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Abstract

The concept of evolvability, that is the capacity to produce
heritable and adaptive phenotypic variation, is crucial in the
current understanding of evolution. However, while its mean-
ing is intuitive, there is no consensus on how to quantitatively
measure it. As a consequence, in evolutionary robotics, it is
hard to evaluate the interplay between evolvability and fitness
and its dependency on key factors like the evolutionary algo-
rithm (EA) or the representation of the individuals. Here, we
propose to use MAP-Elites, a well-established Quality Diver-
sity EA, as a support structure for measuring evolvability and
for highlighting its interplay with fitness. We map the solu-
tions generated during the evolutionary process to a MAP-
Elites-like grid and then visualize their fitness and evolvabil-
ity as maps. This procedures does not affect the EA execution
and can hence be applied to any EA: it only requires to have
two descriptors for the solutions that can be used to meaning-
fully characterize them. We apply this general methodology
to the case of Voxel-based Soft Robots (VSR), a kind of mod-
ular robots with a body composed of uniform elements whose
volume is individually varied by the robot brain. Namely, we
optimize the robots for the task of locomotion using evolu-
tionary computation. We consider four representations, i.e.,
ways of transforming a genotype into a robot, two for the
brain only and two for both body and brain of the VSR, and
two EAs (MAP-Elites and a simple evolutionary strategy) and
examine the evolvability and fitness maps. The experiments
suggest that our methodology permits us to discover inter-
esting patterns in the maps: fitness maps appear to depend
more on the representation of the solution, whereas evolv-
ability maps appear to depend more on the EA. As an aside,
we find that MAP-Elites is particularly effective in the simul-
taneous evolution of the body and the brain of Voxel-based
Soft Robots.

1 Introduction
Evolution in nature has created a diversity of viable ways of
living occupying vastly different niches (plants, mammals,
etc.). Yet, despite the rich diversity observed in nature, much
of this evolution depends on variation on common ances-
tors. For example, all breeds of domesticated dog (Canis
familiaris), from poodles to Great Danes, are hypothesized
to have descended from the grey wolf (Canis lupus) (Cop-
pinger and Smith, 1983) or some other wild canid (Koler-

Matznick, 2002)1.
What is it about these common ancestors that makes them

so likely to further evolve into high-quality descendants very
distinct from themselves? Capturing this property, called
evolvability, and replicating it inside an algorithmic process
is a challenge for advancing our theoretical understanding of
natural and artificial evolutionary systems. It is also likely
that figuring out how to discover highly evolvable individ-
uals will have positive practical results for the purposes of
optimization by virtue of avoiding premature convergence
(Squillero and Tonda, 2016).

This paper explores the concept of evolvability in the
latter sense (as a tool for achieving high performance in
an engineering context). In particular, we use two funda-
mentally different Evolutionary Algorithms (EAs): a sim-
ple form of Evolution Strategies (ES) (Beyer and Schwe-
fel, 2002), and the Quality Diversity algorithm MAP-Elites
(Cully et al., 2015). We apply them to discover highly
evolvable morphologies and controllers for Voxel-based Soft
Robots (VSRs). We choose these EAs as they represent two
different ways to conduct evolutionary search: one mainly
aimed at exploitation (ES), the other one mainly aimed at ex-
ploration (MAP-Elites). On the other hand, we choose VSRs
for this study mainly due to their modularity, which makes
them particular expressive and suitable for constituting an
autonomous robotic ecosystem (e.g., for space exploration
applications (Methenitis et al., 2015)) in which evolvability
would be a key feature.

We review the concept of evolvability with a focus on its
applications in artificial evolutionary systems. We introduce
a method for keeping track of the evolvability and fitness
of solutions generated during the execution of potentially
any EA. We use a grid-like structure for storing the most
relevant solutions in a way that enables a convenient visu-
alization of their fitness and evolvability at the end of the

1Interestingly, when Darwin wrote about evolution, he con-
cluded that the diversity of dogs necessarily must result from in-
terbreeding of many kinds of wild dogs (Darwin, 1875). However,
molecular dating techniques in recent years suggest that this con-
clusion is likely wrong (Wayne et al., 1991).



evolutionary process: this methodology only requires two
descriptors for characterizing the solutions and does not in-
terfere with the EA execution. Since fitness and evolvability
of individual solutions are placed in a grid-like structure, the
analysis of their interplay is facilitated. We apply this gen-
eral methodology to the case of the optimization of VSRs
(brain only and both body and brain) for the task of locomo-
tion. We consider four different representations and com-
bine them with the two EAs mentioned above and apply our
methodology to discover insights about how the EA and the
representation impact on the interplay between fitness and
evolvability.

Results indicate that both the choices of the representation
and the EA have a major impact not only on the quality of
the solution, but also on how the search space is explored,
which ultimately reflects in different observations of evolv-
ability. More precisely, we observe that the fitness distri-
bution in a phenotypic space determined by predefined de-
scriptors (more on this below) is mostly determined by the
adopted representation; on the contrary, the evolvability dis-
tribution over the same phenotypic space appears to be deter-
mined by the EA. Hence we conclude that fitness and evolv-
ability are somehow “entangled” and that this entanglement
is affected by multiple aspects of evolutionary systems.

The rest of the paper is structured as follows. In the next
section, we introduce the background concepts and briefly
summarize the related works. In Section 3, we describe the
methods. Then, we present the results in Section 4. Finally,
we give the conclusions in Section 5.

2 Background and related works
Evolvability is essentially a measure of potential for evolu-
tionary innovation. However, measures of evolvability dif-
fer in what features for evolutionary innovation are salient
(Pigliucci, 2008). Per one popular definition, “Evolvabil-
ity is the ability of a biological system to produce pheno-
typic variation that is both heritable and adaptive” (Payne
and Wagner, 2019; Nordmoen et al., 2021). It is important
to note two distinct components of this definition: that there
is variation (i.e., diversity) being passed from parent to off-
spring, and that this variation leads to positive effects on fit-
ness. Interestingly and importantly, measures and studies
from artificial life (a primary domain of interest for evolv-
ability studies related to artificial evolution) regard evolv-
ability purely as adaptation (Medvet et al., 2017; Veenstra
et al., 2020; Liu et al., 2022; Tarapore and Mouret, 2015), or
evolvability as diversification (Mengistu et al., 2016; Gajew-
ski et al., 2019; Lehman and Stanley, 2011b, 2013; Lim
et al., 2021; Carlo et al., 2021), but not both.

Searching directly for evolvability has become a recently
popular trend. In Evolvability Search (Mengistu et al.,
2016), the fitness function of a traditional EA rewards high
evolvability (in this diversity-oriented interpretation, it is the
number of distinct behaviors in the set of offspring gen-

erated by an individual) instead of rewarding maximizing
a domain-specific objective. This algorithm is shown to
outperform both greedy optimization and novelty search
(Lehman and Stanley, 2011a). The subsequent Evolvability
Evolution Strategy (E-ES) (Gajewski et al., 2019) introduces
improvements in terms of computational expense to scale
to deep neural networks. Quality Evolvability ES (QE-ES)
(Katona et al., 2021) builds on both of these algorithms, si-
multaneously optimizing for both evolvability (as diversity)
and fitness with non-dominated sorting, as in NSGA-II (Deb
et al., 2002). Note that unlike Quality Diversity algorithms
(Pugh et al., 2016), which seek to discover a diverse pop-
ulation of high-performing individuals, the goal in Quality
Evolvability is to discover a single individual with diverse
offspring. The work reported in this current paper will lever-
age the Quality Diversity algorithm MAP-Elites (see Sec-
tion 3) to find diverse populations of highly evolvable indi-
viduals.

3 Methods
In the following, we present the main methods and tools
we used in our study: the VSRs, the EAs used for evolv-
ing them, the descriptors adopted for characterizing evolved
VSRs, and the evolvability metric.

Voxel-based Soft Robots
First presented by Hiller and Lipson (2011), VSRs are a type
of modular soft robot composed of cubic elements that can
vary their volume according to a control signal that is gener-
ated by a controller. In this work, we use the 2D (yet, phys-
ically plausible) VSR simulator presented by Medvet et al.
(2020a). In fact, using a two-dimensional model allows to
reduce the numerical complexity of the robot simulations,
without losing the potential variety of robot shapes and be-
haviors.

From a conceptual level, a VSRs can be seen as a com-
position of two components: the body, i.e., a set of voxels
arranged in a given shape, and the brain, i.e., a controller
that produces the control signal for each voxel in the body.
The details of these two components are reported below.

Body. The body of a VSR is defined by a number of de-
formable squares, called voxels, arranged (in our case) in a
2D grid (Figure 1). Pairs of adjacent voxels are glued to-
gether at their two common vertexes. During the simula-
tion, each voxel changes its area as a result of the combined
action of (a) external forces imposed by bodies in contact
with the voxel, namely other voxels and the ground, and
(b) an internal force that makes the voxel expand or contract.
The internal force at time t is determined by a control value
c(t) ∈ [−1, 1], where −1 means maximum area expansion
and 1 means maximum area contraction. The control value
is itself determined, for each voxel of the body, by the brain
of the VSR, described in the next section.



Figure 1: An example VSR with a body enclosed in a 4×
5 grid; namely, one of those obtained in our experiments (see
Section 4 and Figure 5a). The color of each voxel depends
on its current area: green for expanded, red for contracted,
yellow for equal to the rest area.

We rely on 2D-VSR-Sim (Medvet et al., 2020a) for sim-
ulating the VSR body. In brief, in 2D-VSR-Sim voxels are
modeled as an assembly of four masses (at the vertexes of
the square) and multiple spring-damper systems connecting
them. The internal force is modeled as an instantaneous
change of the resting length of the spring-damper systems.

Clearly, the body of a VSR, together with its brain, plays
a crucial role in making the robot more or less effective for
a given task. It follows that the body, i.e., how to organize
voxels in the 2D grid, can be optimized.

Brain. The brain generates the control signal for each
voxel and hence acts as the controller for the robot. In this
work, we use an open-loop controller where the control sig-
nal depends only on the current time t. Namely, we use a si-
nusoidal controller for which c(t) = sin(2πft+ϕ). Despite
appearing trivial, this form of open-loop controller has been
used for VSRs to achieve effective behaviors in different en-
vironments (Corucci et al., 2018) as well as for investigating
complex adaptation dynamics (Kriegman et al., 2018).

The values of the frequency f and phase ϕ can be different
among the voxels in the body. All together, they constitute
the parameters of the controller and may be optimized for
obtaining a desired behavior.

Evolutionary Algorithms
To optimize VSRs, we use two different EAs: a traditional
fitness-driven EA, namely a simple form of Evolution Strate-
gies (ES) (Beyer and Schwefel, 2002), and a Quality Di-
versity algorithm, namely MAP-Elites (ME) (Cully et al.,
2015).

We decide to employ these two EAs because they support
diversity, a substrate for evolvability, in radically different
ways. While in ES the entire offspring is generated from a
prototype individual deriving from a small subset of the best
parents, in ME the offspring is generated by randomly sam-

pling parents from the entire population, such that worse, but
diverse parents can reproduce too.

Next, we briefly summarize the salient elements of the
two algorithms. We denote by G the search space, i.e., the
space where individuals are defined. In this study, we have
G = Rp, hence we denote individuals as numerical vectors
g ∈ Rp; we remark that some of the components, namely,
MAP-Elites, are defined for more general search spaces. We
also assume that the fitness of an individual, i.e., its quality
f(g), can be evaluated as a single numerical value, i.e., with
a fitness function f : G → R, for which it holds that the
greater, the better.

Evolution Strategies (ES). In our simple form of ES, we
iteratively evolve a fixed-size population of numerical vec-
tors as individuals, i.e., G = Rp, where p is the number of
parameters to optimize.

Initially, we build the population by randomly generat-
ing npop individuals: namely, we build each individual g
by sampling from the uniform distribution in [−1, 1], i.e.,
g = (g1, . . . , gp) and gi ∼ U(−1, 1). Then, we iterate the
following steps (generations) until we have done neval fit-
ness evaluations. First, we select the best npop
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as parents, i.e., those with the greatest fitness in the current
population, and compute their element-wise mean µ ∈ Rp.
Then, we build npop − 1 offspring individuals, each one by
adding to each element of µ a Gaussian noise ∼ N(0, σ2).
Finally, we build the next population by taking the offspring
and the best parent, i.e., we employ a form of elitism.

At the end of the evolution, ES outputs a single best solu-
tion being the individual with the largest fitness in the popu-
lation at the last iteration of the algorithm.

MAP-Elites (ME). Multidimensional Archive of Pheno-
typic Elites (commonly known as MAP-Elites, here further
abbreviated as ME), was originally introduced by Cully et al.
(2015) for evolving robust behaviors in robots.

A key requirement in ME is the availability of some nu-
merical descriptors of the solutions: the descriptors should
be good at characterizing the solutions with respect to the
problem being tackled, but, ideally, they should be orthog-
onal with respect to the fitness. Formally, we denote by
d : G → Rm the function for computing the descriptors
d(g) = (d1(g), . . . , dm(g)) of an individual g. We assume
that each descriptor di(g) is defined in a bounded interval
Di = [di,min, di,max]. Given a number nbin of bins, each
individual can be mapped to the cell of an m-dimensional
grid by considering, for each descriptor di, the index of
the equal width bin of Di in which the descriptor value
falls. That is, we define the function c : G → Nm as
c(g) = (c1(g), . . . , cm(g)) where ci(g) = k ∈ N such
that di,min + k |Di|

nbin
≤ di(g) < di,min + (k + 1) |Di|

nbin
with

|Di| = di,max − di,min. We say that c(g) are the coordinates
of g in the descriptor grid.



Differently from ES, ME does not evolve a fixed-size pop-
ulation of individuals: the population, called here archive,
can increase in size during the evolution, up to mnbin indi-
viduals, yet never decreases. At the beginning of the evo-
lution, we populate the initially empty archive A by repeat-
ing the following steps ninit times: first, we randomly gen-
erate a new individual g, then, we add g to A if no other
individual g′ exists in A at the same coordinates, i.e., such
that c(g′) = c(g), or, otherwise, if such g′ exists and
f(g) ≥ f(g′). In the latter case, we remove g′ from A.

After the initialization, we iterate the following steps
(generations) until we have done neval fitness evaluations.
We select nparent individuals from A with uniform probabil-
ity as parents. For each parent g, we apply a genetic operator
(mutation) o : G → G and obtain a child g′ = o(g). Then
we add g′ to A as in the initialization procedure, i.e., if no
other individual g′′ exists in A such that c(g′′) = c(g′) or,
otherwise, if such g′′ exists and f(g′) ≥ f(g′′). In the latter
case, we remove g′′ from A.

At the end of the process, the algorithm does not return a
single best individual, but the entire archive A (from which,
in principle, one may choose as single best solution the one
with the highest fitness value).

Since in this study we work with numerical vectors as
individuals, also in ME we use as mutation the Gaussian
mutation that we adopt in ES, i.e., o(g) = g + α, where
α = (α1, . . . , αp) and αi ∼ N(0, σ2). Accordingly, we
build each of the ninit initial individuals by sampling the uni-
form distribution in [−1, 1], as in ES.

Evolving VSRs with ES and ME

We want to evolve VSRs for the task of locomotion, i.e.,
moving along a surface as fast as possible, using the EAs
described above. For this purpose, we need to define the
solution representation, i.e., how to map a numerical vector
g ∈ Rp to a VSR, and the fitness function that quantifies the
degree to which a VSR is doing locomotion. Moreover, for
ME we also need to define the descriptors, i.e., some quan-
titative measures suitable for characterizing VSRs doing lo-
comotion. In the following, we describe the choices adopted
in this study for the fitness function, the representation, and
the descriptors.

Fitness function for locomotion. Given a VSR, we per-
form a simulation lasting 60 s (simulated time) where the
VSR is initially placed right above an terrain. We take
as fitness of the VSR its average velocity vx along the x-
axis measured by considering its center of mass position at
t = 0 s and at t = 60 s.

To make the task slightly more challenging, we consider
a hilly terrain, instead of a flat, even terrain. The height of
the terrain varies randomly along the x-axis: we use a single
randomly generated terrain for all the experiments.

VSR representations. We consider four different ways of
mapping numerical vectors to VSRs. They result from the
combination of two options for two axes: direct vs. indirect
representation; body and brain vs. brain only.

The direct representation for brain only optimization (DB)
works as follows. Given a body consisting of n voxels, we
map a vector g ∈ Rp, with p = 2n, to a VSR with the given
body and equipped with the sinusoidal controller where, for
each i-th voxel, the frequency is the i-th element of the first
half (f ) of g and the phase is the i-th element of the second
half (ϕ) of g, with g = [f ϕ]. Since we use, for this rep-
resentation, a 10-voxel body, that we call “biped”, with two
voxels as “legs” and a “trunk” of 4× 2 voxels , it follows
that for this representation we have p = 20. We schematize
this representation in Figure 2a.

The indirect representation for brain only optimization
(IB) is based on the concept of Gaussian Mixture Model
(GMM) (Lindsay, 1995) and has already been used for
2D VSRs by Medvet et al. (2020b): it works as follows.
Let nGMM be the number of bi-variate Gaussian models in
the mixture and let w × h the size of a 2D grid enclosing
the VSR body—i.e., in the case of the biped, w = 4,
h = 3. Each bi-variate Gaussian is described by five
parameters: µx, µy , σx, σy , and β. We first map an
individual g ∈ Rp, with p = 2 · 5nGMM to two sets of
nGMM bi-variate Gaussian models, one for the frequency,
Mf =

{(
µf,i
x , µf,i

y , σf,i
x , σf,i

y , βf,i
)}

i
, and one for the

phase, Mϕ =
{(

µϕ,i
x , µϕ,i

y , σϕ,i
x , σϕ,i

y , βϕ,i
)}

i
, of a sinu-

soidal controller; when mapping to σx and σy , we take the
absolute value of the corresponding elements of g. Then,
we build a VSR with the given body and with a sinusoidal
controller where frequencies and phases are determined as
follows. For a voxel at position x, y (in the w × h 2D grid),
we set the frequency to f = F x,y = mix(x′, y′;Mf ) =∑nGMM

i=1
αf,i

2πσf,i
x σf,i

y
exp

(
− 1

2

(
(x′−µf,i

x )

σf,i
x

2

+
(y′−µf,i

y )

σf,i
y

2
))

,

where x′ = x
w and y′ = y

h . Similarly, we set the phase to
ϕ = Φx,y = mix(x′, y′;Mϕ). In our experiments, we set
nGMM = 5 and apply this representation to the biped, hence
p = 50. We schematize this representation in Figure 2b.

The direct representation for body and brain (DB2) works
as follows. Let nsize be the side of a square enclosing the
largest representable body, i.e., a square of nsize × nsize vox-
els. We first take the vector g ∈ Rp, with p = 3n2

size
and reshape it to three matrices B,F ,Φ, each defined in
Rnsize×nsize . We transform B to a Boolean matrix B′ =
{T,F}nsize×nsize where B′

x,y is set to true if and only if bx,y
is greater or equal than the median value of B. Then, we
build the body by considering the largest connected compo-
nent of B′ elements set to true and putting a voxel in the
square at the coordinates of each element of such set. Fi-
nally, we build a sinusoidal controller for the body where
the frequency and phase for each voxel at coordinates x, y
are taken from the corresponding elements of F and Φ. In
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Figure 2: Processing steps of the DB and IB representations
for the brain only, starting from the numerical vector g to
the final VSR. Grids of gray squares represent vectors (e.g.,

∈ R3) or matrices (e.g., ∈ R3×2). represents
a bi-variate Gaussian model with its 5 parameters.

our experiments we set nsize = 10, hence p = 300. We
schematize this representation in Figure 3a.

Finally, the indirect representation for body and brain
(IB2), based on GMM too, works as follows. Let nsize be the
side of a square enclosing the largest representable body and
let nGMM be the number of bi-variate Gaussian models in the
mixture. We first map a g ∈ Rp, with p = 3 ·5nGMM to three
sets of nGMM bi-variate Gaussian models, M b, Mf , and
Mϕ, as for the IB case. We build a matrix B ∈ Rnsize×nsize

by setting each element Bx,y = mix(x′, y′;MB), with
x′ = x

nsize
and y′ = y

nsize
. Then, we build a body from B

through an intermediate Boolean matrix B′, as in the DB2

case, but with 0.5 as threshold instead of the median of B.
Finally, we build a sinusoidal controller for the body where
the frequency and phase for each voxel at coordinates x, y
are set to f = mix(x′, y′;Mf ) and ϕ = mix(x′, y′;Mϕ).
In our experiments we set nsize = 10 and nGMM = 5, thus
p = 75. We schematize this representation in Figure 3b.

VSR descriptors. We consider two sets of two descrip-
tors: one characterizes the VSR body only, and the other
characterizes the behavior, hence implicitly both together
characterize the body and the brain. We use the former when
using ME with the DB2 and IB2 representations, hence when
evolving body and brain, and the latter when using ME with
the DB and IB representations, hence when evolving the
brain only.

As body descriptors, we simply consider the width and
height of the smallest 2D grid enclosing the VSR body.
Note that in our experiments, both descriptors are defined
in [1, 10] ∈ N, since nsize = 10 for DB2, IB2 and bodies are
at most 10×10 large. We denote these descriptors by w and
h respectively.

For the behavior descriptors, we consider the temporal
pattern according to which the VSR touches the ground
when doing locomotion. In detail, given a simulation of tf

seconds of the VSR, we proceed as follows. First, we build
two binary signals τback, τfront : [0, tf ] → {0, 1}. At each
t, τback(t) is 1 if at least one point of the leftmost half of
the VSR was in contact, at t, with the ground, and 0 other-
wise; with point of the leftmost half we mean a point whose
x-coordinate is lower than the x-coordinate of the center of
mass of the VSR. Similarly, τforward(t) considers the right-
most half of the VSR. Then, we compute the Fast-Fourier
Transform for both signals and, for each one, we compute
the amount of energy in the band 0Hz–2Hz and in the band
0Hz–5Hz. Finally, we define the descriptors ρback and ρfront
as the rate between the 0Hz–2Hz and 0Hz–5Hz energies
for the τback and τfront signals; both descriptors are defined
in [0, 1]. Intuitively, the lower the gait pace, the greater the
value of the descriptors.

Measuring and visualizing evolvability
As discussed earlier, evolvability is a characteristic of an
evolutionary system that describes how much it is able to
generate different and better performing individuals.

In this study, we define evolvability as a measure of an
individual at a given iteration during the execution of an it-
erative EA. Formally, we define the evolvability e(g, i) of an
individual g at iteration i as:

e(g, i) =
1

|Cg,i|
∑

g′∈Cg,i

f(g′)− f(g), (1)

where Cg,i is the multiset of all the individuals generated
from g, i.e., its children, up to iteration i and f(g) is the
fitness of the individual g.

While for ME the notion of children of an individual is
trivial, since each (non-initial) individual has exactly one
parent, in ES we assume that all the npop − 1 individuals
generated at a given iteration are children of all the npop

4 par-
ents chosen at that iteration.

For providing an aggregate view of the evolvability of
an entire EA execution based on the individual measure
of Equation (1), and with the aim of balancing the trade-
off between detail and compactness of that view, we pro-
ceed as follows. During the execution of the EA, given
some descriptors d1, . . . , dm, each defined as di : G →
[di,min, di,max], and a number nbin of bins, we maintain an
initially empty archive A′ with the same update policy of
ME: whenever a new individual g is generated in the EA, it
is added to A′ if no other individuals exist in A at the same
coordinates of g and it replaces, if any, the existing individ-
ual at those coordinates. At the end of the evolution, we
analyze the individuals in A′ by looking at their fitness and
evolvability. Namely, if we use two descriptors, we can plot
the values of f(g) and e(g, ilast) of each g ∈ A′ in the form
of two color maps, ilast being the last iteration in the EA ex-
ecution. We refer to these plots as fitness and evolvability
maps, respectively.
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Figure 3: Processing steps of the DB2 and IB2 representations for body and brain, starting from the numerical vector g to
the final VSR. The visual syntax is the same of Figure 2; moreover, grids of pink squares represent Boolean matrices (e.g.,
∈ {T, F}2×2).

Note that this way of tracking the evolvability of an EA
execution does not interfere with the EA execution. In par-
ticular, in the case of ME, A′ and A might be different, if
based on different descriptors, domains, or numbers of bins.
Nevertheless, we use for A′, while executing both ME and
ES, with the same parameters used for A in ME.

4 Experiments and discussion
We performed several evolutionary runs with the aims of
(a) understanding if and how different EAs and represen-
tations produce different fitness and evolvability maps and
(b) discovering relationships between fitness and evolvabil-
ity maps.

For each of the eight combinations of representation (DB,
IB, DB2, IB2) and EA (ES, ME), we performed 10 evolu-
tionary runs (with different random seeds) and the following
parameters.

For both ES and ME, we set σ2 = 0.35 and neval =
25 000. For ES, we set npop = 20. For ME, we set
nparent = 20, nbin = 10, and, as descriptors, w, h with DB2

and IB2 and ρback, ρfront with DB and IB.
For DB and IB, we used the biped body . For IB and

IB2, we set nGMM = 5. For DB2 and IB2, we set nsize = 10.
As a result, the dimension of the search space Rp was 20,
50, 300, and 75, respectively for DB, IB, DB2, and IB2.

Finally, for computing the fitness and evolvability maps
out of A′ for each EA execution, we used the same descrip-
tors and nbin value used in ES, i.e., nbin = 10 and w, h with
DB2 and IB2 and ρback, ρfront with DB and IB.

The code for the experiments is publicly available at
https://github.com/ndr09/VSRevo.

Overview: VSRs fitness and search efficiency
As initial point, we discuss the outcome of the evolutionary
runs in terms of the effectiveness of the evolved VSRs in the
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Figure 4: Fitness vx (median ± standard deviation across
the 10 runs) of the best individual in the during the evolution
for the two EAs ( ES and ME) and the 4 represen-
tations, grouped in brain only (above) and body and brain
(below).

task of locomotion. Figure 4 shows the trend of the fitness:
at each iteration of the EA for each of the 8 combinations,
the figure shows the median ± the standard deviation, com-
puted across the 10 executions, of the fitness vx of the best
individual at that iteration.

First of all, we observe that all the approaches are able
to produce effective solutions, achieving final best fitness
values between 3, with the IB2, and 8 with the DB2+ME
Values are in ms−1; as a reference, the side of each voxel is

https://github.com/ndr09/VSRevo


ES+DB2 ME+DB2 ES+IB2 ME+IB2

ES+DB2 - 1.00 0.0009 0.0030
ME+DB2 0.016 - 0.0002 0.0002
ES+IB2 1.00 1.00 - 1.00
ME+IB2 1.00 1.00 0.1818 -

Table 1: Table of p-values obtained with the Mann-Whitney
U test with Bonferroni correction on the final fitness reached
in the brain and body evolution. The alternative hypothesis
was set to check if the distribution in the row was greater
than the one on the column. The entries indicated in bold
rejects the null hypothesis with the corrected significance
level of α = 0.003.

3m long. In the other 5 cases, the final best fitness is ≈ 6.
Concerning the efficiency of the evolutionary optimiza-

tion, we observe that the chosen value for neval appears to
be large enough to let every combination converge to good
solutions. Nevertheless, there are some differences among
the combinations. The convergence happens earlier in the
body and brain case, taking only ≈ 2000 and ≈ 7000 fitness
evaluations for IB2 and DB2, respectively, vs. the larger val-
ues of the brain only case, 13 000 and 19 000 for IB and DB,
respectively. In the brain only case, the indirect represen-
tation seems to enable a faster convergence than the direct
one, despite the larger search space (p = 50 vs. 20).

While in the brain only case there are no apparent differ-
ences in the final best fitness, i.e., in the effectiveness of the
evolutionary search, among the four cases, in the body and
brain case the direct representation appears to be more ef-
fective than the indirect one, the former obtaining vx values
that are 2 to 2.5 times larger than the latter. The EA does not
appear to play a role when coupled with IB2, as confirmed
by the Mann-Whitney U test (Table 1).

For explaining this performance gap, we observed the
evolved VSRs for the body and brain case—see Figure 6 for
an example of a robot behavior. We show all the 10·4 bodies
evolved in the body and brain case in Figure 5. The most ap-
parent difference between VSRs evolved with DB2 and IB2

is in the size, i.e., the number of voxels consituting the body.
IB2 are in general much larger: this is the combined effect of
the different threshold being applied while building B′ and
the fact that IB2, based on GMM, favors regular shape, and
hence larger connected components, by design. Despite the
fact that big and regular shapes have potentially more power
to control the movement, Talamini et al. (2021) show that
irregularity in the shape is an enabling factor for faster and
more robust robots.

Fitness and evolvability maps
We here discuss the evolutionary runs in terms of the inter-
play between evolvability and fitness. Figures 7 and 8 show
the fitness (top row, greenish colors) and evolvability (bot-

(a) VSRs evolved with ES+DB2

(b) VSRs evolved with ES+IB2

(c) VSRs evolved with ME+DB2

(d) VSRs evolved with ME+IB2

Figure 5: Body of the best robots at the end of the evolution
for the DB2 and IB2 representations and the two EAs.

tom row, red-violet colors) maps, one pair of maps for each
combination of EA and representation. Each single map is
obtained from 10 evolutionary runs: since individual runs
can cover different portions of the descriptor grid, each cell
in the overall map results from up to 10 corresponding cells
of the individual maps. In particular, we use the median
value of the cell value in the overall map.

The most apparent finding resulting from Figures 7 and 8
is that the maps for the evolvability are similar for the same
EA regardless of the representation. On the other hand, the
fitness maps differ for representation and are similar for the
EA—the latter being more evident for the brain only case.

As regards the brain only case shown in Figure 7, we
recall that the map is based on the behavioral descriptors
ρback and ρfront descriptors, i.e., they indicate how the robots
move. We can see that faster robots have low ρback and ρfront
values: their energy is spent more in the 2Hz to 5Hz band
than in the 0Hz to 2Hz band, i.e., they move they limbs at
higher frequencies. Concerning the evolvability, the maps
show that the evolvability is, generally, smaller than 0. This
indicates that the initial heritable individuals are replaced in
the map, as fitter individuals are generated. Moreover, we
see a good match between the evolvability and fitness map:
good fitness is related to low evolvability, which is expected,
as it becomes harder, while the evolution progress, that high
performing individuals produce better offspring.

In the body and brain optimization shown in Figure 8,
maps are based on body descriptors w and h. The maps
shows that almost all the cells are covered, meaning that all



Figure 6: Frames of the simulation of one of the evolved VSRs (run 2 of ES+IB2, see Figure 5b) doing locomotion. More
videos of the behavior of evolved VSRs are available at https://youtu.be/nDUjq1VebsE.

ES+DB ES+IB ME+DB ME+IB

0

2

4

6

v x

−1
0
1

e
Figure 7: Fitness (top row) and evolvability (bottom row)
maps for the DB and IB representations and the two EAs:
ρback and ρfront are used as descriptors.
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Figure 8: Fitness (top row) and evolvability (bottom row)
maps for the DB2 and IB2 representations and the two EAs:
w and h are used as descriptors.

the different sizes are found with the difference that DB2

tends to avoid 1×n (and n×1) bodies. Differently from the
previous case, here there are no regions in the grid with high
fitness values. This is probably because it is harder to find
good individual, while optimizing both the body and brain.
For what concerns the evolvability map, we note that there
are some grid portions with positive evolvability. This is
likely because in those areas the individuals are selected just
few times for reproduction, they give origin to high perform-
ing offspring, but are never replaced by better individuals.

Summarizing, the entanglement between the fitness and
evolvability is related to the dynamics of the evolution. Neg-
ative values indicate that individuals in a cell generated less
fit offspring, likely because they are themselves fairly fit.
Positive values show that the individuals produced better
children and were not replaced. Unfortunately, it is not pos-
sible to say if a cell in the map hosted an individual with
good evolvability before being replaced by a fitter individ-
ual later in the evolution. This can be considered a limitation

of this approach; the filling of the map is driven by the fit-
ness: hence the historic information about the evolvability
of individuals is lost when they are replaced. We plan to
address this limitation as future work.

5 Conclusions and future works

We proposed the use of MAP-Elites as support structure for
the calculation and visualization of evolvability. We tested
this approach on a locomotion task carried out by Voxel-
based Soft Robots, where we considered two different EAs
(MAP-Elites and Evolution Strategies), with two genotypic
representations (direct and indirect), applied to two opti-
mization settings (robot brain only, and body and brain).

Our results show that, given a predefined phenotypic
space (in the form of a descriptor grid, as in MAP-Elites),
the distribution of evolvability over it (measured as the av-
erage difference in fitness between the offspring and their
parents, considering only the offspring inserted in the grid
during the evolutionary process), is mostly determined by
the adopted EA. On the other hand, the distribution of fit-
ness over the same phenotypic space depends, in our experi-
ments, on the adopted representation. Overall, these findings
suggest that evolvability is not an intrinsic property of the
fitness landscape, or the genotypic representation, but rather
it stems from multiple factors, including the EA being used
and its capability to keep diversity and generate better solu-
tions over time.

In future works, we will extend the analysis of evolvabil-
ity to the case of sensor evolution and learning, which have
been recently addressed in the context of VSRs in (Ferigo
et al., 2021a, 2022) and (Ferigo et al., 2021b) respectively.
Moreover, we will investigate how the proposed measure of
evolvability correlate with some specific features of the fit-
ness landscape, e.g., modality, as well as the behavior de-
scriptors, which in turn may depend on the specific task (in
the case of robots). Another possibility would be to em-
bed a measure of evolvability into the evolutionary loop, for
instance in the selection step. However, our preliminary re-
sults in this direction (not reported here for brevity) did not
yield promising results. Finally, it would be interesting to
test our proposed approach to calculate evolvability on other
EAs, including e.g., novelty search (Lehman and Stanley,
2011a).

https://youtu.be/nDUjq1VebsE


References
Beyer, H.-G. and Schwefel, H.-P. (2002). Evolution strategies–a

comprehensive introduction. Natural computing, 1(1):3–52.

Carlo, M. D., Ferrante, E., Zeeuwe, D., Ellers, J., Meynen, G.,
and Eiben, A. E. (2021). Heritability in morphological robot
evolution. CoRR, abs/2110.11187.

Coppinger, R. P. and Smith, C. K. (1983). The domestication of
evolution. Environmental Conservation, 10(4):283–292.

Corucci, F., Cheney, N., Giorgio-Serchi, F., Bongard, J., and
Laschi, C. (2018). Evolving soft locomotion in aquatic and
terrestrial environments: effects of material properties and
environmental transitions. Soft robotics, 5(4):475–495.

Cully, A., Clune, J., Tarapore, D., and Mouret, J.-B. (2015). Robots
that can adapt like animals. Nature, 521(7553):503–507.

Darwin, C. (1875). The Variation of Animals and Plants under
Domestication. John Murray, London, UK.

Deb, K., Pratap, A., Agarwal, S., and Meyarivan, T. (2002). A fast
and elitist multiobjective genetic algorithm: Nsga-ii. IEEE
Transactions on Evolutionary Computation, 6(2):182–197.

Ferigo, A., Iacca, G., and Medvet, E. (2021a). Beyond body shape
and brain: Evolving the sensory apparatus of voxel-based
soft robots. In EvoApplications 2021: Applications of Evolu-
tionary Computation, volume 12694, pages 210–226, Cham.
Springer.

Ferigo, A., Iacca, G., Medvet, E., and Pigozzi, F. (2021b). Evolving
hebbian learning rules in voxel-based soft robots. TechRxiv.

Ferigo, A., Medvet, E., and Iacca, G. (2022). Optimizing the sen-
sory apparatus of voxel-based soft robots through evolution
and babbling. SN Computer Science, 3(2):1–17.

Gajewski, A., Clune, J., Stanley, K. O., and Lehman, J. (2019).
Evolvability es: scalable and direct optimization of evolvabil-
ity. In Genetic and Evolutionary Computation Conference,
pages 107–115, New York, NY, USA. ACM.

Hiller, J. and Lipson, H. (2011). Automatic design and manufacture
of soft robots. IEEE Transactions on Robotics, 28(2):457–
466.

Katona, A., Franks, D. W., and Walker, J. A. (2021). Quality evolv-
ability es: Evolving individuals with a distribution of well
performing and diverse offspring. arXiv:2103.10790.

Koler-Matznick, J. (2002). The origin of the dog revisited. An-
throzoös, 15(2):98–118.

Kriegman, S., Cheney, N., and Bongard, J. (2018). How morpho-
logical development can guide evolution. Scientific reports,
8(1):1–10.

Lehman, J. and Stanley, K. O. (2011a). Abandoning objectives:
Evolution through the search for novelty alone. Evolutionary
computation, 19(2):189–223.

Lehman, J. and Stanley, K. O. (2011b). Improving evolvabil-
ity through novelty search and self-adaptation. In IEEE
Congress of Evolutionary Computation, pages 2693–2700,
New York, NY, USA. IEEE.

Lehman, J. and Stanley, K. O. (2013). Evolvability is inevitable:
Increasing evolvability without the pressure to adapt. PloS
one, 8(4):e62186.

Lim, B., Grillotti, L., Bernasconi, L., and Cully, A. (2021).
Dynamics-aware quality-diversity for efficient learning of
skill repertoires. CoRR, abs/2109.08522.

Lindsay, B. G. (1995). Mixture models: theory, geometry and ap-
plications. In NSF-CBMS regional conference series in prob-
ability and statistics, pages i–163. JSTOR.

Liu, D., Virgolin, M., Alderliesten, T., and Bosman, P. A. N.
(2022). Evolvability degeneration in multi-objective genetic
programming for symbolic regression.

Medvet, E., Bartoli, A., De Lorenzo, A., and Seriani, S. (2020a).
2d-vsr-sim: A simulation tool for the optimization of 2-d
voxel-based soft robots. SoftwareX, 12:100573.

Medvet, E., Bartoli, A., De Lorenzo, A., and Seriani, S. (2020b).
Design, Validation, and Case Studies of 2D-VSR-Sim, an
Optimization-friendly Simulator of 2-D Voxel-based Soft
Robots. arXiv, pages arXiv–2001.

Medvet, E., Daolio, F., and Tagliapietra, D. (2017). Evolvability
in grammatical evolution. In Genetic and Evolutionary Com-
putation Conference, pages 977–984, New York, NY, USA.
ACM.

Mengistu, H., Lehman, J., and Clune, J. (2016). Evolvability
search: directly selecting for evolvability in order to study
and produce it. In Genetic and Evolutionary Computation
Conference 2016, pages 141–148, New York, NY, USA.
ACM.

Methenitis, G., Hennes, D., Izzo, D., and Visser, A. (2015). Nov-
elty search for soft robotic space exploration. In Proceedings
of the 2015 annual conference on Genetic and Evolutionary
Computation, pages 193–200.

Nordmoen, J., Veenstra, F., Ellefsen, K. O., and Glette, K. (2021).
Map-elites enables powerful stepping stones and diversity for
modular robotics. Frontiers in Robotics and AI, 8:1–17.

Payne, J. L. and Wagner, A. (2019). The causes of evolvability and
their evolution. Nature Reviews Genetics, 20(1):24–38.

Pigliucci, M. (2008). Is evolvability evolvable? Nature Reviews
Genetics, 9(1):75–82.

Pugh, J. K., Soros, L. B., and Stanley, K. O. (2016). Quality diver-
sity: A new frontier for evolutionary computation. Frontiers
in Robotics and AI, 3:40.

Squillero, G. and Tonda, A. (2016). Divergence of character and
premature convergence: A survey of methodologies for pro-
moting diversity in evolutionary optimization. Information
Sciences, 329:782–799.

Talamini, J., Medvet, E., and Nichele, S. (2021). Criticality-
driven evolution of adaptable morphologies of voxel-based
soft-robots. Frontiers in Robotics and AI, 8:172.

Tarapore, D. and Mouret, J.-B. (2015). Evolvability signatures of
generative encodings: Beyond standard performance bench-
marks. Information Sciences, 313:43–61.



Veenstra, F., de Prado Salas, P. G., Stoy, K., Bongard, J., and Risi,
S. (2020). Death and progress: How evolvability is influenced
by intrinsic mortality. Artificial life, 26(1):90–111.

Wayne, R., Van Valkenburgh, B., and O’Brien, S. J. (1991). Molec-
ular distance and divergence time in carnivores and primates.
Molecular Biology and Evolution, 8(3):297–319.


	Introduction
	Background and related works
	Methods
	Voxel-based Soft Robots
	Evolutionary Algorithms
	Evolving VSRs with ES and ME
	Measuring and visualizing evolvability

	Experiments and discussion
	Overview: VSRs fitness and search efficiency
	Fitness and evolvability maps

	Conclusions and future works

