275 research outputs found

    Active integrated antenna with simultaneous transmit and receive

    Get PDF
    An active antenna with simultaneous transmit and receive function, integrate an active devices onto a printed antenna to improve its performance or combine functions within the antenna itself. Such antenna are of increasing interest, as system designers require more complex functions to be implemented in reduced space. This paper discusses the integration of active antennas by combining both transmit and receive functions into one single antenna. Four main components in the design are circular polarized microstrip patch antenna, rat race coupler, power divider and amplifiers. All the simulations are done using the Agilent ADS. The circular polarized antenna resonates at 2. 4 GHz. Two MESFET amplifiers have been used to transmit and receive the channel separately. The rat race coupler isolates the two channels and a Tee junction power divider is connected the two channels to the input and output port. The channels are of the same frequency. The simulation and measurement results of the microstrip patch antenna for S11 are lower than -10 dB at frequency of 2.4 GHz. The antenna polarization is confirmed as a circular polarized, as can be seen in the radiation pattern from the measured and simulated results. The amplifier biasing circuit is supplied by two power sources; one is the drain voltage (Vds) which is positive and the other is the gate voltage (Vgs), which is negative. After integrating all of the components, the radiation pattern is measured for both transmit and receive. The beamwidth of the antenna is in the range of 60o – 70o for H plane. The radiation pattern for E plane is smaller compared with the H plane. The comparison between the passive and the active integrated antenna shows that the active integrated antenna has 3 dB extra gain compared to the passive antenna for both transmit and receive. The isolation between transmit and receive is between 20 – 25 dB

    Novel High Isolation Antennas for Simultaneous Transmit and Receive (STAR) Applications

    Get PDF
    Radio frequency (RF) spectrum congestion is a major challenge for the growing need of wireless bandwidth. Notably, in 2015, the Federal Communications Commission (FCC) auctioned just 65 MHz (a bandwidth smaller than that used for WiFi) for more than $40 billion, indicating the high value of the microwave spectrum. Current radios use one-half of their bandwidth resource for transmission, and the other half for reception. Therefore, by enabling radios to transmit and receive across their entire bandwidth allocation, spectral efficiency is doubled. Concurrently, data rates for wireless links also double. This technology leads to a new class of radios and RF frontends. Current full-duplex techniques resort to either time- or frequency-division duplexing (TDD and FDD respectively) to partition the transmit and receive functions across time and frequency, respectively, to avoid self-interference. But these approaches do not translate to spectral efficiency. Simultaneous transmit and receive (STAR) radios must isolate the transmitter from the receiver to avoid self-interference (SI). This SI prevents reception and must therefore be cancelled. Self-interference may be cancelled with one or more stages involving the antenna, RF or analog circuits, or digital filters. With this in mind, the antenna stage is the most critical to reduce the SI level and avoid circuit saturation and total system failure. This dissertation presents techniques for achieving STAR radios. The initial sections of the dissertation provide the general approach of stage to stage cancellation to achieve as much as 100 dB isolation between the receiver and transmitter. The subsequent chapters focus on different antennas to achieve strong transmit/receive isolation. As much as 35 dB isolation is shown using a new spiral antenna array with operation across a 2:1 bandwidth. Also, a new antenna feed is presented showing 42 dB isolation across a 250 MHz bandwidth. Reflections in the presence of a dynamic environment are also considered

    Aperture-Level Simultaneous Transmit and Receive (STAR) with Digital Phased Arrays

    Get PDF
    In the signal processing community, it has long been assumed that transmitting and receiving useful signals at the same time in the same frequency band at the same physical location was impossible. A number of insights in antenna design, analog hardware, and digital signal processing have allowed researchers to achieve simultaneous transmit and receive (STAR) capability, sometimes also referred to as in-band full-duplex (IBFD). All STAR systems must mitigate the interference in the receive channel caused by the signals emitted by the system. This poses a significant challenge because of the immense disparity in the power of the transmitted and received signals. As an analogy, imagine a person that wanted to be able to hear a whisper from across the room while screaming at the top of their lungs. The sound of their own voice would completely drown out the whisper. Approaches to increasing the isolation between the transmit and receive channels of a system attempt to successively reduce the magnitude of the transmitted interference at various points in the received signal processing chain. Many researchers believe that STAR cannot be achieved practically without some combination of modified antennas, analog self-interference cancellation hardware, digital adaptive beamforming, and digital self-interference cancellation. The aperture-level simultaneous transmit and receive (ALSTAR) paradigm confronts that assumption by creating isolation between transmit and receive subarrays in a phased array using only digital adaptive transmit and receive beamforming and digital self-interference cancellation. This dissertation explores the boundaries of performance for the ALSTAR architecture both in terms of isolation and in terms of spatial imaging resolution. It also makes significant strides towards practical ALSTAR implementation by determining the performance capabilities and computational costs of an adaptive beamforming and self-interference cancellation implementation inspired by the mathematical structure of the isolation performance limits and designed for real-time operation

    PERFORMANCE SIMULATION AND OPTIMIZATION OF A SIMULTANEOUS TRANSMIT AND RECEIVE PHASED ANTENNA ARRAY USING ADAPTIVE BEAMFORMING AND GENETIC ALGORITHM TECHNIQUES

    Get PDF
    The development of simultaneous transmit and receive capabilities is on the cutting-edge of research in phased array technology [1, 2, 3]. The large disparity in power between the transmitted and received signals in antenna systems has traditionally prevented operation in a simultaneous mode. However, simultaneous transmit and receive offers great opportunities for increased capabilities and performance in communications, radar, and electronic warfare applications [3]. This technology will be made feasible by realizing a high level of isolation between the transmitted and received signals through a variety of techniques. This work explores the feasibility of choosing non-standard array partitions that--when paired with the appropriate beamforming techniques--significantly reduce the self-interference between transmit and receive channels

    Techniques for Achieving High Isolation in RF Domain for Simultaneous Transmit and Receive

    Get PDF
    With the growth of wireless data traffic, additional spectrum is required to meet consumer demands. Consequently, innovative approaches are needed for efficient management of the available limited spectrum. To double the achievable spectral efficiency, a transceiver can be designed to receive and transmit signals simultaneously (STAR) across the same frequency band. However, due to the coupling of the high power transmitted signal into the collocated receiver, the receiver\u27s performance is degraded. For successful STAR realization, the coupled high-power transmit (Tx) signal should be suppressed by 100-120 dB over the entire operational bandwidth. So far, most STAR implementations are narrowband, and not useful for ultra wideband (UWB) communications. In this paper, we present a review of novel approaches employed to achieve improved cancellation across wide bandwidths in RF and propagation domains. Both single and multi-antenna systems are considered. Measurements show an average cancellation of 50 dB using two stages of RF signal cancellation

    Techniques for Simultaneous Transmit and Receive with All-Digital Arrays

    Get PDF
    The increased flexibility provided by all-digital array architectures allows for the development of improved techniques toward achieving multi-function capability. In an all-digital array, element-level control can be utilized to create a variety of subarray configurations that can be operated independently to form multiple simultaneous transmit and receive (STAR) beams. This thesis describes how STAR can be implemented on an all-digital array by partitioning the array into subarrays, and details various techniques to improve the STAR performance by increasing the isolation between subarrays. A metric to quantify subarray isolation is provided, which incorporates both transmit/receive gain and the leakage power produced by mutual coupling between subarrays. The strategies used to increase subarray isolation leverage knowledge of the scattering parameters of the array, which describe the mutual coupling between subarrays. By formulating the leakage power between subarrays in terms of the scattering parameters of the array, adaptive beamformers can be designed on both transmit and receive to minimize the incident leakage and increase subarray isolation. Digital cancellation of the leakage signals can be used to further increase subarray isolation, with an estimate of the leakage signal provided by the scattering parameters. The proposed techniques for STAR provide insight into the multi-function capability afforded by all-digital arrays, and may become more sophisticated as the use of all-digital arrays becomes ubiquitous
    • …
    corecore