14 research outputs found

    Uniform determinantal representations

    Get PDF
    The problem of expressing a specific polynomial as the determinant of a square matrix of affine-linear forms arises from algebraic geometry, optimisation, complexity theory, and scientific computing. Motivated by recent developments in this last area, we introduce the notion of a uniform determinantal representation, not of a single polynomial but rather of all polynomials in a given number of variables and of a given maximal degree. We derive a lower bound on the size of the matrix, and present a construction achieving that lower bound up to a constant factor as the number of variables is fixed and the degree grows. This construction marks an improvement upon a recent construction due to Plestenjak-Hochstenbach, and we investigate the performance of new representations in their root-finding technique for bivariate systems. Furthermore, we relate uniform determinantal representations to vector spaces of singular matrices, and we conclude with a number of future research directions.Comment: 23 pages, 3 figures, 4 table

    Polynomial-Time Algorithms for Quadratic Isomorphism of Polynomials: The Regular Case

    Get PDF
    Let f=(f_1,…,f_m)\mathbf{f}=(f\_1,\ldots,f\_m) and g=(g_1,…,g_m)\mathbf{g}=(g\_1,\ldots,g\_m) be two sets of m≥1m\geq 1 nonlinear polynomials over K[x_1,…,x_n]\mathbb{K}[x\_1,\ldots,x\_n] (K\mathbb{K} being a field). We consider the computational problem of finding -- if any -- an invertible transformation on the variables mapping f\mathbf{f} to g\mathbf{g}. The corresponding equivalence problem is known as {\tt Isomorphism of Polynomials with one Secret} ({\tt IP1S}) and is a fundamental problem in multivariate cryptography. The main result is a randomized polynomial-time algorithm for solving {\tt IP1S} for quadratic instances, a particular case of importance in cryptography and somewhat justifying {\it a posteriori} the fact that {\it Graph Isomorphism} reduces to only cubic instances of {\tt IP1S} (Agrawal and Saxena). To this end, we show that {\tt IP1S} for quadratic polynomials can be reduced to a variant of the classical module isomorphism problem in representation theory, which involves to test the orthogonal simultaneous conjugacy of symmetric matrices. We show that we can essentially {\it linearize} the problem by reducing quadratic-{\tt IP1S} to test the orthogonal simultaneous similarity of symmetric matrices; this latter problem was shown by Chistov, Ivanyos and Karpinski to be equivalent to finding an invertible matrix in the linear space Kn×n\mathbb{K}^{n \times n} of n×nn \times n matrices over K\mathbb{K} and to compute the square root in a matrix algebra. While computing square roots of matrices can be done efficiently using numerical methods, it seems difficult to control the bit complexity of such methods. However, we present exact and polynomial-time algorithms for computing the square root in Kn×n\mathbb{K}^{n \times n} for various fields (including finite fields). We then consider \\#{\tt IP1S}, the counting version of {\tt IP1S} for quadratic instances. In particular, we provide a (complete) characterization of the automorphism group of homogeneous quadratic polynomials. Finally, we also consider the more general {\it Isomorphism of Polynomials} ({\tt IP}) problem where we allow an invertible linear transformation on the variables \emph{and} on the set of polynomials. A randomized polynomial-time algorithm for solving {\tt IP} when f=(x_1d,…,x_nd)\mathbf{f}=(x\_1^d,\ldots,x\_n^d) is presented. From an algorithmic point of view, the problem boils down to factoring the determinant of a linear matrix (\emph{i.e.}\ a matrix whose components are linear polynomials). This extends to {\tt IP} a result of Kayal obtained for {\tt PolyProj}.Comment: Published in Journal of Complexity, Elsevier, 2015, pp.3

    Symbolic Determinant Identity Testing and Non-Commutative Ranks of Matrix Lie Algebras

    Get PDF

    Cut Locus of Submanifolds: A Geometric and Topological Viewpoint

    Full text link
    Associated to every closed, embedded submanifold NN of a connected Riemannian manifold MM, there is the distance function dNd_N which measures the distance of a point in MM from NN. We analyze the square of this function and show that it is Morse-Bott on the complement of the cut locus Cu(N)\mathrm{Cu}(N) of NN, provided MM is complete. Moreover, the gradient flow lines provide a deformation retraction of M−Cu(N)M-\mathrm{Cu}(N) to NN. If MM is a closed manifold, then we prove that the Thom space of the normal bundle of NN is homeomorphic to M/Cu(N)M/\mathrm{Cu}(N). We also discuss several interesting results which are either applications of these or related observations regarding the theory of cut locus. These results include, but are not limited to, a computation of the local homology of singular matrices, a classification of the homotopy type of the cut locus of a homology sphere inside a sphere, a deformation of the indefinite unitary group U(p,q)U(p,q) to U(p)×U(q)U(p)\times U(q) and a geometric deformation of GL(n,R)GL(n,\mathbb{R} ) to O(n,R)O(n,\mathbb{R} ) which is different from the Gram-Schmidt retraction. \bigskip \noindent If a compact Lie group GG acts on a Riemannian manifold MM freely then M/GM/G is a manifold. In addition, if the action is isometric, then the metric of MM induces a metric on M/GM/G. We show that if NN is a GG-invariant submanifold of MM, then the cut locus Cu(N)\mathrm{Cu}(N) is GG-invariant, and Cu(N)/G=Cu(N/G)\mathrm{Cu}(N)/G = \mathrm{Cu}\left( N/G \right) in M/GM/G. An application of this result to complex projective hypersurfaces has been provided.Comment: 121 pages, 33 figures, PhD Thesi

    Symbolic determinant identity testing and non-commutative ranks of matrix Lie algebras

    Get PDF
    One approach to make progress on the symbolic determinant identity testing (SDIT) problem is to study the structure of singular matrix spaces. After settling the non-commutative rank problem (Garg-Gurvits-Oliveira-Wigderson, Found. Comput. Math. 2020; Ivanyos-Qiao-Subrahmanyam, Comput. Complex. 2018), a natural next step is to understand singular matrix spaces whose non-commutative rank is full. At present, examples of such matrix spaces are mostly sporadic, so it is desirable to discover them in a more systematic way. In this paper, we make a step towards this direction, by studying the family of matrix spaces that are closed under the commutator operation, that is matrix Lie algebras. On the one hand, we demonstrate that matrix Lie algebras over the complex number field give rise to singular matrix spaces with full non-commutative ranks. On the other hand, we show that SDIT of such spaces can be decided in deterministic polynomial time. Moreover, we give a characterization for the matrix Lie algebras to yield a matrix space possessing singularity certificates as studied by Lov'asz (B. Braz. Math. Soc., 1989) and Raz and Wigderson (Building Bridges II, 2019).Comment: 23 page
    corecore