19,480 research outputs found

    On tuning a reactive silencer by varying the position of an internal membrane

    Get PDF
    A mode-matching method is used to investigate the performance of a two-dimensional, modified reactive silencer. The modification takes the form of a membrane which is attached to the internal walls of the expansion chamber parallel to the axis of the inlet/outlet ducts. The height of the membrane above the level of the inlet/outlet ducts can be varied and, by this means, the device is tuned. It is shown that the stopband produced by the silencer can be broadened and/or shifted depending upon the height to which the membrane is raised. Attention is focused on the efficiency of the device at low-frequencies - the regime where dissipative silencers are usually least effective. The potential use of the device as a component in a hybrid silencer for heating ventilation and air-conditioning (HVAC) ducting systems is discussed

    Cell type-specific regulation of choline acetyltransferase gene expression - Role of the neuron-restrictive silencer element and cholinergic-specific enhancer

    Get PDF
    This study demonstrates the presence of positive and negative regulatory elements within a 2336-base pair-long region of the rat choline acetyltransferase (ChAT) gene promoter that cooperate to direct cell type-specific expression in cholinergic cells. A 21-base pair-long neuron-restrictive silencer element (NRSE) was identified in the proximal part of this region. This element was recognized by the neuron-restrictive silencer factor (NRSF), previously shown to regulate expression of other neuron-specific genes. The ChAT NRSE was inactive in both cholinergic and non-cholinergic neuronal cells, but repressed expression from a heterologous promoter in non-neuronal cells. Specific deletion of this element allowed ChAT gene promoter activity in non-neuronal cells, and overexpression of NRSF repressed ChAT gene promoter activity in cholinergic cells. The distal part of the ChAT gene promoter showed cholinergic-specific enhancing activity, which stimulated promoter activity in cholinergic cells, but was inactive in non-cholinergic neuronal and non-neuronal cells. This enhancer region suppressed the activity of the ChAT NRSE in cholinergic cells, even after NRSF overexpression. Thus, at least two kinds of regulatory elements cooperate to direct ChAT gene expression to cholinergic neurons, namely a neuron-restrictive silencer element and a cholinergic-specific enhancer

    Mode-matching without root-finding: Application to a dissipative silencer

    Get PDF
    This article presents an analytic mode-matching approach suitable for modelling the propagation of sound in a two-dimensional, three-part, ducting system. The approach avoids the need to the find roots of the characteristic equation for the middle section of the duct (the component) and is readily applicable to a broad class of problems. It is demonstrated that the system of equations, derived via analytic mode-matching, exhibits certain features which ensure that they can be re-cast into a form that is independent of the roots of the characteristic equation for the component. The precise details of the component are irrelevant to the procedure; it is required only that there exists an orthogonality relation, or similar, for the eigenmodes corresponding to the propagating wave-forms in this region. The method is applied here to a simple problem involving acoustic transmission through a dissipative silencer of the type commonly found in heating ventilation and air-conditioning (HVAC) ducts. With reference to this example, the silencer transmission loss is computed, and the power balance for the silencer is investigated and is shown to be an identity that is necessarily satisfied by the system of equations, regardless of the level of truncation

    A point collocation approach to modelling large dissipative silencers

    Get PDF
    A numerical matching technique known as point collocation is used to model mathematically large dissipative splitter silencers of a type commonly found in HVAC ducts. Transmission loss predictions obtained using point collocation are compared with exact analytic mode matching predictions in the absence of mean flow. Over the frequency range in which analytic mode matching predictions are available, excellent agreement with point collocation transmission loss predictions is observed for a range of large splitter silencers. The validity of using point collocation to tackle large dissipative silencers is established, as is the computational efficiency of the method and its suitability for tackling dissipative silencers of arbitrary, but axially uniform, cross sections

    Analytic mode matching for a circular dissipative silencer containing mean flow and a perforated pipe

    Get PDF
    An analytic mode matching scheme that includes higher order modes is developed for a straight-through circular dissipative silencer. Uniform mean flow is added to the central airway and a concentric perforated screen separates the mean flow from a bulk reacting porous material. Transmission loss predictions are compared with experimental measurements and good agreement is demonstrated for three different silencers. Furthermore, it is demonstrated that, when mean flow is present, the axial kinematic matching condition should equate to that chosen for the radial kinematic boundary condition over the interface between the airway and the material. Accordingly, if the radial matching conditions are continuity of pressure and displacement, then the axial matching conditions should also be continuity of pressure and displacement, rather than pressure and velocity as previously thought. When a perforated screen is present the radial pressure condition changes, but the radial kinematic condition should always remain equivalent to that chosen for the axial kinematic matching condition; here, results indicate that continuity of displacement should be retained when a perforated screen is present

    Transmission loss predictions for dissipative silencers of arbitrary cross section in the presence of mean flow

    Get PDF
    A numerical technique is developed for the analysis of dissipative silencers of arbitrary, but axially uniform, cross section. Mean gas flow is included in a central airway which is separated from a bulk reacting porous material by a concentric perforate screen. The analysis begins by employing the finite element method to extract the eigenvalues and associated eigenvectors for a silencer of infinite length. Point collocation is then used to match the expanded acoustic pressure and velocity fields in the silencer chamber to those in the inlet and outlet pipes. Transmission loss predictions are compared with experimental measurements taken for two automotive dissipative silencers with elliptical cross sections. Good agreement between prediction and experiment is observed both without mean flow and for a mean flow Mach number of 0.15. It is demonstrated also that the technique presented offers a considerable reduction in computational expenditure when compared to a three dimensional finite element analysis

    Silencers: A Threat to Public Safety

    Get PDF
    A push by the firearms industry and gun lobby to make it far easier for private citizens to buy and possess firearm silencers will only place the police and public at increased risk warns a new and expanded edition of the Violence Policy Center's (VPC) study Silencers: A Threat to Public Safety. In detailing this marketing push, the study also documents examples of lethal attacks and criminal activity involving silencers

    On acoustic propagation in three-dimensional rectangular ducts with flexible walls and porous linings

    Get PDF
    This is the post-print version of the Article. The official published version can be accessed from the links below - Copyright @ 2012 Acoustical Society of AmericaThe focus of this article is toward the development of hybrid analytic-numerical mode-matching methods for model problems involving three-dimensional ducts of rectangular cross-section and with flexible walls. Such methods require first closed form analytic expressions for the natural fluid-structure coupled waveforms that propagate in each duct section and second the corresponding orthogonality relations. It is demonstrated how recent theory [Lawrie, Proc. R. Soc. London, Ser. A 465, 2347–2367 (2009)] may be extended to a wide class of three-dimensional ducts, for example, those with a flexible wall and a porous lining (modeled as an equivalent fluid) or those with a flexible internal structure, such as a membrane (the “drum-like” silencer). Two equivalent expressions for the eigenmodes of a given duct can be formulated. For the ducts considered herein, the first ansatz is dependent on the eigenvalues/eigenfunctions appropriate for wave propagation in the corresponding two-dimensional flexible-walled duct, whereas the second takes the form of a Fourier series. The latter offers two advantages: no “root-finding” is involved and the method is appropriate for ducts in which the flexible wall is orthotropic. The first ansatz, however, provides important information about the orthogonality properties of the three-dimensional eigenmodes

    Design of a low-noise aeroacoustic wind tunnel facility at Brunel University

    Get PDF
    This paper represents the design principle of a quiet, low turbulence and moderately high speed aeroacoustic wind tunnel which was recently commissioned at Brunel University. A new hemi-anechoic chamber was purposely built to facilitate aeroacoustic measurements. The wind tunnel can achieve a maximum speed of about 80 ms-1. The turbulence intensity of the free jet in the potential core is between 0.1–0.2%. The noise characteristic of the aeroacoustic wind tunnel was validated by three case studies. All of which can demonstrate a very low background noise produced by the bare jet in comparison to the noise radiated from the cylinder rod/flat plate/airfoil in the air stream.The constructions of the aeroacoustic wind tunnel and the hemi-anechoic chamber are financially supported by the School of Engineering and Design at Brunel University
    corecore