Calculating the State of the Environment

The state is calculated after completing every call to the step or reset methods in the
environment. Subsequently, the state is provided as input to the agent’s policy network,
which outputs a new placement decision based on the provided state and the previous
training on the policy network.

The pseudocode for retrieving the state is shown in algorithm 4.17.

Algorithm 4.17 getEnvironmentState()
1: observationV ector ← V ector(observationSpace)
2: k = 0
3: for ni ∈ NA do
4: observationV ector[k]← nCP U

i

5: observationV ector[k + 1]← nSLA
i

6: observationV ector[k + 2]← nDOM
i

7: k = k + 3
8: end for
9:

10: vf ← currentV NN

11: observationV ector[k]← vCP U
f

12: observationV ector[k + 1]← vSLD
f

13: observationV ector[k + 2]← vCAN
f

Firstly, algorithm 4.17 creates a vector of length equal to the default observation space
dimensions. Each index is subsequently filled with the available CPU, SLA, and domain
of each SNN. Lastly, the demands of the next VNN are added as three additional inputs.

Note that additional entries can be provided to the state using the following steps:
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1. Increase the dimensions of the observation space during environment initializa-
tion. For example, if an additional parameter is provided to each SNN, then the
observation space should have a dimension of dim = ((ηs + ηa + ηg) ∗ (3 + 1) + 3).

2. Include the additional input in the observation space vector similar to algorithm
4.1717.

Extending the Observation Space

One of the main issues with the "default" observation space described so far is that the
agent is not provided any information regarding the available resources of SNLs. This
may impact the performance negatively:

• We would like our agent to place VNNs part of the same VNR in relatively close
proximity. This ensures fewer SNLs are used in the VNL embedding stage, thus
reducing cost. However, the "default" observation space includes no spatial or SNL
information the agent can use to learn this behavior.

• A lower ACR will likely be achieved if VNNs are placed far apart. This is because
more SNLs must be used during the VNL embedding stage, increasing the proba-
bility of no valid path being found. For example, using a single SNL is more likely
to meet the delay and bandwidth requirements of a VNL than using two SNLs.

Due to these issues, we experiment with adding additional information in the observation
space. This may help the agent learn optimal placements in the VNN and VNL embedding
stages. We list our experiments with an extended observation space in the appendix A.
The optimal observation space is later used during the evaluation 5.

Calculating Rewards

A vital part of training an agent is to provide a good reward18 to the agent after an
action has been performed. The reward is vital since it defines the desired behavior of
the agent. For example, if we want the agent to perform good VNN placements, where
"good" refers to making only valid placements, then we give a positive reward every time
the agent makes a valid embedding during training.

During our experimentation in the appendix A, we experiment with two types of rewards:
17Note that we implement variations of algorithm 4.17 during observation space experimentation

instead of modifying the algorithm directly.
18Which is generated using a reward function.
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1. The VNN placement reward: A small reward given when the agent performs a
valid VNN placement. Incentivizes further valid placements. We refer to this as
the "placement reward."

2. The Accepted VNR reward: A larger reward is given for every accepted VNR to
incentivize the agent to place entire VNRs successfully. We refer to this as the
"accepted reward."

4.0.7 Testing the Trained Model

After our experimentation in the appendix A, we choose the optimal model for evaluation
in the evaluation section.

To test the optimal model, we run the testing algorithm 4.18.

Algorithm 4.18 testing
Input: Environment Env, Set of training VNRs R

while VNR arrivals remaining in R do
rx ← getCurrentV NR()
for VNN vf part of rx do

state← Env.getEnvironmentState()
sortedProbs← model.getProbabilityDistribution(state).sort()
ni ← Get first valid placement based on sorted probabilities
embedV NN(ni, vf , . . .)

end for
if All VNNs part of rx have valid placements then

validEdgesFound← embedV NL(Env.A, rB
x )

if validEdgesFound then
VNR is accepted. Proceed to next VNR
rAccepted

x = 1
end if

end if
VNR is not accepted. Proceed to next VNR
rAccepted

x = 0
end while

The algorithm takes in an environment that is initialized with an identical observation
space and action space as the trained model. Furthermore, a set of VNRs is given as an
input. These VNRs represent our test set.

Next, the algorithm iterates over each arrival and prompts the agent for each VNN
placement. The agent returns the action probabilities based on the current state, and we
embed the first valid VNN part of the action probabilities. If all VNNs and VNLs are
embedded successfully, we count the VNR as accepted. Otherwise, the VNRs count as
rejected.
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Evaluation

This section provides the evaluation and covers the following:

1. SN configuration.

2. VNR configuration.

3. Environment configuration for training and testing.

4. Evaluation methodology.

5. Evaluation results.

5.1 Solution Approaches

The two solution approaches tested in this thesis are described in the following sections.

5.1.1 Proximal Policy Optimization

Section 1.3 on RL introduced the policy gradient technique for training DRL agents.
This section describes the specific policy gradient algorithm used as the primary solution
approach for training our DRL model, namely the DRL algorithm.

DRL is a policy gradient method. Hence, it uses a similar training method as described
by equations 1.8 and 1.9 in section 1.3. However, DRL incorporates a modified score
function compared to equation 1.9, which is defined as [20]:

89
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LCLIP (θ) = E
[
min

(
πθ(a|s)

πθold
(a|s)Ât, clip( πθ(a|s)

πθold
(a|s)Ât, 1 + ϵ, 1− ϵ)

)]
= E

[
min

(
r(θ)Ât, clip(r(θ)Ât, 1 + ϵ, 1− ϵ)

)] (5.1)

Equation 5.1 handles the well-known gradient ascent issue of overshooting local optimums.
For example, the policy update may jump past the optimum if learning too quickly
instead of reaching a maximum.Hence, equation 5.1 includes clipping to limit the max
1 + ϵ and min 1− ϵ updates [21]:

clip

(
πθ(a|s)

πθold
(a|s) , 1 + ϵ, 1− ϵ

)
(5.2)

The new score function LCLIP (θ) replaces the previous score function J(θ) in equation
1.10.

The SB3 Python library provides the implementation of DRL used in this thesis [34].
The SB3 DRL implementation takes our environment from section 4.0.6 as input and
trains the agent using the environment and the DRL algorithm [35].

During the experimentation in the appendix A, we tune the SB3 DRL algorithm by
changing the hyperparameters of the DRL algorithm. A hyperparameter refers to a
training parameter that alters how the DRL algorithm performs training updates to the
model. Hence, we tune the hyperparameters such that optimal training can be achieved1.
A brief description of the hyperparameters tuned during the experimentation is listed
below [20]:

1. Timesteps total: Every time the step method is called by the environment2, an
internal step counter is incremented. If this step reaches the timesteps total, then
the current training iteration stops, and we save the current version of the model
[34]. Afterward, we start training for another iteration to improve the model
further.

By saving the model every iteration, we can retrieve earlier versions of the same
model if the model performance decreases in future iterations. We keep this
parameter static throughout the experimentation to save all models in the same
interval.

1By "optimal," we refer to a high ACR and LRC.
2See algorithm 4.15.
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2. Learning rate: This is the α used in equation 1.10. We can increase this value to learn
faster by making big updates to the policy3. However, from the experimentation
in appendix A, we found that increasing the learning rate is often problematic
due to large negative updates. This agent might initially show good results but
subsequently makes a large negative update which ruins the performance.

3. Training steps: The DRL algorithm will embed VNRs during training. Each
embedded VNR represents a single trajectory consisting of one step per VNN.
When DRL trains on the reward received from these steps and trajectories, it uses
the training steps to decide how many steps to select for training [34][36]. From
our experimentation, we found that increasing the number of steps increased the
"smoothness"4 of the training.

4. Training epochs: The steps collected during the training steps represent a lot
of computation spent embedding VNRs. Hence, we want to extract as much
information as possible to learn the agent from this data. This can be achieved
by increasing the DRL number of epochs, which makes the DRL algorithm train
multiple times using the same data [20][34]. Our experiments found that increasing
the epochs increases training instability5.

5. Training Batch size: The number of epochs of training is not performed on the
entirety of the data at once; instead, the DRL algorithm uses smaller chunks, also
known as batches for training [36]. From our experimentation, we found that the
default batch size of 64 worked best for our scenario [34]. Increasing or decreasing
the batch size resulted in equal or worse ACR and LTR performance.

6. Entropy: When the agent chooses an action during training, the chosen action is
based on the probabilities the policy network outputs. For example, if the policy
network returns a maximum embedding probability on some SNN ni, then the
agent will likely choose this SNN for embedding. However, we want the agent to
explore all embedding strategies to find the optimal strategy. Hence, we can lower
the probability of the best action by increasing the DRL entropy coefficient [36].

7. Clip: This is the clipping ϵ shown in equation 5.2. We found the default clipping
of 0.2 to give the best results [34].

8. Gamma: The discount factor mentioned in section 1.3.

9. Generalized Advantage Estimation (GAE): Parameter used when estimating Â in
equation 5.2 [34][37].

3Note that the DRL clipping limits the updates.
4Policy updates are smaller.
5The policy changes sporadically.
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The optimal configuration of the hyperparameters found during the experimentation6is
shown in table 5.1. This configuration is used when training our testing model.

PPO Hyperparameters
Parameter Name Parameter Value

Timesteps total 10000
Learning rate 0.0001
Training steps 4096

Training epochs 8
Training batch size 64

Entropy coef. 0
Clip 0.2

Gamma 0.99
GAE 0.99

Table 5.1: PPO hyperparameters after tuning.

5.1.2 Global Resource Capacity

As a comparison against our DRL-based solution, we implement the Global Resource
Capacity (GRC) heuristic algorithm proposed by Gong et al. [11].

The GRC algorithm differs from our DRL solution by being a heuristic rather than
a DRL solution. Specifically, our solution bases its VNN embedding decisions on the
output of a policy network. In contrast, GRC bases its VNN embedding decisions on a
measure called GRC [11].

The main benefit of the GRC solution is that GRC can operate immediately on any SN
topology without any training. In contrast, our solution requires extensive training and
tuning of hyperparameters for each unique SN topology.

However, regarding embedding performance, our DRL solution should be able to learn
how one VNR embedding can impact future embeddings. Hence, our solution should
achieve better results after sufficient training. This will be tested during our comparison
in subsequent sections.

The GRC measurement is defined by equation 5.3 which is provided by [11]:

GRC(ni) = (1− d) ·X1 + d ·X2 where 0 ≤ d ≤ 1 (5.3)
6See the appendix A.
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X1 = cni∑|NA|
j=0 cnj

(5.4)

X2 =
∑

e(ni,nj )∈Nadj
ni

eBW
(ni,nj)∑

e(nl,nj )∈Nadj
nj

eBW
(nl,nj)

·GRC(nj) (5.5)

In equation 5.3, the notation Nadj
ni

is specified as a set of SNNs that have a direct
connection to nj using an SNL denoted as e(ni,nj). Next, the notation cni is specified as
the remaining resources in the SNN ni [11].

The main goal of equation 5.3 is to calculate a score called GRC for the available resources
in each SNN ni, which is based on the GRC of its adjacent SNNs Nadj

ni
in a recursive

fashion. Hence, the amount of SNN and SNL resources in the entire SN is part of the
GRC(ni) calculation. Once GRC is calculated for all SNNs, the SNN with the maximum
GRC value can be used to make the next VNN embedding decision [11].

The first part of equation 5.3, denoted as X1 for simplicity, finds the available resources
in ni relative to the available SNN resources in the entire SN [11].

The second part of the equation is denoted as X2. This part contributes to the total GRC
value by summing the available resources of each SNL eBW

(ni,nj) between ni and nj ∈ Nadj
ni

.
Furthermore, the GRC of the adjacent SNN nj is found with a recursive call GRC(nj)
and is used to scale the contribution of SNL eBW

(ni,nj) to the GRC calculation [11].

This scaling ensures that adjacent SNNs with few available resources contribute less to
the GRC value of ni. As such, if ni is surrounded by SNNs with too few resources to
support an entire VNR, ni also gets a lower score and is less likely to be picked [11].

Lastly, we provide the pseudocode for the GRC implementation in the appendix as
algorithm A.4 and algorithm A.5, which are based on algorithm 1 and algorithm 2 in
the paper by [11].

5.2 Simulator Configuration

This section provides tables of configuration settings used during the training and testing
of the DRL model.

Table 5.2 highlights the simulation configuration used by several of the related works.
The listed works propose parameter value ranges suitable for simulating VNE but also
state the recommended SN and VN size.
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We base our simulation settings on the values proposed by the [23], [27], [2], and [17]
works as listed in table 5.2.

Attributes
[23] [27] [2] [17]

SN VN SN VN
SN

Ground
SN
Air

SN
Space

VN
SN

Ground
SN
Air

SN
Space

VN

CPU U[50,100] U[0,50] U[50,100] U[0,50] U[50,100] U[20,40] U[20,40] U[1,20] U[50,100] U[50,80] U[50,80] U[1,50]
STO - - U[50,100] U[0,50] - - - - U[50,100] U[50,80] U[50,80] U[1,50]
RAM - - - - - - - - - - - -
BW U[20,50] U[0,50] U[50,100] U[0,50] U[50,100] U[50,100] U[50,100] U[1,20] U[50,100] U[50,80] U[50,80] U[1,50]
DEL - - - - U[1,20] U[10,30] U[20,40] U[1,50] -
CAN - - - - - - - - - - - {1, 2, 3}
SLA - SLD 0 - 3 0 - 3 0 - 3 0 - 3 - - - - - - - -
Simulation
Networks 1 2000 1 2000 1 1 1 2000 1 1 1 -
Nodes 100 U[2,10] - U[2,10] 60 30 10 U[2,10] 60 30 10
Links 570 - - - 600 - - - - -
Connectivity - 50% - - - - - - - - - 50%

Table 5.2: Parameter and simulation configuration of RL- and DRL-based related
works.

5.2.1 SN Configuration

We generate a single SN graph used for training and testing. The SN includes a total of
100 SNNs distributed in the ground, air, and space domains as follows:

Ground
Nodes ηg

Air
Nodes ηa

Space
Nodes ηs

Nodes
Total

60 30 10 100

Table 5.3: SN nodes config.

The SN is generated using algorithm 4.1, which uses the Waxman graph generator
configured with n = ηg + ηa + ηs, α = 0.5, and β = 0.5 in equation 4.1. The graph is
subsequently split into the three SAGIN domains following algorithm 4.1.

Furthermore, the domains are interconnected using η(g,a) = 100 ground-to-air IDLs and
η(a,s) = 100 air-to-space IDLs.

When the SN graph is generated successfully using algorithm 4.1, the domain-specific
parameter values for the SNNs and SNLs are sampled using the distributions and value
ranges specified in table 5.4. Note that the parameter value ranges for the IDLs are
best characterized by the most challenging of the two connected domains. Hence, the
ground-air IDLs use the air-domain SNL parameter value ranges, while the air-space
IDLs use the space-domain SNL value ranges.
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Parameter
Value Range

Ground Air Space

N
od

e

CPU U[50,100] U[30,70] U[30,70]

SLA [1,2,3] [1,2,3] [1,2,3]

DOM [1,2,3] [1,2,3] [1,2,3]
Li

nk

BW U[50,100] U[50,80] U[50,80]

DLY U[1,20] U[10,30] U[20,40]

Table 5.4: SN parameter value ranges.

5.2.2 VNR Configuration

We generate a set of 1000 VNRs for training the agent called the training set. Another
set called the test set of 1000 VNRs is generated for testing the trained agent. The same
test set will be used to compare with GRC.

Each set is generated with unique Pseudo Random Number Generator (PRNG) seeds
that ensure the uniqueness of each set. By using two unique sets of VNRs, we prove
the agent is not just trained to embed a specific set of VNRs but can embed any set of
VNRs optimally.

Each VNR is provided with an arrival time sampled according to the Poisson distribution
with an expectation of λ = 0.04 [3][4]. This arrival rate ensures enough spacing between
the arrivals so that network congestion can slowly increase7.

Moreover, we give each VNR a departure time sampled according to an Exponential
distribution with expectation λ = 100 [4]. By specifying this departure time, we ensure
that VNRs have a long enough lifetime, so network congestion can slowly build during
training and testing.

Network congestion is a desired effect during training and simulation. This forces the
agent to use the SN resources effectively to maximize the objective. If no congestion is
encountered during training, the agent might perform poorly if given a scenario with
congestion that could occur in a real-world scenario.

7By network congestion, we refer to the lack of available SN resources when many VNRs are embedded.
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In addition to the arrival time, each VNR is given a lifetime using an exponential
distribution with expectation λ = 100 [4]. This ensures that some VNRs will have a long
lifetime, facilitating VNR congestion over time.

Once the lifetime of a VNR expires, the VNR is de-embedded from the SN, thus releasing
the allocated SN resources. Note that the expectation can be adjusted for longer or
shorter VNR lifetimes. A longer lifetime can be helpful to simulate a more congested SN.

Lastly, when generating the VN for each VNR, we sample the VNN and VNL parameter
values according to the value ranges shown in table 5.2.

Parameter Value Range

N
od

e

CPU U[1, 40]

CAN U[1,3]

SLD U[1,3]

Li
nk

BW U[1, 40]

DLY U[5, 50]

Table 5.5: VN parameter value ranges.

5.2.3 Observation Space Configuration

The observation space8 setup used during testing is based on the best setup found during
the experimentation9. This setup is visualized in figure 5.1.

Figure 5.1: Observation space setup used for testing. Visualized as a row vector instead
of a column vector for simplicity.

Figure 5.1 shows the observation space configured with the following:

• SNN available resources in each SNN required by the agent to make valid placements.
8See the section 4.0.6.
9See the appendix A.
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• Demanded resources of the next VNN to be placed vnext. Gives the agent knowledge
of the demands of the next placement.

• The Distance from the Previous Placement (DSTPP). DSTPP measures the distance
to the previous VNN placement using the number of hops in the SN. The observation
space is extended with a DSTPP entry for each SNN. Hence, the total number of
observation space entries is entries = (ηs+ηa+ηg)∗4+3 = (10+30+60)∗4+3 = 403.

By including the DSTPP for each SNN, the agent can learn to reduce costs by
placing VNNs closer together.

DSTPP is calculated as shown in equation 5.6. If the current VNN being placed is
the first ingress VNN, then there are no previous placements, and a DSTPP of zero
is returned. However, if a previous VNN placement exists, denoted as nprevious,
then we return the normalized number of hops from ni to nprevious.

DSTPP (ni) =


SNL_Hops(ni,nprevious)

SNL_Max_P ossible_Hops(A) , nprevious exists

0, nprevious is None
(5.6)

Neural Networks Configuration

The DRL implementation by SB3 includes two NNs for which we must define the NN
architecture: The policy network and the value network, used to predict the state value
of each possible state in the environment [18][34].

Firstly, we must specify the number of input neurons for each NN, which depends on
the dimensions of the observation space. For instance, the state10 is used as an input to
both the agent’s policy and value estimation NNs during training [34]. Hence, we must
configure the NN architectures such that the input layer has the correct dimensions to
allow the state to be used as an input. Consequently, both NNs are given an input layer
with 403 neurons, as shown in figure 5.2.

Furthermore, we set the number of hidden layer neurons as 128 for the policy NN and a
larger value of 512 for the value-estimation NN [38].

Lastly, we set the number of output neurons in each NN according to the desired behavior
of each NN:

• Policy NN output: The policy NN output layer outputs the probabilities of selecting
each SNN in the SN using the softmax activation function. Hence, the number of
output nodes must equal ηg + ηa + ηs = 60 + 30 + 10 = 100.

10Which has the dimensions of the observation space.
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• The value-estimation NN has only a single output neuron representing the estimated
state value.

Figure 5.2: NN architecture of policy and value networks.

5.2.4 Reward Configuration

The reward setup used during testing is based on the best setup found during the
experimentation11. We use the following reward setup for testing:

• Placement reward: We give the DSTPP of the selected SNN as a placement reward.
This incentivizes the agent to place VNNs closer together, reducing SNL usage
and costs. Furthermore, the placement reward incentivizes the agent to make as
many valid placements as possible since more valid placements can achieve a higher
reward. This contributes to an overall higher ACR.

The placement reward is calculated according to equation 5.7. The DSTPP is
subtracted from one to reward close placements. Furthermore, the reward is
divided by ten to get a maximum placement reward of 0.1. This was found to be
an appropriate scale for the placement reward from the experimentation.

• Accepted VNR reward: We give the current LRC as a reward whenever a VNR is
accepted. This incentivizes the agent to utilize the SNL resources effectively to
achieve a higher LRC. The equation for LRC is shown in equation 3.25.

11See the appendix A.
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Placement Reward for ni = 1− nDST P P
i

10 (5.7)

5.3 Evaluation Methodology

The evaluation is divided into two main stages:

1. Evaluating the agent training performance.

2. Evaluating the trained agent.

In point one, which is listed in the appendix A, we extensively experiment with dif-
ferent training configurations12, including changes to the environment and the DRL
hyperparameters. The experimentation was conducted using the training set:

• Experiment with providing different rewards to the agent. The goal is to find a
reward setup that encourages the agent to learn ACR and LRC.

• Experiment by adding additional information to the observation space. The goal is
to find which information that is required by the agent to learn optimal placements
for maximizing ARC and LRC.

• Hyperparameter tuning of the DRL hyperparameters.

Once an optimal training configuration is found, we evaluate the trained model in section
5.4. We evaluate the optimally trained model using our test set and algorithm 4.18.
The trained model predicts the placement of VNNs for each VNR, and a shortest path
first algorithm finds the VNL placements. Once all VNRs are accepted or rejected, we
plot the ACR, LRC, and embedding time. Additionally, we evaluate whether our model
outperforms the placements made by running GRC on the same problem and test set.

Lastly, we evaluate the performance of our model in a high-congestion scenario by
increasing both the arrival rate and the lifetime of VNRs. This scenario is also compared
with GRC.

12No changes are made to the SN or VNR configuration during experimentation.
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5.4 Experimental Results

In the following sections, we present the results of testing our optimally trained model
on our environment and a test set of 1000 VNRs. Moreover, we run the GRC heuristic
on the same environment and test set, and compare the results.

5.4.1 ACR

The ACR performance is shown in figure 5.3.
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Figure 5.3: The ACR of our DRL-based solution compared to the ACR of the GRC
heuristic solution.



Chapter 5 Evaluation 101

Figure 5.3 shows the ACR of DRL in green and the GRC in red. ACR measures the
ratio between accepted VNRs and arrived VNRs up to the current simulation time.

Initially (0-300 VNRs), both DRL and GRC experience instability13 in terms of ACR.
This happens because ACR is calculated from the number of accepted VNRs divided by
the sum of VNRs arrived at the current simulation time. Hence, when only a few VNRs
have arrived, this will result in ACR instability before more VNRs arrive.

Secondly, we notice that our DRL model initially performs worse than GRC and thereafter
starts improving. This behavior is difficult to explain since the strategy utilized by the
agent is based on a NN. However, we can analyze what causes the initially high VNR
rejection rate using figure 5.4.
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Figure 5.4: Visualization of failures caused by insufficient available resources during
testing.

Figure 5.4 shows four figures (a,b,c,d):

(a) Shows the number of failures in the VNN embedding stage caused by insufficient
available SNN resources.

(b) Shows the VNN fail difference (DRL - GRC) between DRL and GRC. A smaller
value indicates GRC has a higher failure rate.

13ACR changes sporadically.
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(c) Shows the number of failures in the VNL embedding stage caused by insufficient
available SNL resources.

(d) Shows the VNL fail difference (DRL - DRL) between DRL and GRC. A smaller
value indicates GRC has a higher failure rate. A larger value indicates DRL has a
higher failure rate.

These figures give an idea of how optimally DRL and GRC place VNNs such that the
resources are utilized efficiently, which allows for a higher ACR. Each VNN or VNL
failure indicates a VNR has been rejected. Hence, the failure rate should ideally be as
low as possible.

Figure (a) shows that DRL achieves more effective VNN resource utilization than GRC
due to a lower VNN failure rate. This can also be seen in Figure (b), which shows the
difference increases throughout the entire test set. Hence, VNN failures do not contribute
to the initially low ACR in Figure 5.314.

Next, the VNL failures are shown in Figures (c) and (d). Figure (d) shows that DRL
initially has a significantly higher VNL failure rate than GRC, which causes the initially
low ACR in Figure 5.3.

A potential cause of the high initial VNL failure rate is that the DRL model has been
overtrained on the training set. For instance, the model might favor a specific set of
SNNs for embedding the VNRs in the training set. However, when given the test set,
the VNR resource demands change, leading to reduced performance.

A potential cause for the subsequent decrease in VNL failures could be the following:
As the resources of the favored SNNs start to decrease, the agent begins picking other
SNNs. If these SNNs have more SNL connections with high bandwidth and low delay,
then there will be fewer VNL failures.

ACR Analysis - VNR Rejections

Another interesting detail that can be seen in Figures 5.4 (a) and (c) is that VNL failures
contribute the most to VNR rejections compared to VNN failures. After completing the
test set, the number of VNR rejections caused by VNL failures is approximately 660
(66%),15 for both DRL and GRC.

The reason for this high VNL failure rate was found to be due to challenging embedding
constraints:

14On the contrary, it contributes to a higher ACR.
15See figure (c).
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1. The candidate domain and ingress constraints limit VNN placements to a specific
domain. Hence, when multiple VNNs are chained in a VN and are placed in
different domains, they will require several IDLs during VNL embedding. This
increases the challenge of finding a valid SNL path.

2. The delay parameter significantly increases the challenge of finding a valid path in
the VNL embedding stage.

5.4.2 LTR

Figure 5.5 shows the LTR performance of DRL and GRC.
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Figure 5.5: The LTR of our DRL-based solution compared to the LTR of the GRC
heuristic solution.
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LTR measures the revenue gained from successful VNR embeddings in the long term.

The performance of LTR follows the trend of the ACR since each accepted VNR also
increases the revenue. Hence, we see that DRL eventually generates more revenue than
GRC due to the higher ACR.

We also note the high initial instability of LTR, which is caused by the following:

1. Initial instability in ACR.

2. LTR varies depending on the number of VNNs in each VNR and the amount of
demanded resources in each VNN. For example, a VNR with eight VNNs and high
resource demands will generate more revenue than a VNR with three VNNs and
low resource demands.

Overall, our DRL solution can outperform GRC regarding LTR due to the higher ACR
achieved by the DRL solution.
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5.4.3 LTC

Figure 5.6 shows the LTC performance of DRL and GRC.
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Figure 5.6: The LTC of our DRL-based solution compared to the LTC of the GRC
heuristic solution.

LTC measures the operational costs associated with accepted VNRs. A cost reduction
can be achieved using fewer SNLs in the VNL embedding stage.

Similar to LTR, the LTC metric also depends on the ACR. Hence, we see that PPO has
slightly more costs than GRC.

At the end of the test set (900-1000 VNRs), GRC and DRL experience an increase in
cost, likely due to the reduction in available SN resources causing longer SNL paths
during VNL embedding and more costs. However, we also see that DRL only experiences
a slight increase while GRC has a more significant increase in cost. Hence, this indicates
DRL is better at resource allocation to reduce costs in the long term.
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5.4.4 LRC

Figure 5.7 shows the LRC performance of DRL and GRC.
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Figure 5.7: The LRC of our DRL-based solution compared to the LRC of the GRC
heuristic solution.

LRC measures the ratio between the LTR and LTC and is effective for inferring which
approach achieves the maximum profits by reducing SNL usage in the VNL embedding
stage.

The following can be used as an indicator of what the LRC value represents:

• LRC = 1: Indicates an on-average one-to-one mapping between VNLs and SNLs in
the VNL embedding stage. This is an improbable LRC value for our problem due
to the candidate domain and ingress constraints that cause increased SNL usage.
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For example, an ingress v1 must be placed in the ground domain, and a subsequent
VNN v2 arbitrarily has space as its candidate domain. In this scenario, at least
two IDLs are required to represent the VNL l(v1,v2).

• LRC > 1: Indicates that, on average, the VNL embedding stage can represent
VNLs using no SNLs. This results from placing multiple VNNs, part of the same
VNR, onto the same SNN. However, achieving an LRC > 1 is also very unlikely
for our problem due to the reasons described in the previous point.

• LRC < 1: Indicates that, on average, the VNL embedding stage uses more than
one SNL to represent each VNL.

Figure 5.7 shows that DRL initially achieved a very high LRC at around 0.9. This
indicates the agent favors low-DSTPP placements. By placing VNNs closely together,
the number of SNLs used in the VNL embedding stage is reduced, thus reducing costs.

However, DRL subsequently stabilizes at a reduced LRC of around 0.77. This decrease
is likely due to the resource exhaustion of SNNs with a low DSTPP which causes the
agent to use SNNs with a higher DSTPP. Hence, more SNLs must be used to represent
VNLs, thus increasing the cost.

Overall, our DRL solution is able to outperform GRC in terms of LRC consistently.
Moreover, while GRC experiences a negative LRC trend in the long term, DRL is able
to maintain a consistently high LRC.

5.4.5 VNR Embedding Time

Figure 5.8 shows the time spent embedding each VNR for the DRL and the GRC approach
in milliseconds. Note that the figure does not include the time spent on rejected VNRs.
Hence, if a VNR is rejected, the plot will have a flat area on the curve for that VNR.

For DRL, a timer is started when a new VNR is selected. The timer is stopped once the
DRL model has made all embedding predictions and both the VNN and VNL embedding
stages have concluded successfully.

For GRC, a timer is started when a new VNR is selected. The timer is stopped once
GRC has calculated the GRC value for all SNNs and both the VNN and VNL embedding
stages have concluded.
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Figure 5.8: The time spent embedding each VNR in the test set for both solution
approaches. The dashed line shows the running average.

Figure 5.8 shows that our DRL solution can consistently outperform GRC regarding
running time. We achieve an average of 50.08

5.09 = 9.83 times faster embedding time.

Whereas GRC requires significant computation to find the GRC value of all SNNs, our
solution only requires one forward pass of the policy NN to find a suitable placement.

5.4.6 Increased Congestion

To evaluate the performance with heavy VNR congestion, we vary the VNR lifetime and
arrival rate as shown in table 5.6.

We evaluate using the same model used in the previous evaluations16. Moreover, we limit
our analysis to ACR and LRC for simplicity and since the LRC metric captures LTR
and LTC.

Arrival Rate λ Lifetime λ

0.04 100 150 200 250
0.05 100 150 200 250

Table 5.6: Evaluated VNR congestion scenarios.
16Trained on an arrival rate of 0.04 and an expected VNR lifetime of 100.
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ACR Scenario 1

We show the ACR performance of arrival rate λ = 0.04 with all four lifetimes in figure
5.9. Moreover, we plot the converged17 ACR values of GRC and DRL in figure 5.10.
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Figure 5.9: ACR for DRL and GRC with arrival rate λ = 0.04 and expected VNR
lifetime of 100, 150, 200, and 250.
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Figure 5.10: ACR for DRL and GRC with arrival rate λ = 0.04 and expected VNR
lifetime of 100, 150, 200, and 250.

17By "converged," we refer to the last value in the 5.6 line plots.
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Figures 5.9 and 5.10 show that the relative ACR performance of DRL is high in scenarios
with 100, 150, and 200 VNR lifetime. However, when the VNR lifetime is set to 250,
GRC starts to outperform DRL in terms of ACR.

This decrease in performance is likely due to the DRL model being trained on the scenario
with an arrival rate of 0.04 and a lifetime of 100. Hence, when the lifetime is increased,
the agent is placed in an environment that differs from the training, resulting in decreased
performance.

LRC Scenario 1

We show the LRC performance of arrival rate λ = 0.04 with all four lifetimes in figure
5.11. Moreover, we show the converged LRC values in Figure 5.12.
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Figure 5.11: LRC for DRL and GRC with arrival rate λ = 0.04 and expected VNR
lifetime of 100, 150, 200, and 250.
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Figure 5.12: LRC for DRL and GRC with arrival rate λ = 0.04 and expected VNR
lifetime of 100, 150, 200, and 250.

Figures 5.11 and 5.12 show that DRL achieves a higher relative LRC performance than
GRC for all congestion scenarios. This indicates that DRL can make better placements
by limiting additional SNLs and reducing costs.
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ACR Scenario 2

We show the ACR performance of arrival rate λ = 0.05 with all four lifetimes in figure
5.13. Moreover, we show the converged ACR values in Figure 5.14.
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Figure 5.13: ACR for DRL and GRC with arrival rate λ = 0.05 and expected VNR
lifetime of 100, 150, 200, and 250.
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Figure 5.14: LRC for DRL and GRC with arrival rate λ = 0.05 and expected VNR
lifetime of 100, 150, 200, and 250.

Figures 5.13 and 5.14 show that DRL experiences varied ACR performance relative
to GRC when the arrival rate varies. This is likely due to the model being trained
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on an arrival rate of 0.04, which causes a decrease in performance when placed in an
environment with an arrival rate of 0.05.

LRC Scenario 2

We show the ACR performance of arrival rate λ = 0.05 with all four lifetimes in figure
5.15. Moreover, we show the converged ACR values in Figure 5.16.
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Figure 5.15: LRC for DRL and GRC with arrival rate λ = 0.05 and expected VNR
lifetime of 100, 150, 200, and 250.
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Figure 5.16: LRC for DRL and GRC with arrival rate λ = 0.05 and expected VNR
lifetime of 100, 150, 200, and 250.
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Figures 5.15 and 5.16 show that DRL achieves good LRC performance compared to GRC,
even when the arrival rate and lifetime are varied.



Chapter 6

Conclusions

In this thesis, we have provided a solution to the security-aware VNE problem in SAGIN
using a DRL-based solution.

We have provided the background on NFV, a technology enabling fast deployment of
network services using VNFs, offering high scalability, high resiliency, and numerous other
benefits. Furthermore, we have provided the necessary background for understanding
the potential security vulnerabilities faced by InPs and VNFs, introduced by NFV.
Additionally, we introduced the concept of SAGIN, where NFV is combined with multi-
domain hardware to form an integrated network capable of providing global network
communications services.

We have formulated our problem as a VNE problem which includes the following consid-
erations:

• We considered three distinct domains interconnected by inter-domain links repre-
senting a SAGIN SN. Each domain includes different CPU and bandwidth resources
that restrict VNN placements. Furthermore, we considered that each domain has a
different amount of delay on SNLs and delay demands on VNLs. We found this to
increase the difficulty of the VNL embedding stage considerably.

• We considered candidate domains, which allow VNRs to specify the desired domains
for each VNF.

• We considered the placement of ingress and egress VNNs to represent the ingress
and egress points of traffic in network services.

• We considered security using three levels of SLA in SNNs and three levels of SLD
in VNNs.
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To solve the VNE problem, we utilized the DRL approach, which is used to provide fast
and highly optimal solutions to complex problems such as security-aware SAGIN VNE.

We trained our DRL agent using the PPO algorithm implemented by SB3 [34] on a
custom environment. We designed the custom environment to contain the multi-domain
SN, generated using algorithm 4.6. Furthermore, the environment simulates online VNR
arrivals following the online approach using arrival times and departure times.

We experimented with different training setups, including PPO hyperparameters and
environment configurations, to find the optimal setup for maximizing the ACR, LTR, LTC,
and LRC metrics. Once an optimal configuration was found, we tested and evaluated
the model by comparing the evaluation metrics against the well-known GRC heuristic
solution approach.

The trained model achieved increased performance compared to GRC regarding ACR,
LTR, LTC, and LRC. The model also achieved competitive performance when evaluated
in various high-congestion scenarios. In addition to the increased performance, our
solution achieved these results with an approximately ten times reduction in the running
time compared to the GRC solution approach.

6.1 Future Directions

Although our trained model can achieve increased performance over GRC, there is still
more room for improving the model. Hence, one area of future research is to experiment
with providing additional or different rewards for the agent to increase the ACR and
LRC performance. Moreover, the information in the state provided to the agent could
also be experimented with further. The better the reward and observable state are at
describing the environment and embedding goals, the better the training and subsequent
testing performance will be.

Another area of future research is to simulate security-aware SAGIN VNE using a realistic
cost and reward scaling based on real-world data. For instance, our table 3.8 considers
an equal cost and reward for all SN resources since these may be set differently for each
InP. Hence, future work could try to simulate the problem using the actual revenue and
cost scalings used by an InP.



Appendix A

Improving the Training
Performance

This section gives a brief overview of the experimentation and testing phase. In this
phase, we train our DRL model using PPO on a training set of 1000 VNRs and vary the
following settings:

• Rewards used to train the model.

• Information provided in the observation space.

• Hyperparameters part of the PPO training algorithm.

A.1 Initial Setup

Table A.1 shows the initial environment configuration.

Environment Config
Config Name Config Value
VNN Placement

Reward
0.001

VNR Accepted
Reward

LRC

State
Vector
Inputs

Available resources in all SNNs
Demanded resources of next VNN

SNN Average Distance

Table A.1: Environment configuration.
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We start with a small VNN placement reward and LRC as the accepted VNR reward.

Furthermore, the environment observation space includes the SNN available resources,
and the next VNN demanded resources, as specified in section 4.0.6. Additionally,
we experiment by including an Average Distance (AVD) in the observation space, as
suggested by [17].

Wang et al. [17] proposes to include the AVD in the state and defines the AVD as follows:

AV D(ni) =
∑|NA|−1

j=0 SNL_Hops(ni, nj)
|NA|

(A.1)

The AVD measures how "central" each SNN is compared to all other SNNs, where
"central" refers to having few hops to other SNNs [17]. The goal of AVD is that the agent
will learn to use SNNs that are more central. A central SNN will require fewer SNLs
during the VNL embedding stage since few hops are required to place the subsequent
VNN. This reduces the cost of the VNL embedding stage.

The pseudocode for calculating the AVD is shown in algorithm A.1.

PPO Hyperparameters
Parameter Name Parameter Value

Timesteps total 10000
Learning rate 0.0001
Training steps 4096

Training epochs 10
Training batch size 64

Entropy coef. 0.001
Clip 0.2

Gamma 0.99
Gamma GAE 0.95

Table A.2: PPO hyperparameters configuration.

Table A.2 shows the PPO initial hyperparameters. These are mostly default values set
by SB3 [34].

Starting with this initial setup, we experiment with the following to find which setup
gives the highest ACR and LRC during training:

• Experiment 1: We experiment with the VNN placement reward scale.
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• Experiment 2: We experiment with the placement reward function and the
accepted VNR reward function. Furthermore, we experiment with providing
additional inputs to the observation space.

• Hyperparameter tuning: We experiment with the PPO hyperparameters. Each
parameter is adjusted slightly. The subsequent performance is evaluated against a
baseline.

A.2 Experiment 1

The VNN placement reward provides feedback to the agent after every placement decision.

A valid placement gives a positive reward, while an invalid placement gives no reward.
This should incentivize the agent to learn to maximize reward by performing valid
placements.

Additionally, we provide the agent with a second reward whenever a VNR is accepted.
We use LRC for this reward. This should incentivize the agent to learn to maximize
LRC.

This experiment aims to find the best scale for the placement reward such that the agent
learns both valid placements and maximizes LRC.

If the placement reward is relatively large compared to the accepted reward, then the
agent might prioritize valid placements over LRC due to the larger reward. Furthermore,
if the placement reward is relatively small compared to the accepted reward, then the
agent might not learn how to make valid placements.

Therefore, we experiment with the placement reward scale to find the best balance
between valid placements and maximizing LRC. We test the following static placement
rewards:

1. VNN placement reward of 0.0001.

2. VNN placement reward of 0.001.

3. VNN placement reward of 0.01.

4. VNN placement reward of 0.1.

5. VNN placement reward of 0.3.

6. VNN placement reward of 0.6.

7. VNN placement reward of 1.0.
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A.2.1 Results

Figure A.1: Experiment 1 results.

We discuss the results shown in figure A.1:

• ACR: Any placement reward above or equal to 0.1 gives the best result. Runs with
a high placement reward learn valid placements faster, resulting in a fast increase
in ACR.

• Invalid VNN placements: Invalid VNN placements represent how many VNNs
the agent failed to place. In the worst case, the agent may fail 1000 placements.
This means the agent fails the first VNN of every VNR. When the value decreases,
the agent can make fewer invalid placements1.

The plot shows that a placement reward of 0.1, 0.3, or 0.6 causes the agent to fail
fewer placements. However, the agent struggles to perform valid placements for
the lower rewards.

• VNL embedding failures: Measures the number of failed VNL embeddings. A
VNL embedding failure may only occur if the VNN embedding stage has succeeded
without failures. The available VNL resources and the VNN placement decisions
made by the agent impacts the failure rate of the VNL embedding.

1If the placement is impossible (no valid placement exists), the agent will always make an invalid
placement. Such placements are not counted as a part of invalid placements.
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In figure A.1, some runs have a low VNL failure rate. This is due to most failures
occurring in the VNN embedding stage.

However, we see a high failure rate for the runs with rewards of 0.1− 1 for VNL
embeddings. There are two reasons for this high failure rate.

Firstly, these runs have a low VNN embedding failure rate. Secondly, the VNL
delay parameter is difficult to satisfy. This is due to the candidate domains, ingress,
and egress VNN placement restrictions which force the agent to place VNNs in
multiple domains. This increases the number of SNLs used during embedding,
which increases the probability of one or more SNLs being unable to satisfy the
delay constraint.

• LRC: The agent converges on 0.6 LRC for most runs. Runs with a smaller
placement reward have a larger LRC.

• Reward mean: Measures the trajectory reward averaged over the last 100 tra-
jectories. The reward mean indicates that the reward has converged, meaning the
agent is not improving regarding the placement reward or LRC.

A.2.2 Learning Outcome

A VNN placement reward of 0.1 seems to strike the best balance between learning valid
placements and maximizing LRC.

In subsequent experiments with placement rewards, we use 0.1 as the maximum placement
reward.

A.3 Experiment 2

We want to increase the ACR and LRC from experiment 1. Therefore, we experiment
with providing different rewards to the agent. We set the maximum placement reward as
0.1 for all experiments with placement rewards.

Furthermore, the agent might need additional information to learn the optimal embedding
strategy. Hence, we experiment by providing additional information in the observation
space.
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A.3.1 AVD in Placement Reward

In addition to AVD being included in the observation space, we also include the AVD in
the placement reward.

The goal is for the agent to pick SNNs with a shorter average distance to other nodes.
This reduces the probability of failure in the VNL embedding stage and increases LTR.

The reward of placement is calculated as follows, where ni is the host SNN of the VNN
being placed:

rewardplacement = 1− nAV D
i

10 (A.2)

A smaller distance should give a better reward. Hence, the AVD is subtracted from one.
Moreover, we divide by ten such that the max reward is 1

10 = 0.1, which was found to
work best in experiment 1.

The AVD is calculated using algorithm A.1.

This experiment extends the setup in tables A.1 and A.2.

A.3.2 Distance from Previous Placement in Placement Reward

We extend the observation space with the distance from the previous VNN placement
(DSTPP). This represents the number of hops from any SNN to the previously placed
VNN2.

DSTPP (ni) = SNL_Hops(ni, nprevious)
SNL_Max_Possible_Hops(A) (A.3)

The goal is for the agent to pick SNNs close to the previously placed VNN. This reduces
the probability of failure in the VNL embedding stage and increases LTR.

The reward of placement is calculated as follows, where ni is the host SNN of the VNN
being placed:

rewardplacement = 1− nDST P P
i

10 (A.4)

The distance from the last placement is calculated using algorithm A.3.

This experiment extends the setup in tables A.1 and A.2.
2Note that we also normalize the DSTPP
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A.3.3 Edge Information in the Observation Space

In this experiment, we extend the observation space with bandwidth and delay. For each
SNN part of the state, we include the normalized average bandwidth of the connected
SNLs and the normalized average delay of the connected SNLs. Moreover, we include
the normalized bandwidth and delay requirements of the next VNN being placed.

AV Gbandwidth(ni) = Normalized bandwidth sum of SNL connected to ni

Number of connected SNLs to ni
(A.5)

AV Gdelay(ni) = Normalized delay sum of SNL connected to ni

Number of connected SNLs to ni
(A.6)

The goal is for the agent to learn that the resources of connected VNLs should also be
satisfied for a VNR to be accepted.

This experiment extends the setup in tables A.1 and A.2.

A.3.4 No Placement Reward

We experiment by removing the placement reward altogether. Hence, the only reward
the agent receives is the accepted VNR reward which is the LRC, as specified in table
A.1.

The goal is to verify whether including a placement reward contributes to the overall
performance or whether the placement reward confuses the agent.

This experiment extends the setup in tables A.1 and A.2.

A.3.5 Revenue to Cost

We experiment by changing the accepted VNR reward from LRC to Revenue over Cost
(RC). RC does not consider the revenue to cost over the long term but only for a single
accepted VNR ri.

RC(ri) = Revenue(ri)/Cost(ri) (A.7)

rewardaccepted = RC(ri) (A.8)

This experiment extends the setup in tables A.1 and A.2.
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A.3.6 Results

The following names in the legend represent the experiments of the above sections:

• AVD in Placement Reward (AVDP).

• Distance from Previous Placement (DSTPP).

• Edge Information in the Observation (EOBS).

• No Placement Reward (NPP)

• No Placement Reward with RC (NPPRC).

Figure A.2: Experiment 2 results.

We discuss the results shown in figure A.2:

• ACR & Invalid Placements: We see that DSTPP outperforms every other
experiment regarding the ACR. AVDP had an initial high increase in ACR but
later worsened compared to DSTPP. This worsening was due to AVDP’s inability
to satisfy the VNL constraints in the VNL embedding stage. This can be seen
from the "VNL embedding failures," where AVDP often fails due to VNL failures
compared to DSTPP. Both AVDP and DSTPP have a similar failure rate for VNN
placements.
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• LRC: Regarding LRC, the NPPRC, EOBS, and NPP initially had a very high
LTR. This was due to the low ACR causing high instability in the LRC. As the
ACR increases, the LRC converges toward its actual value.

The DSTPP has a reliably high LRC compared to the other experiments.

• Reward mean: The mean reward is not comparable between the experiments due
to different reward functions being used. However, we see that AVDP generally
rewards more than the other solutions. This is due to the high connectivity in the
SN, which causes SNNs to have a high AVD. Thus, the placement rewards are also
higher for AVDP.

A.3.7 Learning Outcome

The above experiments show that the DSTPP is the best-performing solution regarding
our ACR, LTR, LTC, and LRC objectives. The ACR is high, while LRC is stable and
relatively high. The LRC measure captures the LTR and LRC measures. We proceed to
the hyperparameter tuning using the DSTPP setup.

A.4 Hyperparameter Tuning

In this section, we tune the hyperparameters used by PPO on the best-performing setup
from experiments 1 and 2. This setup is shown in tables A.3 and A.4 below.

Simulation Config
Config Name Config Value
VNN Placement

Reward
DSTPP

VNR Accepted
Reward

LRC

State
Vector
Inputs

Available resources in all SNNs
Demanded resources of next VNN

DSTPP in all SNNs

Table A.3: Environment configuration.
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PPO Hyperparameters
Parameter Name Parameter Value

Timesteps total 10000
Learning rate 0.0001
Training steps 4096

Training epochs 10
Training batch size 64

Entropy coef. 0.001
Clip 0.2

Gamma 0.99
Gamma GAE 0.95

Table A.4: PPO hyperparameters before tuning.

A.4.1 Learning Rate

Figure A.3: Learning rate experiments. The baseline is the default learning rate.

We show the ACR, LRC, approx_kl, and clip fraction in figure A.3.

1. ACR: The baseline (red) gives the best ACR. The agent cannot learn VNN place-
ments with a learning rate of 0.005 or 0.01.

2. LRC : The baseline gives the best LRC in the long run. The learning rate of 0.005
or 0.01 is unstable due to their low ACR.

3. approx_kl: A large value in the approx_kl represents a large change in the policy
[39]. This statistic is useful for visualizing agent learning.

With a learning rate of 0.005 and 0.01, the approx_kl is consistently close to zero,
and the ACR is also close to zero. This indicates the agent is unable to learn when
using these learning rates.
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The learning rate of 0.0005 has a large spike in the approx_kl between 300k-400k
steps. This overall negatively affected ACR performance, seen between 300k-400k
steps.

4. clip_fraction: PPO clipping as discussed in section 5. The PPO clip helped reduce
the impact of the large policy change around 300k-400k steps by clipping the
update.

A larger clip range could be used for the 0.0005 learning rate to ensure more stable
policy changes.

We continue using the default learning rate of 0.0001 due to its high ACR and LRC.

A.4.2 PPO Clip

Although the chosen learning rate from the learning rate tuning has stable policy updates,
we experiment with slight changes to the clipping factor to view how it impacts the
policy updates.

Figure A.4: Clip rate experiments. The baseline is the default clip range.
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A.4.3 Training Epochs

Figure A.5: Experimentation with the number of epochs. The baseline is the default
number of epochs.

Figure A.5 shows very little difference between the epoch experiments. However, the
experiment with eight epochs has a slightly positive trend in LRC relative to the baseline.
Hence, we use eight epochs going forward.

A.4.4 Training Batch Size

Figure A.6: Experimentation with the batch size. The baseline is the default batch size.

Figure A.6 shows little difference between the experiments. The experiment with a batch
size of 256 initially gives a high LRC, however, this is due to instabilities caused by the
low ACR. We continue using the default batch size of 64 since this experiment has the
best overall ACR and LRC performance.
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A.4.5 Training Steps

Figure A.7: Experimentation with the number of steps. The baseline is 4096 steps,
which is used in earlier experimentation.

Figure A.7 shows the experiments with various number of training steps. The experiment
with 2048 steps gives a high LRC but only a moderately high ACR. Furthermore, we see
from the approx_kl that this experiment is experiencing large policy updates which also
causes spikes in the clipping. Overall, the baseline of 4096 gives the best performance.

A.4.6 GAE Gamma

Figure A.8: GAE parameter experiments. The baseline is the default GAE value.

Figure A.8 shows the experimentation with the GAE parameter. We see the baseline
(GAE = 0.95) is outperformed by GAE = 0.90. However, GAE = 0.90 performs poorly
in terms of LRC.

However, GAE = 0.99 improves the LRC while maintaining a relatively high ACR.
Hence, we continue using GAE = 0.99 going forward.
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A.4.7 Entropy

Figure A.9: Entropy experiments. The baseline is the default entropy value.

Figure A.9 shows that entropy = 0 gives a large boost to the LRC. This could be because
the agent favours less exploration with no entropy, causing the agent to utilize the optimal
strategy without exploration. We use entropy = 0 going forward.

A.5 Additional Pseudocode

A.5.1 AVD

Algorithm A.1 calculateAD
1: distanceV ector ← V ector(|NA|)
2: {Calculate the distances between any SNL pair}
3: distanceMap← nx.shortestpathlength(A)
4: for ni ∈ NA do
5: sumDistances = 0
6: for nj ∈ distanceMap[ni] do
7: sumDistances = sumDistances + distanceMap[ni][nj ] {Distance ni to nj}
8: end for
9: distanceV ector[i] = sumDistances/|NA|

10: end for
11: return distanceV ector
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A.5.2 Normalized Average Bandwidth and Delay

Algorithm A.2 minimumNormalizedBW
1: BWV ector ← V ector(|NA|)
2: DELV ector ← V ector(|NA|)
3: maxPossibleBW ← config[maxPossibleBW ]
4: maxPossibleDEL← config[maxPossibleDEL]
5:

6: for ni ∈ NA do
7: BWV ector[i]← getMaxBW (ni)/maxPossibleBW

8: DELV ector[i]← getMinDEL(ni)/maxPossibleDEL

9: end for‘
10: return BWV ector, DELV ector

A.5.3 Distance from Previous VNN Embedding

Algorithm A.3 calculateDistanceFromPreviousVNN
1: distanceV ector ← V ector(|NA|)
2: {Calculate the distances between any SNL pair}
3: distanceMap← nx.shortestpathlength(A)
4: for ni ∈ NA do
5: sumDistances = 0
6: j ← IDofPreviousV NN()
7: distanceV ector[ni]← distanceMap[ni][nj ]
8: end for
9: distanceV ector ← distanceV ector/max(distanceV ector) {Normalize}

10: return distanceV ector
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A.5.4 GRC Pseudocode

Algorithm A.4 getSortedGRCVector
Input: Any graph G(NG, EG), Dampening d, Threshold th

1: grc = []
2:

3: {Calculate equation 5.4}
4: resourceV ector = []
5: for VNN vf do
6: resourcesAvailable = vCP U

i

7: resourceV ector[i] = resourcesAvailable

8: end for
9: resourceV ector = resourceV ector/Sum(resourceV ector)

10:

11: {Calclate equation 5.5}
12: M = G.adjacencyMatrix

13: for edge e(nrowi ,ncoli
) in M do

14: BWSum = 0
15: for edge e(x,ncoli

) adjacent to ncoli do
16: BWSum+ = eBW

(x,ncoli
)

17: end for
18: M [rowi, colj ] = BWSum

19: end for
20:

21: {Find the GRC vector of graph G according to alg. 1 in [11]}
22: c = resourceV ector

23: k = 0
24: grck = resourceV ector

25: ∆ = inf
26: while ∆ ≥ th do
27: grck+1 = (1− d)c + dM · grck)
28: ∆ = ||grck+1 − grck||
29: grck = grck+1

30: end while
31: return grck.sortDecending()
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Algorithm A.5 GRCEmbedVNR
Input: SN graph A, VNR ri

1: grcSN = getSortedGRCV ector(A)
2: grcV N = getSortedGRCV ector(rB

i )
3:

4: for sorted node vf in order grcV N do
5: nodeIsP laced = false
6: for sorted node ni in order grcSN do
7: if hasSufficcientResources(A, ni, vf ) then
8: embedV NN(A, ni, vf )
9: nodeIsP laced = true

10: end if
11: end for
12:

13: if nodeIsP laced then
14: edgesAreP laced = embedV NLs(A, rB

i )
15: end if
16:

17: if nodeIsP laced and edgesAreP laced then
18: return true
19: end if
20: end for
21:

22: deAllocateResources()
23: return false
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