78,871 research outputs found

    Advanced Solar Power Systems

    Get PDF
    The Advanced Solar Power System (ASPS) concentrator uses a technically sophisticated design and extensive tooling to produce very efficient (80 to 90%) and versatile energy supply equipment which is inexpensive to manufacture and requires little maintenance. The advanced optical design has two 10th order, generalized aspheric surfaces in a Cassegrainian configuration which gives outstanding performance and is relatively insensitive to temperature changes and wind loading. Manufacturing tolerances also have been achieved. The key to the ASPS is the direct absorption of concentrated sunlight in the working fluid by radiative transfers in a black body cavity. The basic ASPS design concepts, efficiency, optical system, and tracking and focusing controls are described

    Solar power roof shingle

    Get PDF
    Silicon solar cell module provides both all-weather protection and electrical power. Module consists of array of circular silicon solar cells bonded to fiberglass substrate roof shingle with fluorinated ethylene propylene encapsulant

    Solar Power Satellites

    Get PDF
    A satellite based energy concept is described, including the advantages of the basic concept, system characteristics, cost, and environmental considerations. An outline of a plan for the further evaluation and implementation of the system is given. It is concluded that the satellite concept is competitive with other advanced power generation systems when a variety of factors are considered, including technical feasibility, cost, safety, natural resources, environment, baseload capability, location flexibility, land use, and existing industrial base for implementation

    Control of Solar Power Systems: a survey

    Get PDF
    9th International Symposium on Dynamics and Controlof Process Systems (DYCOPS 2010)Leuven, Belgium, July 5-7, 20109This paper deals with the main control problems found in solar power systems and the solutions proposed in literature. The paper first describes the main solar power technologies, its development status and then describes the main challenges encountered when controlling solar power systems.Ministerio de Ciencia y Tecnología DPI2008-05818Ministerio de Ciencia y Tecnología DPI2007-66718-C04-04Junta de Andalucía P07-TEP-0272

    Prototype solar power satellite options

    Get PDF
    The choice of options for the prototype solar power satellite is addressed relative to risk and cost. Emphasis is placed on the reduction of the risk of failure. Risk is the program cost multiplied by the reduction in probability of program success due to the risky action. Four classes of risk are identified. It is suggested that prototyping would reduce the technical risk as well as reduce the effects of the other three types of risk by allowing them to be quantified earlier. Prototype demonstration requirements addressed include electromagnetic power link feasibility demonstration, component integration verification, construction technology verification, and cost performance verification. Specific prototype requirements are listed and prototyping options are given in tabular form

    Applications of thin film technology toward a low-mass solar power satellite

    Get PDF
    Previous concepts for solar power satellites have used conventional-technology photovoltaics and microwave tubes. The authors propose using thin film photovoltaics and an integrated solid state phased array to design an ultra-lightweight solar power satellite, resulting in a potential reduction in weight by a factor of ten to a hundred over conventional concepts for solar power satellites

    Harnessing high altitude solar power

    Get PDF
    As an intermediate solution between Glaser's satellite solar power (SSP) and ground-based photovoltaic (PV) panels, this paper examines the collection of solar energy using a high-altitude aerostatic platform. A procedure to calculate the irradiance in the medium/high troposphere, based on experimental data, is described. The results show that here a PV system could collect about four to six times the energy collected by a typical U.K.-based ground installation, and between one-third and half of the total energy the same system would collect if supported by a geostationary satellite (SSP). The concept of the aerostat for solar power generation is then briefly described together with the equations that link its main engineering parameters/variables. A preliminary sizing of a facility stationed at 6 km altitude and its costing, based on realistic values of the input engineering parameters, is then presented

    Solar Power Plant Detection on Multi-Spectral Satellite Imagery using Weakly-Supervised CNN with Feedback Features and m-PCNN Fusion

    Full text link
    Most of the traditional convolutional neural networks (CNNs) implements bottom-up approach (feed-forward) for image classifications. However, many scientific studies demonstrate that visual perception in primates rely on both bottom-up and top-down connections. Therefore, in this work, we propose a CNN network with feedback structure for Solar power plant detection on middle-resolution satellite images. To express the strength of the top-down connections, we introduce feedback CNN network (FB-Net) to a baseline CNN model used for solar power plant classification on multi-spectral satellite data. Moreover, we introduce a method to improve class activation mapping (CAM) to our FB-Net, which takes advantage of multi-channel pulse coupled neural network (m-PCNN) for weakly-supervised localization of the solar power plants from the features of proposed FB-Net. For the proposed FB-Net CAM with m-PCNN, experimental results demonstrated promising results on both solar-power plant image classification and detection task.Comment: 9 pages, 9 figures, 4 table
    corecore