44 research outputs found

    Evolving soft locomotion in aquatic and terrestrial environments: effects of material properties and environmental transitions

    Full text link
    Designing soft robots poses considerable challenges: automated design approaches may be particularly appealing in this field, as they promise to optimize complex multi-material machines with very little or no human intervention. Evolutionary soft robotics is concerned with the application of optimization algorithms inspired by natural evolution in order to let soft robots (both morphologies and controllers) spontaneously evolve within physically-realistic simulated environments, figuring out how to satisfy a set of objectives defined by human designers. In this paper a powerful evolutionary system is put in place in order to perform a broad investigation on the free-form evolution of walking and swimming soft robots in different environments. Three sets of experiments are reported, tackling different aspects of the evolution of soft locomotion. The first two sets explore the effects of different material properties on the evolution of terrestrial and aquatic soft locomotion: particularly, we show how different materials lead to the evolution of different morphologies, behaviors, and energy-performance tradeoffs. It is found that within our simplified physics world stiffer robots evolve more sophisticated and effective gaits and morphologies on land, while softer ones tend to perform better in water. The third set of experiments starts investigating the effect and potential benefits of major environmental transitions (land - water) during evolution. Results provide interesting morphological exaptation phenomena, and point out a potential asymmetry between land-water and water-land transitions: while the first type of transition appears to be detrimental, the second one seems to have some beneficial effects.Comment: 37 pages, 22 figures, currently under review (journal

    ChainQueen: A Real-Time Differentiable Physical Simulator for Soft Robotics

    Full text link
    Physical simulators have been widely used in robot planning and control. Among them, differentiable simulators are particularly favored, as they can be incorporated into gradient-based optimization algorithms that are efficient in solving inverse problems such as optimal control and motion planning. Simulating deformable objects is, however, more challenging compared to rigid body dynamics. The underlying physical laws of deformable objects are more complex, and the resulting systems have orders of magnitude more degrees of freedom and therefore they are significantly more computationally expensive to simulate. Computing gradients with respect to physical design or controller parameters is typically even more computationally challenging. In this paper, we propose a real-time, differentiable hybrid Lagrangian-Eulerian physical simulator for deformable objects, ChainQueen, based on the Moving Least Squares Material Point Method (MLS-MPM). MLS-MPM can simulate deformable objects including contact and can be seamlessly incorporated into inference, control and co-design systems. We demonstrate that our simulator achieves high precision in both forward simulation and backward gradient computation. We have successfully employed it in a diverse set of control tasks for soft robots, including problems with nearly 3,000 decision variables.Comment: In submission to ICRA 2019. Supplemental Video: https://www.youtube.com/watch?v=4IWD4iGIsB4 Project Page: https://github.com/yuanming-hu/ChainQuee

    Coupling field simulation of soft capacitive sensors towards soft robot perception

    Get PDF

    A hybrid dynamic model for bio-inspired soft robots - Application to a flapping-wing micro air vehicle.

    Get PDF
    International audienceThe paper deals with the dynamic modeling of bio-inspired robots with soft appendages such as flying insect-like or swimming fish-like robots. In order to model such soft systems, we propose to use the Mobile Multibody System framework introduced in [1][2][3]. In such a framework, the robot is considered as a tree-like structure of rigid bodies where the evolution of the position of the joints is governed by stress-strain laws or control torques. Based on the Newton-Euler formulation of these systems, we propose a new algorithm able to compute at each step of a time loop both the net and passive joint accelerations along with the control torques supplied by the motors. To illustrate, based on previous work [4], the proposed algorithm is applied to the simulation of the hovering flight of a soft flapping-wing insect-like robot (see the attached video)

    An Amphibious Fully-Soft Miniature Crawling Robot Powered by Electrohydraulic Fluid Kinetic Energy

    Full text link
    Miniature locomotion robots with the ability to navigate confined environments show great promise for a wide range of tasks, including search and rescue operations. Soft miniature locomotion robots, as a burgeoning field, have attracted significant research interest due to their exceptional terrain adaptability and safety features. In this paper, we introduce a fully-soft miniature crawling robot directly powered by fluid kinetic energy generated by an electrohydraulic actuator. Through optimization of the operating voltage and design parameters, the crawling velocity of the robot is dramatically enhanced, reaching 16 mm/s. The optimized robot weighs 6.3 g and measures 5 cm in length, 5 cm in width, and 6 mm in height. By combining two robots in parallel, the robot can achieve a turning rate of approximately 3 degrees/s. Additionally, by reconfiguring the distribution of electrodes in the electrohydraulic actuator, the robot can achieve 2 degrees-of-freedom translational motion, improving its maneuverability in narrow spaces. Finally, we demonstrate the use of a soft water-proof skin for underwater locomotion and actuation. In comparison with other soft miniature crawling robots, our robot with full softness can achieve relatively high crawling velocity as well as increased robustness and recovery

    Collective control of modular soft robots via embodied Spiking Neural Cellular Automata

    Get PDF
    Voxel-based Soft Robots (VSRs) are a form of modular soft robots, composed of several deformable cubes, i.e., voxels. Each VSR is thus an ensemble of simple agents, namely the voxels, which must cooperate to give rise to the overall VSR behavior. Within this paradigm, collective intelligence plays a key role in enabling the emerge of coordination, as each voxel is independently controlled, exploiting only the local sensory information together with some knowledge passed from its direct neighbors (distributed or collective control). In this work, we propose a novel form of collective control, influenced by Neural Cellular Automata (NCA) and based on the bio-inspired Spiking Neural Networks: the embodied Spiking NCA (SNCA). We experiment with different variants of SNCA, and find them to be competitive with the state-of-the-art distributed controllers for the task of locomotion. In addition, our findings show significant improvement with respect to the baseline in terms of adaptability to unforeseen environmental changes, which could be a determining factor for physical practicability of VSRs.Comment: Workshop on "From Cells to Societies: Collective Learning across Scales" at the International Conference on Learning Representations (Cells2Societies@ICLR

    On the Entanglement between Evolvability and Fitness: an Experimental Study on Voxel-based Soft Robots

    Get PDF
    The concept of evolvability, that is the capacity to produce heritable and adaptive phenotypic variation, is crucial in the current understanding of evolution. However, while its meaning is intuitive, there is no consensus on how to quantitatively measure it. As a consequence, it is hard to evaluate the interplay between evolvability and fitness and its dependency on key factors like the evolutionary algorithm (EA) or the representation of the individuals. Here, we propose to use MAP-Elites, a well-established Quality Diversity EA, as a support structure for measuring evolvability and for highlighting its interplay with fitness. We map the solutions generated during the evolutionary process to a MAP-Elites-like grid and then visualize their fitness and evolvability as maps. This procedures does not affect the EA execution and can hence be applied to any EA: it only requires to have two descriptors for the solutions that can be used to meaningfully characterize them. We apply this general methodology to the case of Voxel-based Soft Robots, a kind of modular robots with a body composed of uniform elements whose volume is individually varied by the robot brain. Namely, we optimize the robots for the task of locomotion using evolutionary computation. We consider four representations, two for the brain only and two for both body and brain of the VSR, and two EAs (MAP-Elites and a simple evolutionary strategy) and examine the evolvability and fitness maps. The experiments suggest that our methodology permits to discover interesting patterns in the maps: fitness maps appear to depend more on the representation of the solution, whereas evolvability maps appear to depend more on the EA. As an aside, we find that MAP-Elites is particularly effective in the simultaneous evolution of the body and the brain of Voxel-based Soft Robots

    Learned and Controlled Autonomous Robotic Exploration in an Extreme, Unknown Environment

    Full text link
    Exploring and traversing extreme terrain with surface robots is difficult, but highly desirable for many applications, including exploration of planetary surfaces, search and rescue, among others. For these applications, to ensure the robot can predictably locomote, the interaction between the terrain and vehicle, terramechanics, must be incorporated into the model of the robot's locomotion. Modeling terramechanic effects is difficult and may be impossible in situations where the terrain is not known a priori. For these reasons, learning a terramechanics model online is desirable to increase the predictability of the robot's motion. A problem with previous implementations of learning algorithms is that the terramechanics model and corresponding generated control policies are not easily interpretable or extensible. If the models were of interpretable form, designers could use the learned models to inform vehicle and/or control design changes to refine the robot architecture for future applications. This paper explores a new method for learning a terramechanics model and a control policy using a model-based genetic algorithm. The proposed method yields an interpretable model, which can be analyzed using preexisting analysis methods. The paper provides simulation results that show for a practical application, the genetic algorithm performance is approximately equal to the performance of a state-of-the-art neural network approach, which does not provide an easily interpretable model.Comment: Published in: 2019 IEEE Aerospace Conference Date of Conference: 2-9 March 2019 Date Added to IEEE Xplore: 20 June 201
    corecore