2,323 research outputs found

    Sensory Substitution, Key to Inclusive Learning

    Get PDF
    Visually impaired students, in primary education, encounter unique challenges while learning creative skills, exploring artistic expression and developing problem-solving skills, because so much instructional content is delivered visually. Sensory substitution—an approach that replaces visual information with feedback from other intact senses like touch, sound, taste or smell—provides an opportunity to address those challenges. Through the use of sensory substitution, this thesis proposes concrete ways to capitalize on the enhanced abilities of visually impaired primary school students. The research outcome of this thesis is a system of templates that puts these enhanced abilities to work for visually impaired students, to support them while they learn creative skills and practice problem-solving in a classroom setting. Each template contains a lesson that can be learned by using the process of paper quilling. The templates work equally well for sighted and visually impaired students, since all will be able to understand the lesson by using the sense of touch, as they learn by making

    Autoencoding sensory substitution

    Get PDF
    Tens of millions of people live blind, and their number is ever increasing. Visual-to-auditory sensory substitution (SS) encompasses a family of cheap, generic solutions to assist the visually impaired by conveying visual information through sound. The required SS training is lengthy: months of effort is necessary to reach a practical level of adaptation. There are two reasons for the tedious training process: the elongated substituting audio signal, and the disregard for the compressive characteristics of the human hearing system. To overcome these obstacles, we developed a novel class of SS methods, by training deep recurrent autoencoders for image-to-sound conversion. We successfully trained deep learning models on different datasets to execute visual-to-auditory stimulus conversion. By constraining the visual space, we demonstrated the viability of shortened substituting audio signals, while proposing mechanisms, such as the integration of computational hearing models, to optimally convey visual features in the substituting stimulus as perceptually discernible auditory components. We tested our approach in two separate cases. In the first experiment, the author went blindfolded for 5 days, while performing SS training on hand posture discrimination. The second experiment assessed the accuracy of reaching movements towards objects on a table. In both test cases, above-chance-level accuracy was attained after a few hours of training. Our novel SS architecture broadens the horizon of rehabilitation methods engineered for the visually impaired. Further improvements on the proposed model shall yield hastened rehabilitation of the blind and a wider adaptation of SS devices as a consequence

    Sensory substitution for space gloves and for space robots

    Get PDF
    Sensory substitution systems for space applications are described. Physical sensors replace missing human receptors and feed information to the interpretive centers of a different sense. The brain is plastic enough so that, with training, the subject localizes the input as if it were received through the missing receptors. Astronauts have difficulty feeling objects through space suit gloves because of their thickness and because of the 4.3 psi pressure difference. Miniature force sensors on the glove palm drive an electrotactile belt around the waist, thus augmenting the missing tactile sensation. A proposed teleoperator system with telepresence for a space robot would incorporate teleproprioception and a force sensor/electrotactile belt sensory substitution system for teletouch

    Color-to-speech sensory substitution device for the visually impaired

    Get PDF
    A hardware device is presented that converts color to speech for use by the blind and visually impaired. The use of audio tones for transferring knowledge of colors identified to individuals was investigated but was discarded in favor of the use of direct speech. A unique color-clustering algorithm was implemented using a hardware description language (VHDL), which in-turn was used to program an Altera Corporation's programmable logic device (PLD). The PLD maps all possible incoming colors into one of 24 color names, and outputs an address to a speech device, which in-turn plays back one of 24 voice recorded color names. To the author's knowledge, there are only two such color to speech systems available on the market. However, both are designed to operate at a distance of less than an inch from the surface whose color is to be checked. The device presented here uses original front-end optics to increase the range of operation from less than an inch to sixteen feet and greater. Because of the increased range of operation, the device can not only be used for color identification, but also as a navigation aid

    The evolution of a visual-to-auditory sensory substitution device using interactive genetic algorithms

    Get PDF
    Sensory Substitution is a promising technique for mitigating the loss of a sensory modality. Sensory Substitution Devices (SSDs) work by converting information from the impaired sense (e.g. vision) into another, intact sense (e.g. audition). However, there are a potentially infinite number of ways of converting images into sounds and it is important that the conversion takes into account the limits of human perception and other user-related factors (e.g. whether the sounds are pleasant to listen to). The device explored here is termed “polyglot” because it generates a very large set of solutions. Specifically, we adapt a procedure that has been in widespread use in the design of technology but has rarely been used as a tool to explore perception – namely Interactive Genetic Algorithms. In this procedure, a very large range of potential sensory substitution devices can be explored by creating a set of ‘genes’ with different allelic variants (e.g. different ways of translating luminance into loudness). The most successful devices are then ‘bred’ together and we statistically explore the characteristics of the selected-for traits after multiple generations. The aim of the present study is to produce design guidelines for a better SSD. In three experiments we vary the way that the fitness of the device is computed: by asking the user to rate the auditory aesthetics of different devices (Experiment 1), by measuring the ability of participants to match sounds to images (Experiment 2) and the ability to perceptually discriminate between two sounds derived from similar images (Experiment 3). In each case the traits selected for by the genetic algorithm represent the ideal SSD for that task. Taken together, these traits can guide the design of a better SSD

    Sensory substitution: the spatial updating of auditory scenes "mimics" the spatial updating of visual scenes

    Get PDF
    Visual-to-auditory sensory substitution is used to convey visual information through audition, and it was initially created to compensate for blindness; it consists of software converting the visual images captured by a video-camera into the equivalent auditory images, or “soundscapes”. Here, it was used by blindfolded sighted participants to learn the spatial position of simple shapes depicted in images arranged on the floor. Very few studies have used sensory substitution to investigate spatial representation, while it has been widely used to investigate object recognition. Additionally, with sensory substitution we could study the performance of participants actively exploring the environment through audition, rather than passively localizing sound sources. Blindfolded participants egocentrically learnt the position of six images by using sensory substitution and then a judgment of relative direction task (JRD) was used to determine how this scene was represented. This task consists of imagining being in a given location, oriented in a given direction, and pointing towards the required image. Before performing the JRD task, participants explored a map that provided allocentric information about the scene. Although spatial exploration was egocentric, surprisingly we found that performance in the JRD task was better for allocentric perspectives. This suggests that the egocentric representation of the scene was updated. This result is in line with previous studies using visual and somatosensory scenes, thus supporting the notion that different sensory modalities produce equivalent spatial representation(s). Moreover, our results have practical implications to improve training methods with sensory substitution devices (SSD)

    Development of a sensory substitution API

    Get PDF
    2018 Summer.Includes bibliographical references.Sensory substitution – or the practice of mapping information from one sensory modality to another – has been shown to be a viable technique for non-invasive sensory replacement and augmentation. With the rise in popularity, ubiquity, and capability of mobile devices and wearable electronics, sensory substitution research has seen a resurgence in recent years. Due to the standard features of mobile/wearable electronics such as Bluetooth, multicore processing, and audio recording, these devices can be used to drive sensory substitution systems. Therefore, there exists a need for a flexible, extensible software package capable of performing the required real-time data processing for sensory substitution, on modern mobile devices. The primary contribution of this thesis is the development and release of an Open Source Application Programming Interface (API) capable of managing an audio stream from the source of sound to a sensory stimulus interface on the body. The API (named Tactile Waves) is written in the Java programming language and packaged as both a Java library (JAR) and Android library (AAR). The development and design of the library is presented, and its primary functions are explained. Implementation details for each primary function are discussed. Performance evaluation of all processing routines is performed to ensure real-time capability, and the results are summarized. Finally, future improvements to the library and additional applications of sensory substitution are proposed

    Multisensory inclusive design with sensory substitution

    Get PDF
    corecore