2,150 research outputs found

    An innovative collaborative high-performance platform for simulation

    Get PDF
    This paper presents an innovative collaborative visualization platform for the simulation-based design applications. Following the scope and the main objectives, the general architecture based on the internet standard technologies is explained. Based on a multi-domain approach, several demonstrators are involved crossing interests of industrial and academic communities. Related to the field of process engineering, we adapt and deploy a web-based architecture research application on the targeted platform

    A simulation-based design paradigm for complex cast components

    Get PDF
    This paper describes and exercises a new design paradigm for cast components. The methodology integrates foundry process simulation, non-destructive evaluation (NDE), stress analysis and damage tolerance simulations into the design process. Foundry process simulation is used to predict an array of porosity-related anomalies. The probability of detection of these anomalies is investigated with a radiographic inspection simulation tool (XRSIM). The likelihood that the predicted array of anomalies will lead to a failure is determined by a fatigue crack growth simulation based on the extended finite element method and therefore does not require meshing nor remeshing as the cracks grow. With this approach, the casting modeling provides initial anomaly information, the stress analysis provides a value for the critical size of an anomaly and the NDE assessment provides a detectability measure. The combination of these tools allows for accept/reject criteria to be determined at the early design stage and enables damage tolerant design philosophies. The methodology is applied to the design of a cast monolithic door used on the Boeing 757 aircraf

    Modelling- and Simulation-Based Design of Multi-tier Systems

    Get PDF
    This paper introduces a domain-specific language for modelling andsimulation-based design of multi-tier systems.  Multi-tier systems are complexand very few general models have been developed. Rather, models are alwaysdedicated to a specific architecture. Our approach allows for rapidexperimentation with different multi-tier alternatives. Not only parameters,but also structure can be drastically varied.  Using graph transformation,multi-tier systems models are translated into Queueing Petri Nets (QPNs) in asystematic way for analysis with the SimQPN simulator.  We describe QPN, ourmulti-tier architecture visual language, as well as the transformation between them.  A case study demonstrates the power of the approach for design-space exploration

    Simulation-Based Design of Bicuspidization of the Aortic Valve

    Full text link
    Objective: Severe congenital aortic valve pathology in the growing patient remains a challenging clinical scenario. Bicuspidization of the diseased aortic valve has proven to be a promising repair technique with acceptable durability. However, most understanding of the procedure is empirical and retrospective. This work seeks to design the optimal gross morphology associated with surgical bicuspidization with simulations, based on the hypothesis that modifications to the free edge length cause or relieve stenosis. Methods: Model bicuspid valves were constructed with varying free edge lengths and gross morphology. Fluid-structure interaction simulations were conducted in a single patient-specific model geometry. The models were evaluated for primary targets of stenosis and regurgitation. Secondary targets were assessed and included qualitative hemodynamics, geometric height, effective height, orifice area and prolapse. Results: Stenosis decreased with increasing free edge length and was pronounced with free edge length less than or equal to 1.3 times the annular diameter d. With free edge length 1.5d or greater, no stenosis occurred. All models were free of regurgitation. Substantial prolapse occurred with free edge length greater than or equal to 1.7d. Conclusions: Free edge length greater than or equal to 1.5d was required to avoid aortic stenosis in simulations. Cases with free edge length greater than or equal to 1.7d showed excessive prolapse and other changes in gross morphology. Cases with free edge length 1.5-1.6d have a total free edge length approximately equal to the annular circumference and appeared optimal. These effects should be studied in vitro and in animal studies

    Modelling- and Simulation-Based Design of Multi-tier Systems

    Get PDF
    This paper introduces a domain-specific language for modelling andsimulation-based design of multi-tier systems.  Multi-tier systems are complexand very few general models have been developed. Rather, models are alwaysdedicated to a specific architecture. Our approach allows for rapidexperimentation with different multi-tier alternatives. Not only parameters,but also structure can be drastically varied.  Using graph transformation,multi-tier systems models are translated into Queueing Petri Nets (QPNs) in asystematic way for analysis with the SimQPN simulator.  We describe QPN, ourmulti-tier architecture visual language, as well as the transformation between them.  A case study demonstrates the power of the approach for design-space exploration

    Hybrid Evolutionary Shape Manipulation for Efficient Hull Form Design Optimisation

    Get PDF
    ‘Eco-friendly shipping’ and fuel efficiency are gaining much attention in the maritime industry due to increasingly stringent environmental regulations and volatile fuel prices. The shape of hull affects the overall performance in efficiency and stability of ships. Despite the advantages of simulation-based design, the application of a formal optimisation process in actual ship design work is limited. A hybrid approach which integrates a morphing technique into a multi-objective genetic algorithm to automate and optimise the hull form design is developed. It is envisioned that the proposed hybrid approach will improve the hydrodynamic performance as well as overall efficiency of the design process
    • …
    corecore