

THESIS

DEVELOPMENT OF A SENSORY SUBSTITUTION API

Submitted by

Marco Martinez

Department of Mechanical Engineering

In partial fulfillment of the requirements for

The Degree of Master of Science

Colorado State University

Fort Collins, Colorado

Summer 2018

Master’s Committee:

 Advisor: John Williams
 Co-Advisor: Leslie Stone-Roy

 David Alciatore
 Ross McConnell

Copyright by Marco Martinez, 2018

All Rights Reserved

ii

ABSTRACT

DEVELOPMENT OF A SENSORY SUBSTITUTION API

Sensory substitution – or the practice of mapping information from one sensory modality to

another – has been shown to be a viable technique for non-invasive sensory replacement and

augmentation. With the rise in popularity, ubiquity, and capability of mobile devices and wearable

electronics, sensory substitution research has seen a resurgence in recent years. Due to the standard

features of mobile/wearable electronics such as Bluetooth, multicore processing, and audio recording,

these devices can be used to drive sensory substitution systems. Therefore, there exists a need for a

flexible, extensible software package capable of performing the required real-time data processing for

sensory substitution, on modern mobile devices. The primary contribution of this thesis is the

development and release of an Open Source Application Programming Interface (API) capable of

managing an audio stream from the source of sound to a sensory stimulus interface on the body. The

API (named Tactile Waves) is written in the Java programming language and packaged as both a Java

library (JAR) and Android library (AAR). The development and design of the library is presented, and its

primary functions are explained. Implementation details for each primary function are discussed.

Performance evaluation of all processing routines is performed to ensure real-time capability, and the

results are summarized. Finally, future improvements to the library and additional applications of

sensory substitution are proposed.

iii

ACKNOWLEDGEMENTS

This thesis would not have been possible without the continued support and guidance of many

generous mentors and contributors. First and foremost, I would like to thank my parents and brothers

for always believing in me, encouraging me, and trusting in my vision. I owe all my accomplishments to

them. Additionally, I thank my mentor Kyle Krabtree for his advice, honesty, and wisdom at any hour of

the day.

I would not be involved in this project without the influence, insight, and leadership of JJ Moritz

at Sapien LLC. My work stands on the shoulders of his research and design and he has made endless

contributions to both this thesis and the field of sensory substitution, for which I give many thanks.

Similarly, my advisors Dr. John Williams and Dr. Leslie Stone-Roy laid the groundwork for this project

and guided me through the program. I cannot thank them enough for their patience, assistance, and

hard work.

I would also like to thank the members of my thesis committee, Dr. Dave Alciatore and Dr. Ross

McConnell for their time and efforts in seeing me through this program. Lastly, I thank CSU Ventures for

providing the funding that made this project possible, as well as the students, faculty, and friends that

have contributed to this thesis both directly and indirectly throughout the course of my time at CSU.

TABLE OF CONTENTS

1. Introduction .. 1

1.1. Sensory Substitution ... 2

1.2. Mapping Sound to Touch .. 3

1.3. Tactile Waves .. 3

1.4. Summary ... 5

2. Real-Time Digital Signal Processing .. 7

3. Development ... 15

3.1. Programming Environment ... 15

3.2. Implementation .. 16

3.3. Object Oriented Programming – A Technical Primer .. 16

3.4. Tactile Waves Package Overview .. 20

3.5. The Audio Engine .. 21

3.6. The Toolbox ... 29

3.7. Utilities .. 64

3.8. COM .. 71

4. Testing & Validation .. 76

4.1. Unit Testing ... 76

4.2. Performance Testing ... 82

5. Conclusion ... 90

5.1. Future Work .. 91

5.2. Final Thoughts ... 93

References .. 94

1

1. Introduction

Worldwide, around 1.3 billion people suffer from hearing impairment, with an estimated 360

million of those afflictions severe enough to be considered disabling [1]. Although a variety of

treatments exist, such as amplification devices, implants, and speech therapy, many individuals remain

untreated due to severe damage of the auditory pathway, medical risk factors, and/or monetary

limitations. Amplification devices, such as in/over-ear hearing aids, work by applying selective gain

adjustments to certain frequency ranges in the audio spectrum to compensate for the wearer's

audiogram. When properly configured, amplification devices are an effective solution for patients with

only partial hearing loss, such as noise induced and age-related hearing loss. Unfortunately, many

people who are fitted with these products do not use them, commonly due to device value, fit/comfort,

and maintenance of the device [2]. While some of these reports can be attributed to the quality of the

hearing aid device itself, individual biases such as social stigma, perception of the amplified sound, and

monetary or motivational obstacles with the device maintenance also play a role [2]. For those with

more severe loss, implants are used to bypass damaged or non-functioning structures within the

auditory pathway. For example, Cochlear implants (manufactured by The Cochlear Corporation), are

used to treat individuals with severe bilateral hearing loss, and attempt to collect and process audio

signals and directly stimulate the auditory nerve. These devices are highly effective for persons with

both pre-lingual and post-lingual hearing loss, although the age of implantation influences success in

prelingually deafened patients [3-4]. Furthermore, many who could benefit from an implant are unable

to afford the device and procedure, or simply do not wish to undergo an invasive surgery with risk of

complication or risk jeopardizing their identity in the deaf community. The obstacles to implants are

worsened in developing countries lacking trained medical personal able to perform these operations

2

and servicing the device and care for patients. There is a need for an affordable, accessible, and non-

invasive treatment capable of catering to a wide range of people suffering from hearing afflictions.

By reducing audio information from spoken language into simplified digital representations,

language can be projected tactilely to virtually any location on the body through the use of tactile

stimulation hardware. The goal of the Tactile Waves software package is to provide a research tool to

facilitate the evaluation of encoding schemes to better understand how to best provide auditory

information to the brain through the somatosensory pathway.

1.1. Sensory Substitution

The fundamental idea behind sensory substitution is simple: information normally received by

one sensory organ can be transmitted to the brain through a different sensory organ. Sensory

substitution takes advantage of the plasticity of the human brain: with training the brain can learn to

interpret meaningful signals presented controllably through a non-conventional sensory pathway. The

most successful example of sensory substitution is a blind person's use of their sense of touch to acquire

information that would normally be acquired through their eyes. Braille is used to communicate written

text through the nerve receptors in the fingertips, while vibrations transmitted through a walking cane

yield information about the surrounding world. Sign language and Closed Captioning can be considered

examples of sensory substitution as well, as a deaf user is able to use their sense of sight to acquire

lingual information that would normally be spoken or played aloud.

Since the 1960's sensory substitution research has been used to convey information to a

subject's brain that would otherwise have been lost. With the use of electrotactile or vibrotactile

stimulation, information traditionally acquired through one sensory pathway can be transmitted

through the somatosensory pathway. Researchers have used the sense of touch to transmit many

different data sources to the brain including audio, visual, and vestibular information. Various locations

3

on the body have been used, with varying success [5-18]. Sensory interfaces used have ranged in size

and configuration, from a single vibration motor, to a 2D array of 400 distinctly vibrating tips.

1.2. Mapping Sound to Touch

The primary task of a sensory substitution system is to take some arbitrary information and map

it to a discrete set of sensory receptors in the body, while ensuring the input information is supplied

within the sampling constraints of nerve receptors for proper transmission to the brain. The input data

must be processed in a way that captures the necessary features to maintain useful intelligibility, while

reducing the data to the channel configuration and maximum throughput of the sensory stimulation

device. If too much information is present at the input, it must be either compressed or filtered to

reduce the excess or redundant data. This presents the primary difficulty for designing a software

package for sound-to-touch sensory substitution systems: How should a system encode time-varying air

pressure values for representation on an arbitrary number of receptors on the body to provide useful

information to the brain?

This thesis aims to provide a software library and design framework to aid in further research

investigating this question. Design considerations include determining the constraints imposed by the

electronic processing hardware that is used. It must be defined and compared against the temporal

acuity of human sensory systems to verify the efficacy of typical modern computational hardware. Can

today’s typical mobile (laptop and smartphone) processing hardware provide robust audio processing

for sound-to-touch sensory substitution with latencies at or below the threshold (60 ms) needed for

distinct perception of tactile stimuli?

1.3. Tactile Waves

Currently, a software library capable of performing audio signal management and processing for

sound-to-touch sensory substitution systems does not exist. Previous sensory substitution research has

4

made use of custom built hardware and software to acquire audio and represent it tacitly on various

locations on the body [5-18], and there are fundamental systemic components that these systems share.

Figure 1.1: Visualization of the main components of a generalized sensory substitution system.

As shown in Figure 1.1, a sensory substitution system from source to sink has 4 main

components:

1. Information/Data Source – The raw signal of interest. In the case of sound-to-touch this would

be an audio source such as a person speaking or playback of an audio file.

2. Data Acquisition and Processing– The raw input signal must be captured and buffered before

further processing. This involves discretizing and digitizing the source via sampling.

3. Sensory Interface – An array of N transducers on the body such that each channel can transmit

time varying signals to separate receptors in the body, distinct from all other channels.

4. Information/Data Sink – Sensory receptors in the body that communicate with pathways that

can deliver the electrical signals to the brain in response to stimulus from the sensory interface.

The primary contribution of this thesis is the development of a dedicated Java library containing

both a toolbox and a prebuilt, general-use audio engine for audio acquisition, preprocessing, analysis,

and feature extraction. This library allows researchers to use either a Java Virtual Machine (JVM) or

Dalvik Virtual Machine (DVM) to serve as the data acquisition and processing component of a sound-to-

touch sensory substitution system. Because the JVM is directly supported on Windows, Mac, and Linux,

Java programs can be built for virtually any computer. The DVM is specific to Android devices, so the

5

same programs built for a computer can be built for nearly any Android device. Additionally, Java can

run on iOS devices through Oracle's ADF Mobile, as well as on embedded devices with the use of one of

Oracle's embedded runtime environments. This broad platform compatibility allows Tactile Waves to

target as many potential users and applications as possible.

Many general-purpose DSP libraries are capable of performing a variety of useful audio analysis.

What do these libraries lack for sensory substitution applications? Why would a researcher use Tactile

Waves over another library, or combination of libraries? The primary problem (for sensory substitution

applications) with these more traditional DSP libraries is their audio-in, audio-out design. They are

designed to capture audio from a microphone or media file, perform some processing on the sound, and

play back the resulting audio to a speaker or file. For sound-to-touch sensory substitution, audio

playback is not needed. Instead, some signal or set of commands must be generated to activate

channels on the sensory interface in response to the audio input. Additionally, all processing and

analysis must be capable of low-latency real-time operation. Currently, the only Java library capable of

performing real-time audio analysis and feature extraction is Tarsos DSP. This library was used in the

preliminary stages of this research, but it was designed primarily for music information retrieval,

synthesis, and DSP education. As a result, sensory substitution applications are outside of its intended

scope. There is a need for a Java DSP library capable of real-time mapping of sound-to-touch, and Tactile

Waves was developed to meet this need.

1.4. Summary

The primary contribution of this thesis has been to develop a software library for the Java

Virtual Machine (JVM) that provides a toolbox of audio processing objects that can be used to perform

preprocessing, feature extraction/analysis, and transmission of speech signals for sound-to-touch

sensory substitution devices. The challenges and design considerations for real-time audio processing

6

are discussed, and a playback latency limit is established. Each subpackage within Tactile Waves is

presented and the function and implementation of each object is detailed. Computationally expensive

methods from objects within the toolbox package are tested on both Windows and Android to verify

real-time operation with various audio buffer lengths. Finally, future improvements to the library are

summarized and commercial applications are explored.

7

2. Real-Time Digital Signal Processing

The primary design consideration and bottleneck of real time audio processing is latency. An

audio system whose sole task is to capture, digitize and playback a signal will have some amount of

delay between the original and replayed signal. Additional analysis and processing of the signal by the

system will increase this latency at a rate proportional to the computation complexity of the processing

performed. For musical applications of DSP, latencies of 20-30 ms are considered acceptable, with 10 ms

being ideal [19-20]. Higher latencies will introduce issues for listeners, as the delay between the source

and processed signals becomes perceptible and destructive phase interference, known as comb filtering,

can be introduced. Comb filtering is an artifact that is produced when two similar but time delayed (out

of phase) signals are present at perceptible levels, as is the case when both source and processed signal

are played together. However, due to spatial reverb effects that are always present in real listening

environments, comb filtering is always present to some degree. This suggests that the brain is

accustomed to adjusting for this degradation. Additionally, for applications involving hearing-to-touch

substitution, the source and processed signals are not perceived simultaneously. Therefore, phase

cancellation effects are disregarded and only the problems of perceived synchronization and continuous

playback are addressed.

Most audio processing procedures require the signal being analyzed to be continuous and

stationary. When an audio source is sampled by an analog-to-digital converter (ADC), it is discretized

into a series of periodically spaced values representing the amplitude of the signal at each point in time.

Audio signals are, therefore, a 1-dimensional, time varying sampling of relative air pressure amplitude.

Real world audio that contains useful information such as language, music and environmental sounds is

constantly varying and is therefore non-stationary. To perform useful processing on this information, a

technique known as short-time analysis is used. Short time analysis takes a small chunk of these

8

consecutive audio samples acquired from the ADC, and stores them in a region of computer memory

known as a buffer. This buffer contains a short segment of the audio signal, the length of which is

typically chosen as a power of 2 and will typically vary from 256 to 8192 samples, depending on the type

of analysis performed. This buffer is assumed to be stationary and continuous by treating it as being

circular. That is, during analysis of the buffer, it is assumed to repeat end to end out to infinity. This

allows a DSP system to process a continuous audio source piece by piece, yielding information about the

audio signal at each "short-time" snapshot.

Because each buffer contains only a short glimpse of a complex, time varying signal,

discontinues are introduced at the beginning and end of the buffer where the signal is truncated. These

discontinues lead to errors and inaccurate results during analysis. Applying a window function (also

called a smoothing window) to each buffer prior to analysis is therefore a standard preprocessing step.

Windowing functions aim to remove or soften the discontinuities at the ends of the buffer by tapering,

or smoothing, the signal down to near zero at each end. The simplest windowing function available is

the Rectangular Window, shown for a buffer size of 256 below in Figure 2.1:

Figure 2.1: A 256-point rectangular windowing function.

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

0 64 128 192 256

Am
pl

itu
de

Sample #

256-Point Rectangular Window

9

The rectangular window contains only unity amplitude, so applying a rectangular window is

precisely the same as performing no windowing at all. Therefore, using no window function is described

as using a rectangular window. More advanced windowing functions aim to produce unity amplitude (or

near unity) at the center of the buffer, and taper down to zero (or near zero) at either end. Various

window functions are available, one of which known as the Hann Window is shown for a 256-sample

buffer in Figure 2.2.

Figure 2.2: A 256-point Hann Windowing Function

This window applies unity amplitude at the center of the buffer and gradually tapers down to an

amplitude of zero at either end. Specific windowing functions are discussed in more detail in the

Development chapter of this document.

 Consider the 1024-sample audio signal containing pseudo-random noise shown in Figure 2.3,

generated in Microsoft Excel with a random number generator bounded between −1 and 1.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 64 128 192 256

Am
pl

itu
de

Sample #

256-Point Hann Window

10

Figure 2.3: 1024-sample random noise signal

To perform short-time analysis on this signal, it is first broken into consecutive, non-overlapping

buffers of 256 samples and each buffer is multiplied by a 256-point Hann window function. The

windowed signal is shown below in Figure 2.4.

Figure 2.4: 1024-sample white noise signal windowed with 256-point Hann with no overlap

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 256 512 768 1024

White (Random) Noise

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 256 512 768 1024

Windowed Signal - No Overlap

11

Unfortunately, applying the window function in this manner has degraded the signal due to the

amplitude modulation performed by the window. Information is lost at the boundaries of each buffer,

and the total signal energy has been cut in half, as shown in Figure 2.4.

 To overcome these issues, overlapping buffers can be used. By overlapping buffers, samples at

the end of one buffer will be reused in the beginning of the next buffer. Therefore, information near the

ends of each windowed buffer is not lost. The number of overlapping samples between one buffer and

the next determines the amount of overlap, which is chosen based on the total buffer length, the

window function being used, and the analysis performed on the windowed samples. For example, to

account for the Hann window’s halving of the signal energy, a 50% buffer overlap is used. By applying a

256-point Hann window to the white noise signal in Figure 3.3 with an overlap of 128-samples (50%),

the energy of the signal is preserved. By overlap-adding each buffer, the original signal can be perfectly

reconstructed, as shown in Figure 2.5.

Figure 2.5: 1024-sample white noise signal windowed with 256-point Hann with 50% overlap

The length in seconds of each of these audio buffers, 𝑡, can be calculated with the following

equation:

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 128 256 384 512 640 768 896 1024

Windowed Signal - 50% Overlap

12

𝑡 =
𝑁 − 𝑜𝑣𝑒𝑟𝑙𝑎𝑝

𝑓

Where 𝑁 is the length of the buffer, in samples, 𝑜𝑣𝑒𝑟𝑙𝑎𝑝 is the number of overlapping samples, and 𝑓 is

the sampling frequency. Typical sampling frequencies for speech processing range from 8000 to 24000

Hz, with music or other more complex audio signals utilizing higher sample rates ranging from 44100 to

192000 Hz. For example, an audio buffer of 1024 samples acquired at 44.1 kHz represents a 23.2 ms

duration of audio. This value is significant because it represents the maximum latency limit of the

processing system. For continuous playback of the processed audio there must be an audio buffer

available at every 23.2 ms interval, otherwise there will be skips and drop outs in the output stream. If

overlapping buffers are used, this value is reduced by the amount of overlap. The system must,

therefore, be able to process each buffer in less than the time it takes for the buffer to be played as

audio. Because each 1024 sample buffer will take 23.2 ms to play aloud as audio, the system must be

able to perform its processing on each buffer in 23.2 ms or (ideally) less. Scaling the size of the buffer

will scale this maximum latency limit by the same factor. Because of this practical latency limit, all

experiments performed herein to investigate the real-time performance of the software modules are

analyzed based on the subroutines ability to process a buffer in less than the time-domain length of the

buffer.

It is important to consider the effect of buffer length on computation time. Choosing a larger

buffer size allows for longer processing times, so one might be tempted to choose the largest buffer

possible while still maintaining perceived synchronization. However, the amount of processing needed

also scales proportionally with the size of the buffer. By doubling the buffer from 1024 to 2048 samples,

the number of samples that require processing at each step has also been doubled. Depending on the

computational complexity, this may have a substantial impact on the required processing time. For

example, the common radix-2 FFT algorithm, made popular by J.W. Cooley and John Tukey in 1965, is

13

bound by 𝑂(𝑛 log 𝑛) complexity, while its less efficient counterpart, the DFT, is bound by a complexity

of 𝑂(𝑛). Figure 2.6 shows the required computations for each complexity for increasing buffer sizes, as

well as a basic O(n) complexity for comparison.

Figure 2.6: Required processing steps as a function of buffer size for different computational complexities

For algorithms that are bounded by any complexity greater than 𝑂(𝑛), an increase of the buffer

size results in an even larger increase of required processing steps. These results indicate that buffer size

selection should consider the computational complexity of the required processing. Additionally, not all

DSP algorithms are optimized at the same sample rate and buffer size. A typical algorithm for estimating

the fundamental frequency (pitch) of a sound, for example, requires a buffer length that is at least a

long as one period of the fundamental [21]. Each DSP subroutine must be evaluated individually to

ensure real-time usage criteria are met over a range of acceptable buffer sizes.

Perceived synchronization refers to the tendency of an audio-visual observer to not detect

desynchronization of audio and visual cues when the time delay between each is below a certain value.

The maximum value of this imperceptible delay varies between persons, but it has been found that +/-

80 ms is an acceptable value [20]. If the time delay between an audio signal, and its corresponding visual

10

1000

100000

10000000

32 64 128 256 512 1024 2048 4096 8192

Fl
op

s

Buffer Length (samples)

Comparison of Computational Complexities at
Various Buffer Sizes

O(n) O(nlogn) O(n2)

14

cue is less than +/-80 ms, the delay will most likely not be perceived. Certain factors can drastically

change this value. For example, increasing distance between listener and the visual content can increase

the acceptable delay [20]. As a result of this effect, all audio processing performed on a single audio

buffer must be performed in less than 80 ms. A conservative limit of 60 ms is chosen to ensure a user

will not be able to perceive the delay between visual cues. From this value, a practical buffer size limit

can be selected based on the chosen/available sample rate. For example, at 44.1 kHz a buffer size of

2048 results in a playback latency of 46.4 ms, which is below the 60ms perception limit.

An audio processing system must adhere to these considerations to be capable of real-time

operation. Tactile Waves provides a programming interface that allows users to build such a system,

customized for their application.

15

3. Development

In this chapter, the Tactile Waves sensory substitution library is discussed in detail. The

programming language, development environment, and publishing platforms that were used to create

and release the library are presented. Implementation requirements are summarized before providing a

brief technical primer in Object Oriented Programming. Finally, the API is described in detail via a

walkthrough of each subpackage in the library. Each object within each subpackage is exposed, and their

functionality and implementation details are provided.

3.1. Programming Environment

The Tactile Waves API is written in the Java programming language. Java was chosen for its

multi-platform interoperability. Programs built and compiled on one machine can run on any other

machine that supports the Java Virtual Machine (JVM). Currently, the JVM is directly supported on

Windows, Mac OS, and Linux. Android’s Dalvik Virtual Machine is used to run Java code on Android

devices such as smartphones and watches. Any programming logic written for the JVM is compatible

with the DVM, and vice versa, allowing Tactile Waves to be used for both PC and mobile applications.

 The development of Tactile Waves was performed in an Integrated Development Environment

(IDE) to simplify project management, testing, and documentation. Because the Android platform is the

primary deployment target for the API, the Android Studio 3.0 IDE was used. Java 8 is the latest version

of Java provided by Oracle. However, Version 3 of Android studio uses Java 7, with a subset of features

from Java 8, so the library was designed within these constraints to ensure Android compatibility. While

Tactile Waves can be used in iPhone applications through Oracle’s ADF Mobile, this platform has not

been tested due to the prohibitive cost and restrictive ecosystem of Apple devices.

16

 Git was used for version control, and the source code for the library is stored in a public

repository on GitHub [22]. GitHub is also used to host a static web page with the library containing

usage/install instructions, documentation, download links, etc. Documentation is generated with

JavaDoc and is bundled with the library download, as well as included in the web page. Downloads are

provided through Bintray and remote linking is available from the popular jCenter Android library

repository.

3.2. Implementation

The primary function that Tactile Waves aims to accomplish is the management of an audio

stream from source to sensory interface in a sensory substitution system (Figure 1.1). This requires

sampling of audio from a microphone or audio file, performing some useful processing on the audio,

transforming the audio data into the correct dimensionality and size, and transmitting the transformed

data to a sensory interface worn on the body. In the case of live speech, these operations must be

performed continuously with acceptable latencies for real-time operation. The processing stream must

also be designed in a way that is flexible and extensible. The interface should allow a user to customize

the processing chain without writing custom code, but also allow a user to extend the functionality with

their own custom code if desired. Finally, verbose documentation must be provided for all public classes

and methods to allow users to see the operation of each function without having to view the API source

code.

3.3. Object Oriented Programming – A Technical Primer

The following sections describe the code design of the libraries main packages in detail, and

therefore requires the use of terms that may be new to those unfamiliar with object oriented

programming (OOP). Readers who are themselves programmers, or have experience with OOP, may

wish to skip over this section.

17

In the following sections, whenever a piece of code or code object is discussed in text, it will be

displayed in a monospace font to distinguish it as such.

Object oriented programming, or OOP, is a term used to describe a common programming

design paradigm that is based around the creation and interaction of objects. An object is a collection of

related state and behavior. State information is stored in data members known as attributes while

behaviors are chunks of encapsulated code known as methods. A programmer can invoke the methods

of an object to illicit the object’s behavior, which may include changing the state of the object. Because

each object has its own state and behavior, multiple instances of the same object can be created and

used simultaneously. Objects can interact with or depend on one another, changing the state, or

invoking behaviors to create complex interactions. This is the main idea behind OOP.

A class is a blueprint, or a template that describes the default state and behavior that is used to

create an object. The relationship between classes and objects is best described with an example.

Suppose a program needed to store information about several different dogs. A Dog class could be

created that describes the state and behavior of any Dog objects. An example of a possible

implementation of the Dog class is shown below (in Java-esque pseudocode):

class Dog {

 attributes: breed, age, name

 behaviors: get recommended diet

}

The program can create any number of objects that describe different dogs using this Dog class as a

prototype. The above code defines the class Dog, but to create an actual object of type Dog, an instance

of Dog must be instantiated. Each Dog instance will have its own breed, age, and name that is separate

from any other instances of the Dog class. Rover, a 4-year-old golden retriever, and Spot, an 8-year-old

border collie, will be represented by 2 separate objects that are both of the class Dog. An instance of a

18

class might change its behaviors based on the state of the object defined by its attributes. For example,

the behavior “get recommended diet” could be designed to return a recommended diet for a dog based

on the breed and age of the dog stored in the instance of each Dog object. A benefit of this design is

that the program can reuse the code contained in the Dog class for all instances, rather than rewriting

nearly identical code for each dog that the program needs to store.

Now suppose the program required the storage of a new type of a dog: a service dog. To

properly describe a service dog, additional state information and behaviors are required beyond what

the basic Dog class provides. A subclass called ServiceDog could be created that extends from the

original Dog class:

class ServiceDog extends Dog {

 attributes: training

 behaviors: get service type

}

Any objects that are creating using the ServiceDog class will contain all the attributes and behaviors

of the original Dog class, as well as the new attributes and behaviors defined in the ServiceDog class.

This idea is called inheritance in OOP, as the subclass ServiceDog inherits the attributes and

behaviors of the Dog superclass. Again, this design allows for code reuse, which generally leads to

smaller programs and easier code maintenance.

 In the above example ServiceDog inherits from a concrete superclass called Dog, and either

can be used to create objects. But subclasses can also inherit from an abstract superclass, or a class that

cannot be instantiated into a concrete object. Consider the abstract class below called Pet:

 abstract class Pet {

 attributes: age, name, owner

 abstract behaviors: get recommended diet

}

19

This class is declared abstract, meaning that it cannot be directly instantiated and must instead be

subclassed into concrete classes that extend from the abstract class Pet. Abstract classes can also

contain abstract methods (behaviors). An abstract method is not implemented in the abstract class, but

is instead implemented in the concrete subclasses of the abstract class. A new Dog class that is a

subclass of Pet is shown below:

class Dog extends Pet {

 attributes: breed

 behaviors: get recommended diet

}

Just as with the ServiceDog example, the Dog class contains all of the attributes and behaviors defined

by its superclass, Pet, as well as the new attributes and behaviors defined in the subclass. A brand-new

object type can be created that is different than Dog, but still extends the abstract Pet class:

class Cat extends Pet {

 attributes: breed

 behaviors: get recommended diet

}

Now the program can describe both cats and dogs, which are completely different objects, but both are

subtypes of the abstract idea of a pet, and can therefore be used interchangeably as varying types of

pets. It can be said that in the real world, a dog is a type of pet, and a cat is a type of pet, but a pet is not

a type of cat or dog. In fact, a pet is not a type of any animal. It is an abstract concept that describes any

animal that a person keeps and cares for. The same statements can be said about the abstract Pet, and

concrete Dog and Cat classes. In this way, objects can be created in ways that mimic humans real-

world understanding of objects and types.

An Interface is a construct in OOP that defines a contract between classes and the programmer.

Any class that implements an interface is guaranteed to implement the behavior described by that

20

interface, i.e. it must adhere to the contract laid out by the interface. Because interfaces only describe

the required behavior of implementing classes, they cannot have attributes. An interface called

Drawable is shown below:

interface Drawable {

 behaviors: draw

}

Any objects that implement the Drawable interface, are “contractually obligated” to implement a

behavior called draw. For example, the Dog class could implement the Drawable interface, and

define a draw method that draws a dog to the screen. Meanwhile the Cat class could also implement

the Drawable interface, and define a draw method that draws a cat to the screen. Each class contains

its own implementation of the Drawable interface, and although the implementation differs, the

behavior is the same: both objects are capable of drawing a visual representation of the object they

represent to the screen. By using interfaces to define certain behaviors, objects of different types can be

replaced in a program without altering the correctness of that program.

 And finally, a package is a collection of classes and interfaces, and a subpackage is simply a

package within a package. Packages are used to logically organize code into groups of related code files,

and can be thought of as being analogous to a folder system on a computer. A folder contains a group of

files, and can contain other folders that also contain files and folders and so on. Much like folders on a

computer help users organize their files, packages help programmers organize their code.

3.4. Tactile Waves Package Overview

An overview of the tactilewaves package is shown in Figure 3.1. The com subpackage contains

classes for sending data over Bluetooth, and the android subpackage within contains Bluetooth code

that is specific to the Android platform. The dsp subpackage contains all the classes that make up the

core audio processing engine, as well as 2 additional subpackages, toolbox and utilities. The toolbox

21

subpackage contains a collection of useful algorithms such as filtering and Fourier transforms, while the

utilities subpackage contains a collection of classes to perform utility operations such as data sorting.

Finally, the io subpackage contains all the necessary code for the input and output of audio data from an

audio file or a microphone, and the android subpackage within contains audio input/output code that is

specific to the Android platform.

tactilewaves ┐

 ├ com ┐

 │ └ android

 ├ dsp ┐

 │ ├ toolbox

 │ └ utilities

 └ io ┐

 └ android

Figure 3.1: Tactile Waves Package structure overview

3.5. The Audio Engine

Tactile Waves uses a custom audio engine that was built specifically for sensory substitution

applications. A set of objects are used to manage an audio stream from acquisition, through a chain of

processing, and finally transform the audio signal into signals or commands that can then be sent to

stimulation hardware worn on the body. The objects that make up the audio engine are contained

within the dsp and io subpackages and are summarized in Tables 1 and 2.

Table 1: Tactile Waves Audio Engine Class Summary

Class Name Description

WaveFormat Describes the format of audio being used

WaveInputStream Manages reading from an input stream

WaveFloatConverter Converts byte encoded audio to floats (-1,1)

WaveFrame Stores 1 frame of audio and supporting data/objects

22

WaveManager Core audio processing object – manages thread to prepare and process
frames of audio

Table 2: Tactile Waves Audio Engine Interface Summary

Interface Name Description
WaveFrameListener Defines listener functionality to create objects that listen for processed

WaveFrame events
WaveProcessor Defines processor functionality for building objects that perform some

processing on a WaveFrame

WaveFormat

The WaveFormat class allows the creation of WaveFormat objects that house the

parameters that describe the format of the audio in use. The format parameter member variables are

summarized in Table 3.

Table 3: WaveFormat Member Summary

Member Name Type Meaning
mEncoding Integer Constant Represents the encoding method used using integer

constants
mBigEndian Boolean True for Big Endian byte order, False for Little Endian

mSampleRate Integer The sample rate (Hz) of the audio

mBitDepth Integer The number of quantization bits used (bits/sample)

mChannels Integer The number of audio channels

mBytesPerSample Integer The number of bytes needed for 1 sample of audio

The mEncoding parameter is an integer constant that represents the type of encoding used to

byte-encode the underlying audio associated with this format. Three static integer constants are defined

in the WaveFormat class that define the state of the mEncoding variable. If the encoding has not

been specified, mEncoding will equal NOT_SPECIFIED. This is the default value of the mEncoding

23

parameter. Currently, only PCM (linear quantization) encoding is supported, in both signed and unsigned

forms. Depending on the encoding method used, this parameter will take the state of either

ENCODING_PCM_SIGNED, or ENCODING_PCM_UNSIGNED. The mBigEndian parameter is a Boolean

(true/false) data type that specifies the byte order (endianness) used in the underlying audio stream. If

true, the bytes in the stream are ordered in Big Endian byte order – meaning the most significant byte

will be read first, followed by the second most significant byte. If false, Little Endian byte order is used,

and the bytes will be ordered with the least significant bytes first – the opposite of Big Endian. The

mSampleRate member is an integer variable that holds the sample rate, in Hz, that was used to record

the audio in question. On Android devices, this is almost always 44100 Hz (the default sampling rate on

Android), but any sample rate is supported by WaveFormat. The mBitDepth describes the number

of bits used to quantize the audio samples in the given encoding scheme. As little as 8 bits can be used

for speech without overly degrading the sound quality, but 16 bits or more are needed for audio files

containing music or other more complex audio content. When recording from the Android microphone,

this bit depth will almost always be 16 bits (the default for Android). Additionally, most audio files are

stored at 16 bits, due to its balance between quality and file size. Regardless, any bit depth that is a

multiple of 8 bits is supported (8, 16, 24, 32, etc). The channels parameter stores the channel count

of the audio described by this WaveFormat object. A mono file will have 1 channel, while a stereo file

has 2 (left and right) channels. More than 2 channels indicate some type of multichannel surround

sound type audio, and is not currently supported by Tactile Waves. Finally, mBytesPerSample is an

additional parameter that is not needed to correctly describe the audio format, but it has been included

because of its usefulness in other classes. It stores the number of bytes needed per sample of audio and

can be calculated from other WaveFormat parameters:

𝐵𝑦𝑡𝑒𝑠𝑃𝑒𝑟𝑆𝑎𝑚𝑝𝑙𝑒 = 𝐶ℎ𝑎𝑛𝑛𝑒𝑙𝑠 ∗
𝐵𝑖𝑡𝐷𝑒𝑝𝑡ℎ

8

24

Because this can be calculated using 2 other preexisting format parameters, it is not necessary.

However, it is useful when decoding audio as it describes how many bytes must be read at once to read

one sample of audio from an encoded stream so its inclusion saves users from having to repeatedly

implement the calculation.

WaveInputStream

The WaveInputStream class is an abstract class that was created to allow the creation of any

number of subclasses that house different types of input streams. By wrapping input streams into

WaveInputStream subclasses, implementation differences between the streams can be abstracted

away. This allows Tactile Waves to pipe audio from any audio source without requiring specific code for

each source. Code can be reused between all subclasses of an abstract class, so this design also reduces

code complexity and eases maintenance.

Any object that is a subclass of WaveInputStream must implement the following methods:

read(), readSample(), getFormat(), and close(). The read() method attempts to read a

single byte from the input stream and return it. The readSample() method attempts to read a single

sample from the input stream. The number of bytes required to construct one sample is defined by the

WaveFormat associated with the input stream. Using the read() and readSample() methods

from each subclass, all WaveInputStream objects can utilize additional read()methods to read

multiple samples at once, without needing to implement code to do so. The methods getFormat(),

and close()are necessary utility methods that allow the user to obtain the WaveFormat associated

with the input stream and close the input stream, respectively.

25

WaveFloatConverter

The WaveFloatConverter class is a static class whose sole responsibility is the conversion

of multi-channel encoded audio bytes to single channel audio samples (floats), and back again. Its

primary methods are toMonoFloat() and toMonoFloatArray() which convert an array of bytes

to a single sample or array of samples, using single precision floating point numbers. The methods

toMonoDouble() and toMonoDoubleArray() perform the same task, but instead return audio

samples as double precision (64-bit) floating point numbers. Finally, the toBytes() method performs

the reverse operation, converting single or double precision audio samples back to encoded bytes,

according to the supplied WaveFormat.

WaveFrame

The WaveFrame class represents a single frame of audio. The member objects of this class are

listed below in Table 4.

Table 4: WaveFrame Member Summary

Member Name Type Meaning
mFormat WaveFormat The audio format of this frame

mSamples float array The sample buffer, or the audio frame itself

mLength integer The length of the frame (sample buffer)

mFeatures HashMap Collection of audio features in the frame such as the
pitch, or a list of formant frequencies

Each instance of the WaveFrame class contains the actual audio samples and WaveFormat

associated with one frame of audio that has been read from a WaveInputStream. The frames audio

data is stored in the mSamples object, with mLength storing the length of the frame. The

WaveFormat describing the underlying audio format is stored in the mFormat variable. Apart from

26

energy/volume calculations on the frame, this class is not responsible for performing any actual signal

processing on the audio buffer. The sole purpose of this object is the storage of a frame of sampled

audio data. These objects are created and passed through a processing chain by the WaveManager

object, and sent to any WaveFrameListener objects upon completion. During processing, extracted

audio features can be stored in the objects mFeatures object, which is described in more detail

below.

WaveManager

The WaveManager class contains the core audio processing thread and is responsible for the

acquisition and management of sampled audio data. Its member objects are summarized below in Table

5.

Table 5: WaveManager Member Summary

Member Name Type Meaning
mRunning boolean Is the audio thread currently running?

mInput WaveInputStream The input stream to read audio from

mFormat WaveFormat The audio format in use

mListeners List List of WaveFrameListeners to notify of
completed WaveFrame objects

mSamples Float array A buffer to store audio samples

mOverlap integer # of samples to overlap between frames

mLength integer The number of samples used in each audio frame

mFramesProcessed integer The number of audio frames that have been
successfully processed

mTotalSamplesRead integer The total number of samples that have been
read from the WaveInputStream

mFXChain LinkedList A list of WaveProcessor objects that are
executed sequentially on each WaveFrame
produced

27

An instance of WaveManager will attempt the read audio encoded as bytes from mInput.

These bytes are immediately converted to audio samples according to the format parameters specified

by mFormat. For each frame, mOverlap samples from the previous frame are combined with

mLength – mOverlap

new samples from the input stream. These samples are then copied into a new WaveFrame object, and

this object is then passed to the process() method of each object in mFXChain for processing. After

executing the entire processing chain, the processed WaveFrame is sent to any listeners stored in the

mListeners member, and the WaveManager repeats these steps for the next frame, until it is

stopped.

This object is the primary component of Tactile Waves’ audio engine, and is the object that

users will primarily interact with when using the library. An instance of WaveManager is created by

supplying its constructor with 3 parameters: a WaveInputStream, and 2 integers that specify the

number of samples used for the frame length and overlap. At this point, the WaveManager will be

ready to begin reading audio samples from the input stream and assembling them into WaveFrame

objects for further processing. However, when the object is created, it is initialized with an empty

processing chain. In order to perform some useful processing on each WaveFrame, one or more

WaveProcessor objects must be added to the processing chain using the WaveManager’s

addEffectToChain() method. It is important to note that the processors within mFXChain will be

executed sequentially, in the order they were added. Immediately after creation, each WaveFrame is

sent to the first processor in the chain, and once it has completed its processing, the WaveFrame is sent

to the second processor in the chain, and so on until all processors in the chain have been executed.

28

WaveProcessor

The WaveProcessor interface defines the required functionality that an object must

implement to be used in a WaveManager’s processing chain. The interface specifies two methods:

process() and processingFinished(). The process() method should contain all of the

code required to perform whatever processing is required for each WaveFrame. The processor can

make use of the WaveFrame method getSamples() to obtain a reference to the frame’s samples

and perform some useful processing with or on the buffer. Optionally, a WaveProcessor can add any

number of arbitrarily formatted “features” to the WaveFrame using its addFeature() method. Each

processors process() method is called once by the WaveManager for every frame of audio. The

processingFinished() method is called after all processing has been completed on a

WaveFrame and should therefore contain any clean-up code that requires execution after the

processor has finished. This might include deallocation of resources, and resetting of variables or

parameters. If no clean-up code is required by the processor, the processingFinished() method

can be left blank.

WaveFrameListener

The WaveFrameListener interface specifies the required functionality of listener objects

with just one method: newFrameAvailable(). After successfully executing the processing chain, a

WaveManager will call any active listener’s newFrameAvailable() method, passing it the newly

processed WaveFrame object. The listener can then trigger some response to this event such as

updating the UI, or sending WaveFrame features over Bluetooth. This allows heavy, time consuming

tasks like these to be performed in a dedicated thread, separate from the WaveManager’s audio

processing thread.

29

In general, the WaveProcessor interface should be used for any tasks that should be run in

the audio processing thread, while the WaveFrameListener interface should be used for any tasks

that require access to the processed WaveFrame objects, but should not be performed within the

audio thread.

3.6. The Toolbox

Tactile Waves features a list of toolbox objects that are used to perform single DSP tasks such as

computing the Fourier Transform of an audio buffer. These methods are listed in Table 6 and described

in more detail in this section.

Table 6: Tactile Waves Toolbox Class Summary

Object Name Responsibility Requires Instantiation?
FFT Fourier Transforms of audio buffers Optional instantiation for speed,

otherwise no
Window Windows audio buffers Instantiation available, but not

required
DCT Discrete Cosine Transforms, Type-I and II No

Filter Filters an audio buffer Custom filters require
instantiation, otherwise no

Cepstrum Cepstral Transforms on audio buffers No

MFCC Computes Mel Frequency Cepstrum
Coefficients

No

LPC Linear Predictive Coding Analysis No

YIN Implements YIN Pitch Detection Algorithm Yes, required for algorithm
correctness

ZCR Computes the zero-crossing rate of an audio
signal

No

These classes and their methods are designed to provide as much static access as possible. That

is, toolbox methods should be available to the user without requiring creation of an instance of the

containing object, wherever possible. This design favors performance and reduced memory usage.

30

FFT

The FFT class is an all in one tool for performing Discrete Fourier Transforms on arrays.

Converting a signal to the frequency domain is a useful processing step in its own right, but many other

tools in the package require the use of FFT’s in their algorithms. Therefore, performance optimizations

made within the FFT class will necessarily translate to optimizations in other algorithms that rely on the

FFT (such as the DCT). Iterative, rather than recursive, implementations are used because they are

significantly faster. Additionally, because Tactile Waves is an audio processing library, and audio is

always a real signal, the real DFT is used over the complex DFT wherever possible, and has been

optimized to yield a 20-30% speed increase over the complex DFT.

FFT supports any transform size. Power-of-2 buffer lengths are supported through the famous

Cooley-Tukey Radix-2 Fast Fourier Transform [23], and are the most performant (𝑂(𝑛 log 𝑛)). All other

buffer sizes are supported using Leo Bluestein’s algorithm [24]. Several data types are supported. Arrays

of both single and double precision floating point numbers as well as arrays of Complex objects (see

Utilities section) can be used with FFT. The algorithm is implemented with an iterative decimation-in-

time (DIT) approach, summarized and explained in detail below:

Complex FFT Algorithm Summary

1. Decompose N sample signal into N 1-sample signals

2. Transform each of the 1-sample signals into the frequency domain

3. Recombine N 1-point spectra into a single N-point spectrum

The first step in the DIT complex FFT algorithm is to decompose 1 signal of N samples into N

signals of 1 sample in the time domain (hence decimation-in-time). An example of this decomposition is

shown for an 8-sample signal in Table 7. In the first step, the 8-sample signal is decomposed into 2

31

signals of 4 samples. In the next step, both 4-sample signals are decomposed into a total of 4 signals of 2

samples, and so on until the signal is broken down into N signals of 1 sample.

Table 7: Example of interlace decomposition with an 8-sample signal

1 signal of 8 samples 0 1 2 3 4 5 6 7
↙ ↘

 2 signals of 4 samples 0 2 4 6
↙ ↘

1 3 5 7
↙ ↘

4 signals of 2 samples 0 4
↓ ↓

2 6
↓ ↓

1 5
↓ ↓

3 7
↓ ↓

8 signals of 1 sample 0 4 2 6 1 5 3 7

A technique known as interlace decomposition is used at each decomposition step, which

separates the signal into even and odd components. To accomplish this even/odd reordering efficiently

with code, a technique known as bit reversal sorting is used. This operation simply takes the binary

address of each sample and reverses it to yield the samples new address. For the 8-sample signal, the

sample at address 0 (binary 000) is not moved because the reverse of 000 is 000. The sample at address

1 (binary 001) is moved to address 7 because the reversal of 001 is 100, or a decimal 7. The 8-sample

signal decomposition example is shown again using bit reversal sorting in Table 8.

 Table 8: Example of bit reversal sorting with an 8-sample signal

Sample indices before bit reversal Sample Indices after bit reversal

Decimal Binary Decimal Binary

0 000 0 000

1 001 4 100

2 010 2 010

3 011 6 110

4 100 1 001

5 101 5 101

6 110 3 011

7 111 7 111

32

Note how the ordering of sample indices after bit reversal sorting is identical to the ordering seen in the

final step of the interlace decomposition in Table 7.

Once the time domain signal has been decomposed into N 1-sample signals, the algorithm must

convert the signals into the frequency domain by calculating the spectrum of each signal. Here lies the

beauty of the algorithm: the spectrum of a 1-sample signal is itself, so the algorithm needs to do nothing

to convert each signal to the frequency domain.

All that is left for the algorithm is to recombine the N 1-sample frequency spectra into 1 N-sample

frequency spectrum. The recombination is done in the exact opposite order that the interlace

decomposition was performed. An example of a single recombination step is shown in Table 9. At each

step, the signals are combined by duplicating each frequency spectrum, and adding the results together.

This is known as a “butterfly calculation”, due to the shape outlined by the diagram in Table 9 that

resembles a butterfly’s wings. For the spectra to match up when added, the odd point spectrum is

shifted by 1 sample. Shifting in the frequency domain is performed by multiplication with a sinusoid.

After recombination, the algorithm yields a single N-point frequency spectrum of the original N-sample

signal and the algorithm terminates.

Table 9: Example of a recombination of 2, 1-sample spectra into a single 2-sample spectrum

2 1-sample
Spectra Input

Even Spectrum
↓

Odd Spectrum
↓

Shift Odd
Spectrum

↓
↓

*Sinusoid
↓

Butterfly
Calculation

duplicate
↙ ↘

duplicate
↙ ↘

E E O*S O*S
↓
↓

 ↘
 ↘

 ↙
↙

*-1
 ↓

 ↓ ↙ ↘ ↓
1 2-sample

Spectrum Output
 E + O*S

Positive Frequencies
 E – O*S

Negative Frequencies

33

 Because this is a complex FFT, it operates on complex signals. A complex signal is a signal that is

comprised of complex numbers, or numbers that have both a real and imaginary part, as shown by the

equation:

𝑧 = 𝑥 + 𝑦𝑖

Where 𝑧 is a complex number comprised of real part 𝑥 and imaginary part 𝑦, and 𝑖 is the imaginary

number √−1. The complex FFT of a complex signal results in a complex spectrum, or a spectrum

comprised of both real and imaginary parts. But what if the input signal is not complex? The complex

FFT will work fine in this situation, as a real signal can be represented as a complex signal with all

imaginary components equal to zero. However, many computation steps are “wasted” in this case on

the calculations involving the all zero valued imaginary components. Audio signals are always real

signals, never complex, so it would be preferable to not have to waste time on the complex signal

calculations. Luckily, there exists an alternate algorithm that takes advantage of this situation by

eliminating the unnecessary calculations associated with the real valued signal: the real FFT.

Notice how the very first step of the complex FFT works: An N sample signal is split in half and

broken down into its even and odd decompositions, and the step is repeated on the even/odd halves. In

other words, in the first step an N sample complex signal is divided into 2 N/2 sample complex signals.

The real FFT uses a clever trick that takes advantage of this step and “fools” the complex FFT into doing

the majority of its work for it. The real FFT takes an N sample real signal and breaks it into its even/odd

halves, just as with the complex FFT. The 2 halves of the real signal are then reinterpreted as the real

and imaginary components of a complex signal, yielding a single N/2 sample complex signal. This

complex signal is then passed to the complex FFT which returns a N/2 complex spectrum. The real FFT

can again reinterpret the real and imaginary components of this spectrum as 2 halves of a real

34

spectrum. The real FFT can now perform the final recombination step, combining the 2 N/2 sample

spectra into a single N sample spectrum. A summary of this algorithm is described below:

Real FFT Algorithm Summary

1. Separate N point real signal into N/2 point even and odd halves

2. Compute the complex FFT of the N/2 point even/odd halves

3. Recombine N/2 length spectra into N length spectrum

Therefore, real FFT of an N point signal is essentially just an N/2 point complex FFT, plus a few

extra computations for the final recombination step. This results in up to a 40% increase in performance

over the complex FFT.

Window

The Window class is responsible for applying windowing functions to audio/data buffers. At the

time of this writing, Window contains 6 different window functions, summarized in Figure 3.2. Window

also includes a rectangular window, which is computed by doing nothing to the incoming signal and has

been omitted from the graphs.

35

Figure 3.2: Summary of all available window functions in Tactile Waves

The response of an 𝑁-point window function can be computed by finding the normalized

magnitude spectrum of the window itself, and shifting the result by 𝑁/2. Alternatively, the exact

response can be computed directly using the following equations [25]:

𝑎 (𝑓) = 𝑤 cos(2𝜋𝑓𝑗 𝑁⁄) , (𝑟𝑒𝑎𝑙 𝑝𝑎𝑟𝑡)

𝑎 (𝑓) = 𝑤 sin(2𝜋𝑓𝑗 𝑁⁄) , (𝑖𝑚𝑎𝑔𝑖𝑛𝑎𝑟𝑦 𝑝𝑎𝑟𝑡)

𝑎(𝑓) =
𝑎 + 𝑎

∑ 𝑤

The Window class includes two getResponse()methods that return the response of a

window function using these equations. These methods were used to generate the response of each

window in the class (excluding rectangular).

-0.1
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 64 128 192 256

Am
pl

itu
de

Sample #

Available Window Functions

Hann Hamming Blackman Flat-top Gaussian Kaiser

36

The Hann window (sometimes called the Hanning window) is probably the most used window

function in speech and music processing. This function is equivalent to one period of a 0.5 amplitude

sine wave, shifted up by 0.5 and over by , and can be computed using the following simplified

equation:

𝑤 = 𝑠𝑖𝑛
𝜋𝑖

𝑁

This results in a window that is exactly zero at 0 and 𝑁 + 1, one half at 𝑁/4 and 3𝑁/4, and one at 𝑁/2,

leading to a side lobe roll off of about 18 dB/octave as shown in Figure 3.3.

Figure 3.3: Hann Window Response

The Hamming window is very similar to the Hann window, in that it is comprised of a shifted

sine wave. It is defined as one period of a 0.46 amplitude sine wave, shifted up by 0.54 and over by .

Substituting sin(𝜃 +) for cos(𝜃) yields the final equation for the Hamming window:

𝑤 = 0.54 − 0.46 cos
2πi

𝑁

-156
-144
-132
-120
-108

-96
-84
-72
-60
-48
-36
-24
-12

0

-128 -96 -64 -32 0 32 64 96 128

Am
pl

itu
de

 (d
B)

Frequency Offset (bins)

Hann Window Response

37

Unlike the Hann window, this window does not touch zero at its ends, resulting in more spectral leakage

in the side lobes. The response of the Hamming window is shown in Figure 3.4 below.

Figure 3.4: Hamming Window Response

The Blackman window is a modified version of the Hamming window that is meant to increase

side lode attenuation. It is nearly identical to the Hamming window with an added sin function, defined

by the following equation:

𝑤 = 0.42 − 0.5 cos
2πi

𝑁
− 0.08 cos

4πi

𝑁

This window combines the first lobe cancelation of the Hamming window, with the improved

attenuation of the Hann Window. The Blackman window response is shown below in Figure 3.5.

-156
-144
-132
-120
-108

-96
-84
-72
-60
-48
-36
-24
-12

0

-128 -96 -64 -32 0 32 64 96 128

Am
pl

itu
de

 (d
B)

Frequency Offset (bins)

Hamming Window Response

38

Figure 3.5: Blackman Window Response

The flat-top window differs drastically from previous windows in that it is partially negative.

Window implements a cosine-sum version of the flat-top window, defined by the following equation:

𝑤 = 0.216 − 0.417 cos
2πi

𝑁
+ 0.277 cos

4πi

𝑁
− 0.084 cos

6πi

𝑁
+ 0.007 cos

6πi

𝑁

This window’s response can be seen in Figure 3.6. It has poor frequency resolution (indicated by the

wide main lobe), but it is the best window for measuring the actual amplitude of a frequency

component.

-156
-144
-132
-120
-108

-96
-84
-72
-60
-48
-36
-24
-12

0

-128 -96 -64 -32 0 32 64 96 128

Am
pl

itu
de

 ()
dB

Frequency Offset (bins)

Blackman Window Response

39

Figure 3.6: Flat-top Window Response

The Window class includes two adjustable windows that allow the user to customize the

window shape to fit their needs. The first of which is the Gaussian window, defined by:

𝑤 = 𝑒 ⁄

Where 𝑛 = 𝑖 − and 𝜎 =
∝

 . The parameter ∝ is used to adjust the window shape. At ∝ = 2.5, the

shape of the Gaussian window is similar to the Hamming window, but with reduced sidelobe

attenuation, and a slightly wider main lobe. Increasing ∝ results in greater sidelobe attenuation, at the

cost of a wider main lobe. The response of the Gaussian window is shown in Figure 3.7.

-156
-144
-132
-120
-108

-96
-84
-72
-60
-48
-36
-24
-12

0

-128 -96 -64 -32 0 32 64 96 128

Am
pl

itu
de

 (d
B)

Frequency Offset (bins)

Flat-top Window Response

40

Figure 3.7: Gaussian Window Response

The second adjustable window, the Kaiser window, approximates a window known as the

discrete prolate spheroidal sequence (DPSS) or Slepian window. The DPSS window maximizes the energy

of the main lobe, but is very difficult to compute. Therefore, the Kaiser window is commonly used in its

place. The Kaiser window function is defined by the equation:

𝑤 =

𝐼 𝜋 ∝ 1 −
𝑖 − 𝑁 2⁄

𝑁 2⁄

𝐼 (𝜋 ∝)

Where 𝐼 is the zero-th order modified Bessel function of the first kind:

𝐼 (𝑧) =
1

𝜋
𝑒 ()𝑑𝜃

To numerically evaluate an integral of a continuous function in code, it must be discretized. Any integral

can be discretely approximated using the trapezoidal rule:

𝑓(𝑥) 𝑑𝑥 ≈ 𝑏 − 𝑎
𝑓(𝑎) + 𝑓(𝑏)

2

-156
-144
-132
-120
-108

-96
-84
-72
-60
-48
-36
-24
-12

0

-128 -96 -64 -32 0 32 64 96 128

Am
pl

itu
de

 (d
B)

Frequency Offset (bins)

Gaussian Window Response, α = 2.5

41

The accuracy of the approximation can be increased by dividing the integral into 𝑛 sub integrals,

evaluating the trapezoid rule for each, and summing the results. This technique is known as the

composite trapezoidal rule:

𝑓(𝑥) 𝑑𝑥 ≈
𝑏 − 𝑎

𝑛

𝑓(𝑎)

2
+ 𝑓 𝑎 + 𝑘

𝑏 − 𝑎

𝑛
+

𝑓(𝑏)

2

The Kaiser window uses the composite trapezoidal rule with 𝑛 = 20 to closely approximate 𝐼 . The

window’s response is shown in Figure 3.8.

Figure 3.8: Kaiser Window Response

At ∝ = 3, the Kaiser window resembles a combination of the Blackman and Flat-top windows,

with the narrower peak like the Blackman, and flatter side lobe roll off like that of the Flat-top. Just like

the Gaussian window, increasing ∝ results in greater sidelobe attenuation, at the cost of a wider main

lobe.

-156
-144
-132
-120
-108

-96
-84
-72
-60
-48
-36
-24
-12

0

-128 -96 -64 -32 0 32 64 96 128

Am
pl

itu
de

 (d
B)

Frequency Offset (bins)

Kaiser Window Response, α = 3

42

DCT

The DCT class implements a Type-II and Type-III discrete cosine transform, or DCT. A DCT is

closely related to the discrete Fourier transform (DFT), but instead represents a finite data series as a

sum of cosine waves, rather than a sum of complex sinusoids. There are eight different DCT variations,

four of which are commonly used in DSP. The Type-II DCT is the most common, and is therefore simply

referred to as “the DCT”. The Type-II DCT of a data series 𝑥 of 𝑁 points is defined by:

𝑦(𝑘) = 𝑥(𝑛) cos
𝜋

2𝑁
(2𝑛 + 1)𝑘 , 0 ≤ 𝑘 < 𝑁

To find the inverse (of any DCT), 𝑘 and 𝑛 must be switched. In the case of the Type-II DCT, its inverse is

the Type-III DCT, referred to as “the inverse DCT” or “the IDCT” and is defined for a data series 𝑥 of 𝑁

points by:

𝑦(𝑘) =
𝑥(0)

2
+ 𝑥(𝑛) cos

𝜋

2𝑁
𝑛(2𝑘 + 1) , 0 ≤ 𝑘 < 𝑁

A DCT matrix is often normalized to ensure its orthogonality after transformation. For example,

MATLAB uses this orthogonal normalization scheme by default in its dct() and idct() functions. The

DCT is normalized by scaling the entire matrix by and dividing the 𝑦(0) term by √2. The normalized

DCT is then defined by:

𝑦(𝑘) =
2

𝑁
𝑥(𝑛) cos

𝜋

2𝑁
(2𝑛 + 1)𝑘 , 0 ≤ 𝑘 < 𝑁

𝑦(0) =
𝑦(0)

√2

43

Similarly, the IDCT is normalized by dividing the 𝑥(0) term by √2 instead of 2, and scaling the entire

matrix by . The normalized IDCT is then defined by:

𝑦(𝑘) =
2

𝑁

𝑥(0)

√2
+ 𝑥(𝑛) cos

𝜋

2𝑁
𝑛(2𝑘 + 1) , 0 ≤ 𝑘 < 𝑁

Computing an N length DCT of an N length input signal requires 𝑂(𝑛) processing complexity

with any of the above equations. Fortunately, there is an alternate algorithm that takes advantage of

the DCT’s close relation to the DFT to perform the transformation with reduced complexity. The Type-II

DCT of an 𝑁-length input signal is exactly equivalent to a DFT of a 4𝑁-length signal with even symmetry

and all the even indexed input values set to zero. Because the DFT can be computed with the 𝑂(𝑛 log 𝑛)

FFT algorithm, this alternative is more performant. However, the 4𝑁-length FFT limits the algorithms

performance, making it slower than the standard DCT at smaller input sizes. Therefore, for optimal

performance the algorithm must be modified to use an 𝑁-length FFT. The modified DCT and IDCT

algorithms are summarized in Table 10 and 11 with an example 10-point input signal. These algorithms

are computationally equivalent to a single 𝑁-length real FFT, plus some additional overhead for the

rearranging and multiplication.

Table 10: Modified DCT algorithm with 10-point input

10-point input signal 0 1 2 3 4 5 6 7 8 9
↓

Rearrange input 0 2 4 6 8 9 7 5 3 1
↓

Take real FFT of input realFFT()
↓

Multiply by half
sample shift ∗ 𝑒

↙ ↘
Discard imaginary real imaginary

44

Table 11: Modified IDCT algorithm with 10-point input

10-point input signal 0 1 2 3 4 5 6 7 8 9
↓

Multiply by half
sample shift ∗ 𝑒

↓

Take real FFT of input complexFFT()
↓

Discard imaginary real
↓

imaginary

Real part 0 2 4 6 8 9 7 5 3 1
↓

Rearrange output 0 1 2 3 4 5 6 7 8 9
↓

 The DCT is primarily used for its energy compaction property: The DCT of a signal will contain

nearly all the signals energy in the first few DCT bins. That is, nearly all the signal’s energy (information)

will be contained in a small number of the transformed samples. This property can be seen in Figure 3.9

for the 10-point input signal [0, 1, 2, 3, 4, 5, 6, 7, 8, 9].

Figure 3.9: Type-II DCT of Input Sequence

Here, the DCT of [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] contains nearly all the signals energy in the first 2 bins.

The other 8 bins are nearly zero. In fact, the first 2 bins contain 99.89% of the original signal’s total

-25
-20
-15
-10

-5
0
5

10
15
20
25
30
35
40
45

DC
T

Am
pl

itu
de

DCT Bin

10-point DCT of Input

45

energy, and the original signal can be represented using only these first 2 bins. By discarding the

remaining 8 bins, and taking the IDCT of the 2 retained bins, the original signal can be reconstructed.

The reconstructed signal is shown overlaid with the original signal in Figure 3.10.

Figure 3.10: Input reconstructed via DCT with 80% data reduction

After an 80% data reduction, the signal can still be reconstructed with only a small amount of

error. This energy compaction by the DCT is the primary mechanism used in JPEG image compression

and MP3 audio compression.

Filter

The Filter class aims to be a comprehensive data filtering toolkit for the Tactile Waves

library. In DSP applications, filters are used to remove, attenuate, or amplify specific frequency regions

in an audio signal. Filter implements a single, general purpose recursive filter algorithm in the

method filter(). This method accepts 3 input arrays containing the filter’s numerator coefficients,

denominator coefficients, and the signal/data series to be filtered. The data array can be an array of

single or double precision floating point numbers, while the coefficients must be double precision

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9

Va
lu

e

Index

10-point Original & Reconstructed Input

Original Reconstructed

46

floating point arrays. Both finite impulse response (FIR) and infinite impulse response (IIR) filters can be

described by the rational transfer function:

𝐻(𝑧) =
𝑌(𝑧)

𝑋(𝑧)
=

𝑏 + 𝑏 𝑧 + ⋯ + 𝑏 𝑧

𝑎 + 𝑎 𝑧 + ⋯ + 𝑎 𝑧

Where 𝑋(𝑧) is the Laplace Transform of the input signal 𝑥, 𝑌(𝑧) is the Laplace Transform of the filtered

output signal 𝑦, 𝑏 is the list of 𝑛 numerator coefficients, and 𝑎 is the list of 𝑛 denominator

coefficients. The normalized form of this transfer function divides all the coefficients by 𝑎 :

𝐻(𝑧) =
𝑌(𝑧)

𝑋(𝑧)
=

𝑏
𝑎

+
𝑏
𝑎

𝑧 + ⋯ +
𝑏
𝑎

𝑧

1 +
𝑎
𝑎

𝑧 + ⋯ +
𝑎
𝑎

𝑧

𝐻(𝑧) can then be expressed as the difference equation:

𝑎(0)𝑦(𝑛) = 𝑏(0)𝑥(𝑛) + 𝑏(1)𝑥(𝑛 − 1) + ⋯ + 𝑏(𝑛)𝑥(𝑛 − 𝑛) − 𝑎(1)𝑦(𝑛 + 1) − ⋯

− 𝑎(𝑛)𝑦(𝑛 − 𝑛)

Which can be easily implemented in code. Here the numerator coefficients, 𝑏, are called the

feedforward coefficients, and 𝑛 is the feedforward filter order. Similarly, the denominator coefficients,

𝑎, are called the feedback coefficients, and 𝑛 is the feedback filter order. Filter uses this equation in

the filter() method to execute all filtering operations that Filter performs.

 The filter() method is a static method, so it does not require instantiation. However, a filter

can be saved and reused by instantiating a Filter object. The constructer takes two arguments: an

array of numerator coefficients and an array of denominator coefficients. These coefficients are saved

with the object, and the non-static version of filter() can be called at any time to perform filtering

with the saved coefficients.

47

 Custom digital filters can be designed from analog prototypes using the allPole()

biquad(), and chebyshev() methods. The allPole() method can be used to design 2-pole

Butterworth, Critically damped, and Bessel IIR filters. Both low and high pass filters are supported, as

well as filter cascading. The 3 filter types are compared in Figure 3.11 for a single 100 Hz low-pass

design. High-pass versions of these filters would produce an identical response, flipped horizontally

about the critical frequency of 100 Hz.

Figure 3.11: Low-pass filter responses of all pole filters

The roll-off of these all-pole filters can be improved by cascading the filter, or passing the signal

through multiple times (after adjusting the filter coefficients accordingly). An example of this is shown in

the following figure for a Butterworth filter with various passes, or cascades. As the number of filter

passes in increased, the stopband roll-off increases.

-48

-36

-24

-12

0

12

10 100

Am
pl

itu
de

 (d
B)

Frequency (Hz)

100 Hz Low-Pass Fiter Response

Butterworth Critically Damped Bessel

48

Figure 3.12: Example of Butterworth filter cascading

The biquad() method is capable of designing a diverse pallet of adjustable biquadratic filters.

Low/high-pass, all-pass, band-pass, notch, peak (bell), and low/high shelf filter shapes are supported,

and each can be adjusted through the design parameters. Each of these filter shapes is shown in Figure

3.13 for a critical frequency of 100 Hz. Lines with smaller dashes indicate an increase in the Q/gain

parameter of the filter. High-pass and high-shelf filters have been omitted, as their response is identical

to their low-pass and low-shelf counterparts, flipped horizontally about the critical frequency.

-48

-36

-24

-12

0

12

10 100

Am
pl

itu
de

 (d
B)

Frequency (Hz)

100 Hz Low-Pass Butterworth Fiter Response

1-pass 3-passes 6-passes

-12

-6

0

6

10 100

Am
pl

itu
de

 (d
B)

Frequency (Hz)

Low-Pass Fiter Response

-12

-6

0

6

10 100

Am
pl

itu
de

 (d
B)

Frequency (Hz)

Band-Pass Fiter Response

49

Figure 3.13: Biquadratic Filter Responses

 The chebyshev() method allows for the design of N-pole digital Chebyshev IIR filters with

adjustable passband ripple. Doubling the number of poles will double the slope of the stopband roll-off

at the cost of stability (Figure 3.14), and increasing the passband ripple will increase slope of the

stopband roll-off at the cost of ripple in the passband (Figure 3.15). With the potential for such sharp

stopband attenuation, the Chebyshev filters are intended to be used in situations that require exact

frequency separation, such as resampling.

-24

-18

-12

-6

0

10 100

Am
pl

itu
de

 (d
B)

Frequency (Hz)

Notch Fiter Response

-3

0

3

6

10 100

Am
pl

itu
de

 (d
B)

Frequency (Hz)

Peaking EQ Fiter Response

-12
-9
-6
-3
0
3

10 100

Am
pl

itu
de

 (d
B)

Frequency (Hz)

Shelf Fiter Response

50

Figure 3.14: 0% ripple Chebyshev filter response with varying number of poles

Figure 3.15: 4-pole Chebyshev filter response with varying passband ripple

Cepstrum

The Cepstrum class is responsible for performing cepstral transforms on audio data/signals.

Much like how a Fourier transform computes the spectrum of a time domain signal by converting it into

the frequency domain, a cepstral transform computes the “cepstrum” of a time domain signal by

converting it into the “quefrency” domain. The names “cepstral” and “cepstrum” come from reversing

-48

-36

-24

-12

0

10 100

Am
pl

itu
de

 (d
B)

Frequency (Hz)

0% Ripple Low-Pass Chebyshev Fiter Response

2-pole 4-pole 8-pole

-48

-36

-24

-12

0

10 100

Am
pl

itu
de

 (d
B)

Frequency (Hz)

4-pole Low-Pass Chebyshev Fiter Response

0% ripple 0.5% ripple 20% ripple

51

the first four letters of the words “spectral” and “spectrum”, and “quefrency” is a reordering of the

letters in “frequency”. Similarly, a filtering like operation in the quefrency domain is called “liftering”. As

the name might imply, the cepstral transform is closely related to the Fourier (spectral) transform. A

cepstrum is defined as the inverse Fourier transform of the logarithm of the spectrum of a signal, and

there are several variations based on the type of spectrum used. Cepstrum implements the real

cepstrum, power cepstrum, and complex cepstrum. The real cepstrum is found by taking the inverse

Fourier transform of the log of the magnitude spectrum:

𝑟𝑒𝑎𝑙 𝑐𝑒𝑝𝑠𝑡𝑟𝑢𝑚 = 𝐼𝐹𝐹𝑇(log(|𝐹𝐹𝑇(𝑥)|))

Whereas the power cepstrum uses the power spectrum, rather than the magnitude spectrum:

𝑝𝑜𝑤𝑒𝑟 𝑐𝑒𝑝𝑠𝑡𝑟𝑢𝑚 = 𝐼𝐹𝐹𝑇(log(|𝐹𝐹𝑇(𝑥)|))

Because the magnitude and power spectrums throw away the signal phase, the original signal

cannot be reconstructed from these spectra alone. Similarly, the original signal cannot be reconstructed

from the real or power cepstra. When reconstruction of the original signal after transformation is

required, the complex cepstrum is used. The complex cepstrum is the result of the inverse Fourier

transform of the complex log of the complex spectrum:

𝑐𝑜𝑚𝑝𝑙𝑒𝑥 𝑐𝑒𝑝𝑠𝑡𝑟𝑢𝑚 = 𝐼𝐹𝐹𝑇 log 𝐹𝐹𝑇(𝑥)

The original signal can then be reconstructed by reversing these steps:

𝑖𝑛𝑣𝑒𝑟𝑠𝑒 𝑐𝑜𝑚𝑝𝑙𝑒𝑥 𝑐𝑒𝑝𝑠𝑡𝑟𝑢𝑚 = 𝐼𝐹𝐹𝑇(𝑒 ())

Where 𝑒 is the complex exponential function (the inverse of the complex logarithm).

52

 Cepstral analysis takes advantage of a basic property of logarithms that makes it an important

tool in speech processing. The product rule of logarithms states that the logarithm of a product can be

separated into a sum of the log of its factors:

log (𝑥𝑦) = log (𝑥) + log (𝑦)

By defining 𝐹𝐹𝑇(𝑥) = 𝐹𝐹𝑇(𝑠) × 𝐹𝐹𝑇(𝑓), the definition of a cepstrum can then be rewritten as:

𝑐𝑒𝑝𝑠𝑡𝑟𝑢𝑚 = 𝐼𝐹𝐹𝑇 log 𝐹𝐹𝑇(𝑠) + log 𝐹𝐹𝑇(𝑓)

Which shows that multiplication in the frequency domain transforms into a linear combination in the

cepstral domain. Because multiplication in the frequency domain is equivalent to convolution in the

time domain, the cepstral transform turns a time domain convolution into a linear combination

(summation) of its components. Unlike convolution, a linear combination can be easily separated. In this

way, the cepstral transform can be used for deconvolution, which is achieved through a process known

as “liftering”

 Liftering is a similar operation to filtering in the frequency domain where a signal’s spectrum is

multiplied by a desired frequency response to attenuate or amplify certain frequency regions. Liftering is

the process of removing either high-time or low-time quefrency components from the cepstrum. Low-

time liftering is achieved by multiplying the cepstrum by a rectangular window that covers the quefrency

region of interest. A low-time liftering window can be defined as:

𝑤(𝑛) =

 1, 0 ≤ 𝑛 ≤ 𝐿

 0, 𝐿 < 𝑛 ≤
𝑁

2

Where 𝐿 is the cutoff length of the liftering window, in samples. This window will zero out all quefrency

components with periods longer than 𝐿 , and leave the rest of the cepstrum intact. This operation

effectively removes low frequency content from the cepstrum.

53

 Similarly, high-time liftering applies a rectangular window that preserves quefrency components

above the cutoff, 𝐿 . A high-time liftering window is therefore the opposite of the low-time liftering

window:

𝑤(𝑛) =

 0, 0 ≤ 𝑛 < 𝐿

 1, 𝐿 ≤ 𝑛 ≤
𝑁

2

This window will zero out all quefrency components with periods shorter than 𝐿 , which effectively

removes high-frequency content from the cepstrum.

MFCC

The MFCC class computes the Mel-frequency cepstral coefficients (MFCC’s) of an audio signal.

The MFCC’s are simply a group of numbers that collectively make up the Mel-frequency cepstrum

(MFC), which is a modified power cepstrum. The MFC is defined as the discrete cosine transform of the

logarithm of the Mel-frequency centered triangular filtered power spectrum of a signal, mapped to the

Mel scale. The steps to compute the MFC are as follows:

1. Compute the 𝑁-length power spectrum of the signal

2. Compute the 𝑀 Mel-filter bank energies

3. Take the logarithm of the filter bank energies

4. Compute the discrete cosine transform of the log filter bank energies to yield

cepstral coefficients, or MFCCs

5. Apply liftering operation (optional step)

To convert a frequency in Hz to the Mel scale, the following equation is used:

𝑀(𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦) = 2595 log (1 +
𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦

700
)

54

To convert from the Mel scale back to frequency, the inverse operation is performed:

𝑀 (𝑚𝑒𝑙) = 700(10 ⁄ − 1)

These two equations are used to compute the filter bank FFT bins, 𝑓(𝑖):

𝑓(𝑖) = 𝑓𝑙𝑜𝑜𝑟
(𝑁 + 1)𝑀 (𝑚𝑒𝑙(𝑖))

𝑓

Where 0 ≤ 𝑖 ≤ 𝑀 + 1, and

𝑚𝑒𝑙(𝑖) = 𝑚𝑒𝑙(0) +
𝑖

𝑀 + 1
 𝑚𝑒𝑙(𝑀 + 1) − 𝑚𝑒𝑙(0)

𝑚𝑒𝑙(0) = 𝑀(𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦)

𝑚𝑒𝑙(𝑀 + 1) = 𝑀(𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦)

Which defines the start, center, and ending FFT bin for each triangular filter in the filter bank. The 𝑚

filter will start at 𝑓(𝑚 − 1), reach unity at 𝑓(𝑚) and end at 𝑓(𝑚 + 1). The filter bank can then be

defined as:

ℎ (𝑘) =

⎩
⎪⎪
⎨

⎪⎪
⎧

0 𝑘 < 𝑓(𝑚 − 1)

𝑘 − 𝑓(𝑚 − 1)

𝑓(𝑚) − 𝑓(𝑚 − 1)
 𝑓(𝑚 − 1) ≤ 𝑘 ≤ 𝑓(𝑚)

𝑓(𝑚 + 1) − 𝑘

𝑓(𝑚 + 1) − 𝑓(𝑚)
 𝑓(𝑚) ≤ 𝑘 ≤ 𝑓(𝑚 + 1)

0 𝑘 > 𝑓(𝑚 + 1)

Where 1 ≤ 𝑚 ≤ 𝑀 and 0 ≤ 𝑘 ≤ 𝑁/2. An example of a Mel-filter bank running with 10 banks in the

range 0-8000 Hz is shown in Figure 3.16.

55

Figure 3.16: A 10-band Mel filter bank from 0-8000 Hz

The entire process for computing the MFCCs of a signal can now be defined by the following

equation:

𝑀𝐹𝐶𝐶 = 𝐷𝐶𝑇 log |𝐹𝐹𝑇(𝑥)| ∗ ℎ (𝑘)

The optional liftering step above amounts to simply point-wise multiplying the MFCC vector by a

weighting function 𝑤 :

𝑀𝐹𝐹𝐶 = 𝑤 ∗ 𝑀𝐹𝐹𝐶

Many different weighting functions exist for various types of liftering. MFCC includes three popular

liftering methods: linear, sinusoidal, and exponential. The equations for each lifter are listed in Table 12

Table 12: MFCC Liftering Methods

Linear [K.K. Paliwal] Sinusoidal [Biing-Hwang Juang] Exponential [Mike Brookes]

𝑤 = 𝑖 𝑤 = 1 +
𝐷

2
sin

𝜋𝑖

𝐷

𝑤 = 𝑖 𝑒 ⁄

𝑠 = 1.5, 𝜏 = 5

0

0.25

0.5

0.75

1

0 1000 2000 3000 4000 5000 6000 7000 8000

Am
pl

itu
de

Frequency (Hz)

Mel Filterbank

56

LPC

The LPC class implements a linear predictive coding algorithm using an autocorrelation method.

Linear predictive coding attempts to provide a compressed representation of the spectral envelope of a

speech signal using a linear prediction model. A 𝑃 -order FIR filter is fit to a data series x that predicts

the current value of x based on previous values:

𝑥 (𝑛) = 𝑎(1)𝑥(𝑛 − 1) + 𝑎(2)𝑥(𝑛 − 2) + ⋯ + 𝑎(𝑃)𝑥(𝑛 − 𝑃)

Where 𝑎 is a vector containing the models 𝑃 + 1 prediction coefficients, and 𝑎(0) = 1. LPC finds the

optimal coefficients by solving the Yule-Walker system of equations:

𝑅𝑎 = 𝑟

Where

𝑅 =

𝑟(0) 𝑟∗(1) ⋯
𝑟(1) 𝑟(0) ⋱

⋮ ⋮ ⋱

𝑟∗(𝑛 − 1)
𝑟∗(𝑛 − 2)

⋮
𝑟(𝑃 − 1) 𝑟(𝑃 − 2) … 𝑟(0)

, 𝑟 =

−𝑟(1)

−𝑟(2)
⋮

−𝑟(𝑃)

And 𝑟(𝑚) is the autocorrelation function of a signal 𝑥, defined as follows:

𝑟(𝑚) = 𝑥(𝑛)𝑥(𝑛 + 𝑚)

Because 𝑅 is a Toeplitz (diagonal-constant) matrix, the system can be solved for 𝑎 in 𝑂(𝑛) flops using

Levinson-Durbin recursion.

 Levinson-Durbin recursion recurses over the model order to calculate the coefficients for a 𝑃 -

order predictor from a (𝑃 − 1) -order predictor, denoted by the subscripts 𝑃, 𝑃 − 1, etc. The system

of equations representing the (𝑃 − 1) -order predictor, can be found by omitting the last row and

column from 𝑅 :

57

𝑅

𝑎 (1)

𝑎 (1)
⋮

𝑎 (𝑃 − 1)

= 𝑟 − 𝑎 (𝑃)�̂�

Multiplying by in inverse of 𝑅 gives:

𝑎 (1)

𝑎 (1)
⋮

𝑎 (𝑃 − 1)

= 𝑅 𝑟 − 𝑅 �̂� 𝑎 (𝑃)

Substituting 𝑎 = 𝑅 𝑟 yields the final equation for calculating the predictor coefficients:

𝑎 (1)

𝑎 (1)
⋮

𝑎 (𝑃 − 1)

= 𝑎 − 𝑎 (𝑃)𝑎

The 𝑖 coefficient for a 𝑃 -order model can be found from:

𝑎 (𝑖) = 𝑎 (𝑖) − 𝑎 (𝑃)𝑎 (𝑃 − 1)

Where

𝑎 (𝑃) =
𝑟(𝑃) − �̂� 𝑎

𝑟(0) − �̂� 𝑎

and

�̂� =

𝑟 (𝑃)

𝑟 (𝑃 − 1)
⋮

𝑟 (1)

, 𝑎 =

𝑎 (𝑃)

𝑎 (𝑃 − 1)
⋮

𝑎 (1)

 LPC computes the autocorrelation of the input signal x (using FFT), then performs Levison-

Durbin recursion as described above to find the 𝑃 + 1 coefficients of the predictor. These coefficients

58

define a 𝑃 -order polynomial that approximates the spectral envelop of the signal. This can be used for

a variety of useful processing. For example, the formant frequencies of the signal can be found from the

roots of the polynomial. For each complex root 𝑧, with a positive imaginary component, the

corresponding formant frequency and bandwidth can be found from the following equations:

𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 = arg(𝑧) ∗
𝑓

2𝜋
, 𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ = log (𝑚𝑎𝑔(𝑧))

−𝑓

4𝜋

 LPC provides two static methods, lpc() and estimateFormants(). The lpc() method

takes a signal 𝑥, and an integer specifying the model order, 𝑃 and returns the 𝑃 + 1 predicator

coefficients. The estimateFormats() method takes a signal 𝑥, and two integers specifying the

number of requested formants, and the sampling rate of the signal. The method first calls lpc() with a

model order of 2 ∗ # 𝑜𝑓 𝑓𝑜𝑟𝑚𝑎𝑛𝑡𝑠 + 2. The roots of the polynomial are found using RootSolver,

and the formant/bandwidth pairs are calculated and returned.

YIN

The YIN class implements the YIN pitch detection algorithm (PDA), as described by de

Cheveigné and Kawahara in [21]. A pitch detection algorithm attempts to estimate the fundamental

frequency, or pitch, of an audio signal. The fundamental frequency, F_0, is defined as the inverse of the

period of a periodic waveform, where the period is defined as the smallest time shift that leaves the

signal invariant. Pitch estimation techniques based on autocorrelation attempt to exploit this

assumption by comparing a signal to many time delayed versions of itself. If there is a delay time that

appears to leave the signal unchanged, then that delay time must be equal to the period of that signal.

The autocorrelation function (ACF) is used to accomplish this task efficiently, as it is a measure of the

correlation between a signal and a delayed version of itself, as a function of the delay time. In the Yin

paper, the autocorrelation function of a signal 𝑥 is defined as:

59

𝑟(𝜏) = 𝑥 𝑥

Which yields the autocorrelation of 𝑥 at a lag of 𝜏 samples. To demonstrate the relation between auto

correlation and pitch, consider a 0 dbFS 10 Hz sine wave that has been corrupted with noise at an SNR of

0 dB and sampled at 200 Hz. A 128-sample chunk of this waveform is shown in Figure 3.17.

Figure 3.17: 10 Hz sine wave + noise sampled @ 200 Hz

The autocorrelation function of this sine wave is shown in Figure 3.18 for the range 0 < 𝜏 < 64

samples.

-1
-0.8
-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8

1

0 32 64 96 128

Am
pl

itu
de

Sample #

10 Hz Noisy Sine Wave Sampled @ 200 Hz

60

Figure 3.18: Autocorrelation of noisy sine wave

The ACF peaks at 0 samples (no lag), and every integer multiple of 20 samples. The period (in

samples) of the waveform is found by selecting the smallest non-zero lag which contains a peak. Dividing

the sampling rate (200 Hz) by this value (20 samples), yields the pitch of the signal – 10 Hz. This is the

fundamental idea behind autocorrelation based pitch estimation.

 The Yin algorithm implements an autocorrelation based pitch estimation, with the addition of

several error correction steps that make it one of the most accurate PDAs available [YIN]. Apart from the

additional steps, the algorithm has one key difference from the procedure described above. Instead of

using the autocorrelation function, the difference function is used. The difference function of a signal 𝑥

is defined by:

𝑑(𝜏) = (𝑥 − 𝑥)

Which can be written in terms of the autocorrelation function by:

𝑑(𝜏) = 𝑥 𝑥 − 2𝑥 𝑥 + 𝑥 𝑥 = 𝑟(0) + 𝑟 (0) − 2𝑟(𝜏)

-1.0

-0.5

0.0

0.5

1.0

0 10 20 30 40 50 60

Am
pl

itu
de

Lag, τ (samples)

Normalized Autocorrelation of 10 Hz Noisy Sine
Wave

61

The first step in the algorithm is to compute this difference function, followed by a normalization step to

normalize the difference function using its cumulative mean. The equation to compute the cumulative

mean normalized difference function is defined as:

𝑑 (𝜏) =

 1 𝜏 = 0
𝑑(𝜏)

1
𝜏

∑ 𝑑(𝑗)
 𝑒𝑙𝑠𝑒

Where the ACF shows the amount of correlation between a signal and a time delayed copy, the

difference function shows the how different a signal is from a time shifted copy. For example, the

normalized difference function of the noisy sine wave used above is shown below in Figure 3.19.

Figure 3.19: Cumulative normalized difference function of noisy sine wave

Here, the function is at a minimum at lag values that are integer multiples of 20 samples.

Because the added noise breaks the perfect periodicity of the sine wave, the difference function is non-

zero everywhere. A perfectly periodic signal would result in zeros at integer multiples of the period, as

any time delay that is evenly divisible by the period leaves the signal invariant.

 It is possible for the difference function to contain dips at lag values greater than the period,

that are lower than the dips at the actual period. To prevent the algorithm from choosing this incorrect

0

1

2

0 10 20 30 40 50 60

d'
(τ

)

Lag, τ (sample)

Difference Function of 10 Hz Sine Wave

62

period, an absolute thresholding scheme is employed as the next step in the algorithm. A threshold is

set in the program (or by the user/programmer) and the smallest 𝜏 value that gives a minimum of 𝑑’(𝜏)

that is below the threshold is chosen. If no value is found that satisfies the threshold, the global

minimum of the difference function should be returned instead. However, in testing this proved to be

problematic. The algorithm will always report a pitch, even in the presence of un-pitched sounds, such

as white noise. A popular solution to this problem is to compute the probability of the estimated pitch,

and return this value with the pitch. The program must then perform some post-processing to

determine if the pitch reading is valid, based on the probability, the past readings, etc. It would be

preferable for the algorithm to report the pitch when a pitched sound is present, and no pitch

otherwise. The algorithm was modified slightly to accomplish this. Rather than returning the global

minimum if the threshold is not satisfied, YIN returns -1, indicating that no pitch was found. Because

speech is composed of both pitched (voiced) and un-pitched (unvoiced) sounds, YIN can be used as a

voiced/unvoiced speech detector, as well as a pitch estimator, simultaneously.

 The final steps of the Yin pitch detection algorithm are about refining the period estimate

obtained from previous steps. The first is called the “best local estimate” and in it, the value of the

normalized difference function at the current 𝜏 estimate at time 𝑡 is compared to values of the

difference function in the temporal vicinity 𝑡 − , 𝑡 + to find a minimum. The Yin paper

describes a file based pitch detection, in which the difference function of the entire audio clip is

computed at once, allowing the algorithm to look forward into time. Because Tactile Waves implements

real-time audio processing, this is impossible to achieve. Instead, YIN examines the current audio buffer

and searches for a minimum value of the difference function in the range [𝜏 − 𝜏/5, 𝜏 + 𝜏/5].

 The final step of the algorithm uses parabolic interpretation to refine the estimated period to a

more precise value. Because the lag 𝜏 is measured in samples, it is restricted to whole integer numbers.

63

This limits the maximum accuracy of the reported pitch, as the actual pitch period could fall on a

fractional number of samples. For example, the pitch of the note C3 is 261.6 Hz, corresponding to a

period of 168.578 samples at a sampling rate of 44100 Hz. Without parabolic interpolation, the

algorithm would be report a period of 168 or 169 samples, corresponding to a pitch of 262.5 or 260.947

Hz, respectively. The dip in the normalized difference function corresponding to the estimated 𝜏 is

modeled as a quadratic function, and the curve is fitted with a parabola and the interpolated minimum

is retuned as the final estimated pitch period. The sampling rate of the signal is divided by this value to

yield the final pitch estimate.

 YIN provides two static methods to estimate the pitch of a signal using the Yin PDA:

estimatePitch() and estimatePitchFast(). The former computes 𝑑(𝜏) directly from the

signal 𝑥, as described above, which requires 𝑂(𝑛) flops. The latter method uses the FFT class to

compute the autocorrelation of 𝑥, then computes 𝑑(𝜏) from the autocorrelation, resulting in only

𝑂(𝑛 log 𝑛) flops, and roughly a 90% speed increase over estimatePitch(). Other than the

differences in computing the difference function, these two methods are completely identical.

ZCR

The ZCR class computes the zero-crossing rate of a signal. ZCR implements a single static

function called getZCR(). This method returns the rate that the input signal crosses zero, in units of

crossings per sample. This reading can be converted to Hz by multiplying by the signals sample rate. For

example, the signal [1.0, 0.5, -0.5, -1.0] contains 1 zero-crossing at a zero-crossing rate of 1/4

crossings/sample. If this signal was sampled at 100 Hz, this would result in a zero-crossing frequency of

25 Hz.

The method getZCR() accepts a single argument that contains the signal to analyze. The input

signal can be stored in an array of single or double precision floating point numbers, or contained within

64

a WaveFrame object. This method traverses the entire input signal sample-by-sample, and keeps a

count of the number of times the signal value changes sign (resulting in 𝑂(𝑛) computational

complexity). This counter is then divided by the total number of samples in the input signal, and the

result is returned.

The ZCR class is useful for performing a quick estimate of the noisiness of a signal, or checking

the voiced/unvoiced state of a speech signal. A signal with a large amount of high frequency

information, or a signal that has been corrupted with wide-band noise will have a higher zero-crossing

rate than a signal dominated by low frequency content. For example, voiced speech sounds are pitched,

and pitched sounds contain a dominant low frequency component corresponding to the fundamental

frequency, whereas unvoiced speech sounds are unpitched and do not have a dominant frequency.

Therefore, regions of voiced speech will exhibit lower zero-crossing rates than regions of unvoiced

speech. In this way, ZCR can be used to distinguish between voiced and unvoiced speech segments in

real-time.

3.7. Utilities

The dsp subpackage features a subpackage called utilities that contains some useful classes and

supporting data structures for the library. The classes within the utilities subpackage are summarized in

Table 13.

Table 13: Class summary of utilities package

Object Name Responsibility Requires
Instantiation?

Complex Class to represent complex
number objects

Yes

Matrix Class to represent Matrix objects Yes

RootSolver Find the roots of polynomials No

SolverNotConvergedException Custom exception for RootSolver Yes

65

Sort Array sorting and peak finders No

StopWatch Stop watch to time events Yes

Utilities Collection of utility methods No

Complex

The Complex class represents complex numbers of the form 𝑧 = 𝑥 + 𝑦𝑖, where z is the

complex number, 𝑥 is its real part, 𝑦 is its imaginary part, and 𝑖 is √−1. One instance of Complex

represents a single complex number, and is constructed from 2 floating point numbers representing the

real and imaginary components of the complex number. A collection of mathematical operations

supported by the Complex class are summarized in Table 14.

Table 14: Summary of Complex class methods

Method Name Description
isReal() Is this complex number real (𝑦 = 0)?

real() Returns the real part of this complex number (𝑥)

imag() Returns the imaginary part of this complex number (𝑦)

mag() Returns the magnitude of this complex number (𝑥 + 𝑦)

power() Returns the power of this complex number (𝑥 + 𝑦)

arg() Returns the argument of this complex number (𝑡𝑎𝑛(𝑦/𝑥))

conj() Returns the conjugate of this complex number (𝑥 – 𝑦𝑖)

reciprocate() Returns the reciprocal of this complex number (1/𝑧)

exp() returns the complex exponential of this complex number (𝑒)

plus() Add a (complex) number to this complex number and return result

minus() Subtract a (complex) number from this complex number and return result

66

times() Multiply this complex number by another (complex) number and return result

divide() Divide this complex number by another (complex) number and return result

pow() Raise this complex number to a power and return result

Matrix

The Matrix class represents 2-dimensional matrices of floating-point numbers. An 𝑁 × 𝑁

matrix is stored in column major order in a single array of length 𝑁 . For example, the matrix 1 2
3 4

 is

stored as [1, 3, 2, 4]. This is done for both simplicity and performance, as accessing elements from a 1-

dimensinal array is significantly faster than access from a 2-dimensional array.

A collection of mathematical operations are supported by the Matrix class, and are

summarized in Table 15.

Table 15: Summary of Matrix class methods

Method Name Description
identity() Returns an identity matrix

getRows() Returns the number of rows in this matrix

getCols() Returns the number of columns in this matrix

getData() Returns an array containing all the data in this matrix in column major order

get() Returns the value at a specific location in the matrix

set() Sets the value at a specific location in the matrix

add() Adds a number to the value at a specific location in the matrix

transpose() transpose this matrix, overwriting the original

inverse() Returns the inverse of this matrix

67

swap() swap 2 specified rows in this matrix

times() Multiply this matrix by another matrix or vector

solve() Solves the system of linear equations 𝐴 ∗ 𝑥 = 𝐵, where 𝐴 is this matrix, and 𝐵 is
another matrix or vector

RootSolver

The RootSolver class implements a root-finding algorithm to solve for the roots of

polynomials using the Durand-Kerner Method. The Durand-Kerner method works as follows: if the array

[𝑎, 𝑏, 𝑐, 𝑑] represents the polynomial 𝑓(𝑥) = 𝑥 + 𝑎𝑥 + 𝑏𝑥 + 𝑐𝑥 + 𝑑, and the complex numbers

[𝑃, 𝑄, 𝑅, 𝑆] are the roots of this polynomial then it follows that:

𝑓(𝑥) = (𝑥 − 𝑃)(𝑥 − 𝑄)(𝑥 − 𝑅)(𝑥 − 𝑆)

Which can be rearranged as:

𝑃 = 𝑥 −
𝑓(𝑥)

(𝑥 − 𝑄)(𝑥 − 𝑅)(𝑥 − 𝑆)

And because f(P) = 0:

𝑃 = 𝑃 −
𝑓(𝑃)

(𝑃 − 𝑄)(𝑃 − 𝑅)(𝑃 − 𝑆)
= 𝑃 − 0 = 𝑃

Which implies that P is a fixed point of the above equation and can therefore be found using a fixed-

point iterator:

𝑝 = 𝑝 −
𝑓(𝑝)

(𝑝 − 𝑞)(𝑝 − 𝑟)(𝑝 − 𝑠)

The above process is repeated for Q, R, and S to yield:

68

𝑞 = 𝑞 −
𝑓(𝑞)

(𝑞 − 𝑝)(𝑞 − 𝑟)(𝑞 − 𝑠)

𝑟 = 𝑟 −
𝑓(𝑟)

(𝑟 − 𝑝)(𝑟 − 𝑟)(𝑟 − 𝑠)

𝑠 = 𝑠 −
𝑓(𝑠)

(𝑠 − 𝑝)(𝑠 − 𝑞)(𝑠 − 𝑟)

With these 4 equations, the complex roots [𝑃, 𝑄, 𝑅, 𝑆] can now be found by selecting initial

guesses [𝑝 , 𝑞 , 𝑟 , 𝑠], and iterating until the complex values [𝑝, 𝑞, 𝑟, 𝑠] stop changing between

iterations, or if the change between successive iterations is below a specified threshold.

RootSolver provides the method roots() to return the complex roots of a polynomial

represented by a floating-point array of polynomial coefficients. There are two flavors of the roots()

method. The first accepts the array of polynomial coefficients, a stop threshold, and a max iteration

limit. This method will return the roots of the polynomial if the maximum change between successive

iterations drops below the stop threshold or throw a SolverNotConvergedException if the max number

of iterations is reached before the stop threshold is satisfied. The second accepts the same array of

polynomial coefficients, and a single boolean variable that indicates whether the method should

proceed with maximum accuracy. If true, the method will find the roots as accurately as possible, at a

greater computational cost. If false, the method will operate with a balance of accuracy and

performance. This allows the programmer to effortlessly select the proper method for their use, without

having to worry about optimizing the stop threshold and iteration limit.

SolverNotConvergedException

The SolverNotConvergedException class extends Java’s built in Exception class

which is a form of Throwable used to “throw” errors or conditions that an application may want to

“catch” and attempt to correct, rather than immediately crashing.

69

SolverNotConvergedException provides a custom Exception object that RootSolver can

throw if the root solver cannot converge to a solution, rather than getting stuck in an infinite loop

attempting to solve a diverging iteration.

Sort

The Sort class provides a specialized sorting functionality that is highly useful in spectral

analysis applications. Typical sorting methods, like those used by Java’s own Arrays.sort(), take a

list of unsorted numbers and rearrange them into ascending numerical order. The list gets sorted, but

the original ordering of the numbers has been lost. But what if a program needs to sort a list of numbers

while maintaining a link to their original positions? For example, to find the N highest spectral peak in a

signal, its spectrum could be sorted. The sorted spectrum would now contain the amplitudes of the

highest points in the spectrum, but it is impossible to find the corresponding frequency of each

amplitude without knowing its original position in the spectrum. The Sort class addresses this use case

with a customized merge sort algorithm. The method sort() takes an array of integers to be sorted,

and an array of floating point numbers to sort with. The integer array is then sorted using an 𝑂(𝑛 log 𝑛)

merge sort algorithm based on the contents of the floating-point array.

StopWatch

The StopWatch class implements a simple stop watch object for the library. One instantiated,

a StopWatch object can be started and stopped with the methods start() and stop(). At any

point, the stop watch timer can be queried using the getElapsedTime() or

getElapsedTimeSecs() method to get the elapsed time in units of nanoseconds or seconds,

respectively. If either of these methods are called while the stop watch is running, the elapsed time

70

since the last call to start() is returned, otherwise the time between the last calls to start() and

stop() is returned.

This class is used heavily in the testing package to time library methods to verify real-time

operation, or compare the execution speed of different algorithms/implementations. During

development, the latter was performed extensively to ensure every class was designed with optimal

performance on both PC and Android. See the Testing section for more details.

Utilities

The Utilities class is a collection of useful methods that are included with the library, but

do not have a dedicated class. These methods will most likely be refactored into specific classes in the

future. A summary of all methods provided by the Utilities class is shown in Table 16.

Table 16: Summary of Utilities class methods

Method Name Description
ansiBands() Returns center frequencies of ANSI Octave-bands and Fractional-

Octave-Bands [ANSI Spec]
ansiBandLimits() Returns band-limit frequencies of ANSI Octave-bands and Fractional-

Octave-Bands [ANSI Spec]
max() Returns the maximum value in an array

maxLoc() Returns the location of the maximum value in an array

arrayAvg() Returns the average of all the values in an array

findHighestPeaks() Finds the 𝑁 highest peaks in a data series

findLowestPeaks() Finds the 𝑁 lowest peaks in a data series

findOrderedPeaks() Finds the first 𝑁 peaks in a data series, in the order they appear

isAndroid() Returns true if application is running on Android, false otherwise

71

3.8. COM

The com subpackage contains classes for data transmission over Bluetooth. The classes within

the com subpackage are summarized below in Table 17 & 18.

Table 17: Class summary of com package

Object Name Responsibility Requires Instantiation?
Bluetooth Abstract Bluetooth class Abstract

android/BluetoothAndroid Concrete Bluetooth class for Android Yes

BluetoothJava Concrete Bluetooth class for Java Yes

PacketPacker Packs data into any number of bits No

Table 18: Interface summary of com package

Interface Name Description
BluetoothEventListener Defines listener functionality to create objects that listen for

important Bluetooth events

Bluetooth

The abstract Bluetooth class defines the cross-platform functionality required to send data

over a Bluetooth communication socket. The class’s pubic methods are summarized in Table 19.

Table 19: Summary of Bluetooth class methods

Method Name Description
setListener() Attaches a BluetoothEventListener object to this Bluetooth

object
getState() Gets the current state of this Bluetooth object

getPairedDevices() Gets the list of paired devices from the Bluetooth hardware

connect() Connects to a specified paired device

72

send() Sends bytes over Bluetooth to the connected device

terminateConnection() Terminate the connection to the remote device, if connected

 The classes BluetoothAndroid and BluetoothJava extend the abstract Bluetooth class

and implement the required platform specific Bluetooth code for both Android and Java.

BluetoothAndroid uses Android’s own Bluetooth framework from the android.bluetooth package,

while BluetoothJava uses the JSR-82 Java API’s for Bluetooth implementation [26], from the Java

library BlueCove [27]. Because both classes extend Bluetooth, they can be used interchangeably as

Bluetooth objects, without needing to deal with the different platform code. To eliminate UI

blocking, both BluetoothAndroid and BluetoothJava utilize separate threads for connecting

devices and managing successful connections.

 A Bluetooth connection can be made by first calling getPairedDevices() to get a list of

previously paired devices. The index of the device to connect to is then passed to the connect()

method to attempt to initiate a connection to the selected paired device. If a successful connection is

established, the send() method can be used to send data to the remote device until the connection is

terminated with the terminateConnection() method, or the connection is lost. Throughout this

process, important events are communicated through the BluetoothEventListener object

associated with the Bluetooth object.

BluetoothEventListener

The BluetoothEventListener interface is used in tandem with the getState()

method from Bluetooth to allow the application to manage and react to Bluetooth communication

events. The interface defines three methods that listen for important events from a Bluetooth instance.

73

The method bluetoothNotAvailable() is called if Bluetooth could not find any Bluetooth

hardware, of if the hardware is currently unavailable. If Bluetooth is not available, this method will be

called shortly after instantiation of the Bluetooth object. The application can then respond to this

condition and disable any Bluetooth dependent functionally or instruct the user to turn on/allow

Bluetooth on their device. Additionally, this condition causes a state change to either STATE_NONE,

indicating that Bluetooth hardware was not found, or STATE_OK, indicating that Bluetooth hardware

was found, but it is not currently enabled.

The listener method bluetoothStateChanged() is called anytime a Bluetooth object

undergoes a change in state. A list of all possible states is shown in Table 20. If hardware was found and

is enabled/ready to use, the object state will change to STATE_READY indicating that it is ready to

begin connecting to a remote device. When attempting to establish a connection, the object will be in

the state STATE_CONNECTING. Once a successful connection is obtained, the state is changed to

STATE_CONNECTED. Upon disconnection from the remote device, the Bluetooth object will return

to STATE_READY. If the device happens to be in discovery mode (used when pairing to a new device)

the state is changed to STATE_DISCOVERY and the object must wait until the device is taken out of

discovery mode (either by the user or by timeout).

Table 20: State summary of Bluetooth object

State Name Description
STATE_NONE Bluetooth is not available or not supported

STATE_OK Bluetooth is supported, but not ready/available

STATE_READY Bluetooth is available and ready for use

STATE_DISCOVERY Bluetooth is currently in discovery mode

STATE_CONNECTING Bluetooth is currently attempting to connect to a device

74

STATE_CONNECTED Bluetooth is currently connected and ready to send/receive data

Finally, the method bluetoothDataAvailable() is called whenever data is received from

a connected device. The received data (array of bytes) is passed as an argument to this method.

PacketPacker

PacketPacker is a class that packs any amount of data into a specified number of bits. It is

intended to be used with Bluetooth to compress large data packets for wireless transmission. The

static method pack() takes an array of normalized floating-point numbers to pack (the data packet),

and an integer specifying the bit depth to use. Each normalized datum is converted to the specified

number of bits using the following equation:

𝑝𝑎𝑐𝑘𝑒𝑑 = 𝑣𝑎𝑙𝑢𝑒 ∗ (2 − 1)

The packed bits are then strung together to form an array of bytes. If the case of bit depths greater than

8, the bits are placed in little-endian order in the array. The returned byte array will have a length of:

𝑐𝑒𝑖𝑙𝑖𝑛𝑔
𝑜𝑓 𝑑𝑎𝑡𝑎 𝑝𝑜𝑖𝑛𝑡𝑠 ∗ 𝑏𝑖𝑡 𝑑𝑒𝑝𝑡ℎ

8

This byte array can then be sent over Bluetooth and the receiving device can perform the reverse of

these operations to obtain the original data, with some quantization error from the bit reduction.

 To pack unnormalized data, PacketPacker must be instantiated. It is initialized with the bit

depth, and a minimum and maximum value for the incoming data. Data packets can then be passed to

the non-static version of pack(), and each point is normalized with the following equation:

𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 =
𝑣𝑎𝑙𝑢𝑒 − 𝑚𝑖𝑛𝑖𝑚𝑢𝑚

𝑚𝑎𝑥𝑖𝑚𝑢𝑚 − 𝑚𝑖𝑛𝑖𝑚𝑢𝑚

75

After normalization, each value is packed into a byte array exactly as described above.

76

4. Testing & Validation

Tactile Waves was built using a Test-Driven Development (TTD) methodology. In this approach,

specific test cases are generated for each required feature or function, and then tested to ensure they

function and fail as expected. The actual implementation is then written to pass these specific tests after

the tests have been defined. The tests are run against this new code to verify its correctness, and the

process is repeated, expanding or adding new functionality. The main idea behind this process is that it

forces the programmer to focus on interaction rather than implementation. That is, the programmer

must first define how the code will be used, rather than how it will be written. This is a favored

development strategy as it focuses on only what is needed to produce the required functionality.

4.1. Unit Testing

Unit testing is the process of testing a single unit of code (referred to as the Unit-Under-Test or

UUT) in a self-contained and isolated scope. In OOP, a unit is a single class or method whose behavior is

being examined. The purpose of unit testing is to ensure that each unit performs exactly as it should,

assuming that everything else in the system is working properly. To make this assumption valid, a unit

test must have no dependence on external objects or state. If a unit requires data or state from another

object or external source (such as a microphone) for proper execution, those data should be mocked

within the testing scope. The steps of a unit test are as follows:

1. Setup the UUT and any mocked data/dependencies

2. Execute the test by passing the mock data and triggering the target behavior

3. Collect all output from the UUT and compare it to the correct output defined by the

test

77

4. Cleanup the testing environment for the next test by freeing memory, resetting

objects/data, etc.

In TDD, every object should have a set of unit tests before the actual object is implemented.

Additional unit tests may be added during development, but the core functionality should be pre-

defined by unit tests. Additionally, all unit tests should be executed whenever the code is changed to

ensure the new changes do not break the defined functionality.

Before Tactile Waves was even conceived, research was performed using MatLab to investigate

various speech processing techniques and obtain a better understanding of audio processing as a whole.

Nearly every analysis procedure available in Tactile Waves was first prototyped in MatLab to flesh out

the required steps, and gain insight into how these processes work. The development of Tactile Waves

then became a process of redesigning these MatLab experiments for real-time usage and object-

oriented design. As a result, much of the toolbox package was made to mimic certain Matlab

functions. For example, the static filter() method from the Filter class was designed to mimic

MatLab’s own filter() function [28]. First, several MatLab scripts were created that (1) perform

some useful filtering on a generated data set, and (2) output the filtered result. These generated data

sets became the mocked data in step 1 of filter()’s unit test, and the output from the MatLab

scripts was used as the correct output in step 3. This process was repeated until every requirement

defined by the MatLab experiments had a corresponding unit test in Java. The library was then designed

to satisfy these tests.

Unit testing in Tactile Waves was structed as follows. For each class in the library, a

corresponding unit testing class was created. For example, the FFT class is tested by the

FFTUnitTest class, LPC by LPCUnitTest, etc. Within each testing class, there is a unit test for

each method in the class being tested.

78

FFT

The FFT class is tested using various methods to ensure that proper discrete Fourier

transformation is performed. The first group of unit tests uses the test output from the FFT.java code

provided in the textbook Algorithms, 4th Edition by Robert Sedgewick and Kevin Wayne [29]. Fourier

transformation, inverse Fourier transformation, and convolution are all tested for correct output when

given a 4-sample input signal. All supported data types are tested (float, double, and Complex).

The next group of tests were written to verify known properties of the DFT. A unity amplitude signal is a

signal in which every sample is equal to positive one. By definition, this signal has no frequency

components and its spectrum should therefore contain all of the signals energy in the first bin (zero

frequency, or DC) with all other frequency bins equal to zero. Additionally, the inverse DFT should revert

a complex spectrum back to the original signal from which it was generated. Therefore, the inverse FFT

of the FFT of a signal should result in the original signal (plus some numerical noise). Finally, a known

property of the complex DFT is its left/right symmetry, so the complex FFT of any signal should always

be symmetric about the middle of the spectrum. Each FFT subroutine in the class is tested to meet these

conditions.

Window

The Window class is tested to ensure that each window function produced exactly the same

output as MatLab’s window functions. In MatLab, a 100-point window of each type was generated and

output to the console. These outputs were written into the WindowUnitTest class and used to check

the correctness of each window function in the library.

79

DCT

The Type-I and Type-II DCT algorithms implemented in the DCT class are tested against MatLab’s

dct() function. Each DCT is tested with both 8-point and 9-point input signals (to test both even and odd

length), and the 9-point input is tested with and without orthogonal normalization for a total of 6

distinct unit tests.

Filter

The filter() method from the Filter class is tested against MatLab’s filter() function using

a 64-point impulse signal for various filter coefficients. Additionally, the coefficients of the 2-pole

Butterworth filter generated with the allPole() filter design method are checked against the coefficients

output by MatLab’s butter() function, which designs a digital Butterworth filter. Because a Chebyshev

filter with 0% passband ripple is a Butterworth filter, chebyshev() was also compared against these

coefficients for 2-poles and 0% ripple. Unfortunately, MatLab does not have functions for creating

Bessel or Critically Damped digital filters, and its cheby() function is incapable of designing a filter with

no passband ripple. Therefore, these filters could not be directly tested against MatLab. Instead, the

filter frequency responses were generated in MatLab and compared against known responses for each

filter type. Once the frequency responses were verified, the coefficients were saved into the

FilterUnitTest class and are used for testing the Bessel, Critically Damped, and Chebyshev filters. A

similar procedure was used to check the coefficients of the biquad filters, except Ableton Live was used

to verify the responses. A .wav file was created containing an impulse signal, and this file was imported

into a new Live set. Live’s native EQ Eight and Auto Filter devices were used to filter the impulse signal

with various bi-quadratic filters, and the filtered audio from each filter was recorded into a blank audio

track. These recorded impulse responses are included in the testing class for testing the biquad()

method.

80

Cepstrum

The various cepstral transforms implemented in the Cepstrum class are tested against

corresponding functions in MatLab. The output of the real cepstrum is compared against the MatLab

function rceps(), while the complex cepstrum and inverse complex cepstrum are compared against the

MatLab functions cceps() and iceps(), respectively. Each is tested with a 128-sample input signal

containing a 45 Hz sine wave with an echo, sampled at 100 Hz. MatLab does not have a function for

computing the power cepstrum, so the real cepstrum is used to verify the power cepstrum. The power

cepstrum is equal to the square of two times the real cepstrum. This definition is used to compute the

power cepstrum from the real cepstrum, the result of which is compared against the output of the

power cepstrum.

MFCC

MatLab does not provide any functions for directly computing the MFCC’s of an audio signal.

There are a variety of MFCC subroutines available online for various programming environments, but

each seems to use its own variant of the algorithm. For example, the Hidden Markov Model Toolkit

(HTK) uses a slightly different Mel scale, and a Type-III DCT instead of a Type-II, while the CMU Sphinx

package uses the standard Mel scale with a Type-II DCT, but normalizes the output by its length. This

makes it difficult to develop an effective unit test for the MFCC class, as the output cannot be directly

compared to a known correct output. Instead, certain numerical properties defined by the MFCC are

tested. Because the Mel filter banks are designed to be constant energy, a signal with a flat spectrum

should produce a flat MFC. An impulse signal is used as the test input as it contains all frequencies and

therefore has a flat spectrum. The output is then compared to the output of the DCT of a flat spectrum

normalized to the same total energy as the impulse. This test is repeated for both a low and high energy

81

impulse. Additionally, the filter bank frequencies are tested separately to ensure the correct Mel-scaled

filter frequencies are used by the algorithm.

LPC

The LPC class is compared directly to MatLab’s own lpc() function, as it was designed to

emulate this implementation exactly. A 4-sample input signal is used (the same signal used in

FFTUnitTest), and the output of a 4th order predictor from lpc() is compared to the output

produced by MatLab’s lpc(). The formant/bandwidth pairs produced by the estimateFormants()

method are also compared to those produced by MatLab, using the procedure outlined in [].

YIN

The sole responsibility of the YIN class is to report the pitch of an audio signal, or -1 if no pitch

exists. This functionality is tested with various signals and sample rates to ensure reliable operation over

a wide range of input signals. For all tests, both estimatePitch() and estimatePitchFast()

are tested in the same way. The first unit test in the YINUnitTest class uses a simple sine wave as

input. The methods are tested with both a 0.0 dBFS 120 Hz sine wave sampled at 16000 Hz and a 0.0

dBFS 1000 Hz sine wave sampled at 44100 Hz. The output of each method should be equal to the

frequency of the input sine wave. This test is repeated with the same sine waves, except the first and

second harmonics are added to each with 60% and 40% of the fundamental’s amplitude, respectively.

This test is repeated, but random noise is added instead of the additional harmonics. The same 120 and

1000 Hz sine waves are generated, and then mixed with randomly generated noise at a ratio of 5:1

signal to noise. In all cases, the methods should report the fundamental frequency of either 120 or 1000

+/- 0.1 Hz.

82

ZCR

The ZCR class is tested by ensuring that it reports the correct number of zero crossings for a

known signal. The correct number of zero crossings can be calculated for a pure sine wave by

multiplying the frequency of the wave by two and dividing by the sampling rate. Using this relation, the

output of the getZCR() method is checked using the same 120 and 1000 Hz clean sine waves from the

YinUnitTest class.

4.2. Performance Testing

At the time of this writing, Tactile Waves is the only published software library for real-time

sensory substitution. Each algorithm and subroutine in the library must be tested to ensure it can be

used in real-time on both personal computers and Android phones. As discussed in Chapter 2, a

continuous audio signal must be sampled at discrete points in time for digital representation. These

samples are then processed in groups called frames, or buffers of audio. Much like how a video rapidly

displays single stationary images to create the illusion of continuous motion, audio can be generated by

rapidly processing frames of audio samples. Processed samples are sent to a digital-to-analog converter

(DAC) which converts the discrete samples to a pressure wave. If a new audio frame is not sent to the

DAC by the time it finishes playing the last, there will be a dropout in the audio stream. In the case of

sensory substitution, the audio may not actually be played aloud, but the principal remains. New audio

data must be available to be sent to the sensory interface at a rate equal to or faster than it takes to

represent that audio in the time domain, or there will be data loss. Based on this criterion, “real-time

operation/processing” is defined in this thesis as the ability to process an audio task/analysis/effect on a

frame in less than the time it takes to play that frame as actual audio.

As stated in Chapter 2, the length in seconds of each of an audio frame, 𝑡, can be calculated with

the following equation:

83

𝑡 =
𝑁

𝑓

Where 𝑁 is the number of samples in the frame, and 𝑓 is the sampling rate. This relation was used to

develop the scoring system used herein. Scoring is based on a ratio of computation time and audio

frame length, defined by the following equation:

𝑆𝑐𝑜𝑟𝑒 =
𝑁 𝑓⁄

𝑡𝑖𝑚𝑒 𝑡𝑜 𝑐𝑜𝑚𝑝𝑢𝑡𝑒

Which states that the score is equal to the number of times an operation can be performed on one

audio frame without exceeding the playback latency of that frame. For example, if a processing

operation takes 20 ms to compute for a 20 ms frame of audio, it would receive score of 1. Similarly,

another operation that takes 10 ms to compute 20 ms of audio would receive a score of 2. A score less

than 1 would indicate that the processing requires more time than there is audio, indicating a failure to

satisfy real-time operation. A score of 1 may not be suitable for real-time operation, because of

additional processing overhead needed to prepare a frame of audio, and convert it back to an analog

signal after processing. Additionally, it is rarely useful to perform only one processing operation on a

frame of audio. A real-world application will require a sequence of audio processing steps to achieve its

goal. For example, a sensory substitution software may need to window and filter a frame with Window

and Filter before estimating its pitch using YIN, and then finally extracting its formant frequencies

with the LPC class. For these reasons, a score of 1 for a single computational process is not satisfactory.

A conservative lower limit of 4 was chosen for real-time validation testing of Tactile Waves, with 10 or

above being an ideal score. That is to say, real-time operation is validated if the processing can be

completed in less than or equal to one quarter of the frame time, with one tenth (or less) of the frame

time being ideal, which would allow 4-10 processes to be performed without imparting dropouts or

artifacts due to buffer underruns.

84

 As discussed in Chapter 3, computational requirements change based on the length of an audio

frame. Each test is performed on 4 different audio frame lengths, to ensure real-time validation over a

range of commonly used buffer sizes. The sizes used for each test are 1024, 2048, 4096, and 8192.

Because Tactile Waves is intended for use on both mobile phones and desktop/laptop computers, all

performance testing has been performed on a Windows laptop, and an Android smartphone.

The Android smartphone used was a Samsung Galaxy S8. An Android application called CPU-Z

was used to view the properties of the phones SOC. The Samsung uses a Qualcomm Snapdragon 835

CPU which features eight cores in a big.LITTLE configuration. This means that the chip is setup with two

sets of four cores with one set being comprised of low-power cores with a maximum speed of 1.8 GHz,

and the other of high-performance cores with a higher maximum clock of 2.36 GHz. The system can

rapidly switch between each set depending on the workload to provide a balance between performance

and battery life. Each test was ran independently while hooked up to a Windows laptop via the Android

Debug Bridge (ADB) to view testing results.

The Windows machine used was an ASUS UX430UNR equipped with an Intel Core i7-8550U CPU

and 16 GB of 2133 MHz DDR3L RAM. The 8550U is a quad-core, eight-thread, ultra-low voltage (ULV)

CPU with a base clock of 1.8 GHz and a maximum boost clock of 4 GHz. ULV processors are designed

specifically for small, thin and lite devices such as ultrabooks, tablets, and 2-in-1’s. As a result, the

performance of these types of processors is nearly completely dependent on the available power and

thermal headroom, and they are optimized for short bursts of power for everyday productivity tasks

rather than long sustained workloads. The performance of these chips will therefore degrade as the

temperature of the die increases. When the CPU is cold, it will easily run all four of its cores at its

maximum rated speed. As a sustained load continues, the power draw and temperature of the CPU

package will increase. To prevent the CPU from overheating or drawing too much current, the maximum

85

speed of each core is reduced. This is highly detrimental for performance testing, as the maximum

processor speed might be reduced the longer a test is run, skewing the results.

To mitigate these issues, a standard test configuration was created and used for all Windows

testing. ThrottleStop 850 was used to reduce the maximum processor speed to 3.6 GHz (two cores max)

and 3.2 GHz (all four cores), as well as disable core-parking. Limiting the maximum processor speed

ensures that the processors thermal limit is never reached, eliminating thermal throttling. Disabling core

parking ensures that Window’s will not shut down cores, which can regularly cause massive and sudden

drops in performance during a varying workload. Intel’s Extreme Tuning Utility (XTU) was used to

increase the maximum boost power to 36 watts to prevent power limit throttling. XTU was also used to

undervolt the CPU by -85 mV to decrease the operating temperature, thereby increasing the available

thermal headroom. These settings were found after several weeks of testing to provide optimal and

consistent performance in various sustained workloads such as audio/video processing and synthesis.

A standard benchmarking routine was developed to provide consistent and accurate micro-

benchmarking, which is the process of estimating the real-world execution time of a piece of code.

Micro-benchmarking in a compiled language such as C++ is more straightforward and reliable than in

Java because a statically compiled language cannot be changed or modified during runtime. Java is not

a statically compiled language, and the run-time compilation effects must be considered for accurate

benchmarking. The first time a code path is executed by the JVM, it is executed in “interpreted mode”,

which allows the Java code to be executed directly without compilation, greatly improving the startup

time of applications. Only after a certain amount of execution will the JVM obtain enough profiling data

to compile the code. This can severely skew the results of a microbenchmark that includes these

operations while timing execution as the test will measure the execution of both the optimized machine

code and interpreted byte code, as well as the time the compiler spent analyzing and compiling the code

path. To eliminate this effect on the timing phase, a so called “warm-up” phase must be performed

86

before any code is timed. The warm-up phase executes the test code a certain number of times to allow

the JVM to compile and replace the interpreted code. With modern VM’s, it is difficult to determine how

much execution is needed for proper warm up. All benchmark tests were ran with the -

XX:+PrintCompilation option, which tells the compiler to print a message every time it runs. The

test will print messages before and after each warming and timing phase. If the compiler is run during

any stage, it will print a message between these statements. The tests were run several times, and if any

compilation occurred during a timing phase, the benchmark was modified to attempt to move this

compilation to the warming phase. It was found that the best way to warm-up the VM for benchmarking

was to run the entire benchmark, including timing phases, multiple times. By the second pass through

the benchmark, only compiled code is being used (verified by the fact that the compiler does not print

any messages during timing phases of the second pass).

 Modern compilers are adept at making optimization decisions to improve performance based

on assumptions and observation made about the code being compiled. One of the most common

optimizations is code elimination. If a section of code does nothing to alter the program’s correctness, a

compiler can detect that without this code, the program will still function properly. This code is flagged

as “dead code” and removed (or replaced) by the compiler. This is quite useful for deployed code, but

presents a problem for benchmarking. Benchmarking code often is dead code. That is, a benchmark will

run some code while timing executing, then simply throw away the result of the code being timed, as

only the timing results are needed. A compiler may spot this condition, and declare the code being

tested as dead because the result is never used, resulting in an empty benchmark. To trick the compiler,

dummy methods are used. After a benchmark is completed, the testing data is passed to a dummy

method that performs some calculations with the data, and stores it. This prevents the compiler from

removing the code being tested from the benchmark.

87

To eliminate noise in timing measurements, all applications on the testing device were closed.

Additionally, “Airplane Mode” was used during all testing to prevent the operating system or any

application/service from doing any background work such as downloading updates. For each test, the

timing phase is repeated 10 times, and the best results taken. Each test was repeated 3 times to ensure

consistent results were obtained. Greatly varying results between testing iterations would indicate some

kind of error or unexpected behavior, so the results of each timing phase were inspected. Testing results

from the Windows laptop are shown in Table 21, and results from the Android device is shown in Table

22.

Table 21: Real-time validation benchmark results - Windows PC

FFT

Method Data Type 1024 2048 4096 8192

fft() float 2161.041 2067.158 1977.769 1834.573
double 2048.158 1990.327 1877.253 1519.227

complexFFT()

float 1519.384 1440.501 1307.739 1098.522
double 1534.664 1411.419 1141.985 673.675

Complex 275.0202 243.2565 209.3636 170.8312
DCT

Method Data Type 1024 2048 4096 8192
dct() double 219.2690 218.6997 216.9899 193.4675
idct() double 253.0035 249.4492 233.7784 201.4546

Cepstrum

Method Data Type 1024 2048 4096 8192
rCepstrum() float 158.4087 157.4957 156.8208 154.2499
pCepstrum() float 162.6465 161.2002 160.5518 157.7844
cCepstrum() float 139.3341 138.3441 137.6939 135.9715

MFCC

Method Data Type 1024 2048 4096 8192
getMFCCs() float 760.8566 760.8567 1035.832 718.8310

YIN

Method Data Type 1024 2048 4096 8192
estimatePitch() float 77.89865 38.58343 19.17504 9.56549

estimatePitchFast() float 375.7629 351.7741 215.9140 156.7994
LPC

Method Data Type 1024 2048 4096 8192
estimateFormants() float 300.4420 191.7079 146.1327 124.6823

88

Table 22: Real-time validation benchmark results - Samsung Galaxy S8

FFT

Method Data Type 1024 2048 4096 8192

fft() float 460.7644 477.8499 441.9865 453.1677
double 446.4366 353.7387 367.7968 373.2101

complexFFT()

float 402.2071 378.2906 353.5991 330.1951
double 413.3348 392.4741 365.8644 257.6025

Complex 18.24707 16.84501 14.49016 12.16456
DCT

Method Data Type 1024 2048 4096 8192
dct() double 223.4289 184.6639 200.8741 174.1264
idct() double 207.6733 198.1290 182.7861 145.1691

Cepstrum

Method Data Type 1024 2048 4096 8192
rCepstrum() float 210.2004 205.7225 196.4484 184.0477
pCepstrum() float 188.9545 201.2172 192.9628 182.8314
cCepstrum() float 196.8173 190.2010 169.6471 172.4575

MFCC

Method Data Type 1024 2048 4096 8192
getMFCCs() float 171.9872 186.2942 188.8579 202.4266

YIN

Method Data Type 1024 2048 4096 8192
estimatePitch() float 15.92646 7.981991 3.994365 1.997635

estimatePitchFast() float 82.31873 81.91017 77.58937 65.88227
LPC

Method Data Type 1024 2048 4096 8192
estimateFormants() float 63.88614 71.63753 57.87448 53.78447

 These results show that all but one of the audio analysis and processing methods included in the

library can be used in real-time on modern mobile hardware. One method, the 𝑂(𝑛) Yin pitch

estimator, was not able to satisfy the real-time criteria at higher buffer sizes. A faster version was

developed using the FFT to reduce its complexity to 𝑂(𝑛 log 𝑛), and both methods are available for use

in the library. Additionally, many of the methods achieved scores that greatly exceeded the ideal score

of 10. This indicated that the library should still function in real-time when used in an environment

89

where less processing power is available, such as an older smartphone or laptop or wearable device.

However, is it impossible to estimate the minimum amount of processing power required without

performing additional performance testing on a wider range of mobile devices.

90

5. Conclusion

The goal of this thesis was to design and develop a speech analysis library and audio processing

framework for a sound-to-touch sensory substitution API. A toolbox of static methods was created to

mimic a subset of common speech processing functions available in scientific computing environments

such as MATLAB. A flexible, portable audio engine was then designed to allow users of the API to

manage an audio stream from source to sensory hardware. The engine is highly extensible, allowing

users to build custom objects that can be freely inserted into an audio processing chain.

Because any sensory substitution or augmentation device requires real-time operation, the core

toolbox methods were micro benchmarked to ensure the required computation can be completed in

real-time. One method, the 𝑂(𝑛) Yin pitch estimator, was not able to satisfy the real-time criteria at

higher buffer sizes. A faster version was developed using the FFT to reduce its complexity to 𝑂(𝑛 log 𝑛),

and both methods are available for use in the library.

The toolbox and audio engine were packaged into an Android Java Library called Tactile Waves.

The library is licensed under the GNU General Public License Version 3.0, and its source code is available

on GitHub [22]. Downloads are available through a public repository on jFrog Bintray [30], and remote

linking for build dependencies is available through jCenter. Finally, a website was created with an

installation and setup/usage guide, as well as links to GitHub, Bintray, and the API documentation. It is

available here: https://funkatronics.github.io/TactileWaves/.

A demonstrative Android application has been created that shows how Tactile Waves can be

used to build sensory substitution systems. The application sets up an instance of the audio processing

engine with the phones microphone used as an input stream. Two processor objects are used in the

processing chain: a pitch detector (YIN) and formant estimator (LPC). These extracted features are then

91

used to update a graph on the device screen and are sent over Bluetooth. Code for a receiving hardware

is not included. This application is meant to provide a demonstration on the usage of Tactile Waves

audio engine, processing toolbox, and Bluetooth functionalities. The code for this app is included with

the main source code on GitHub [22].

5.1. Future Work

Tactile Waves was developed alongside an ongoing research project aimed at developing a

sound-to-touch hearing aid/augmentation system that uses the surface of the tongue as a sensory input

[31]. Currently, a primary goal of this research is to determine how to optimally encode speech signals

for tactile representation on the tongue. Preliminary human testing has been performed to investigate

and compare several encoding methods proposed by JJ Moritz in his thesis [32]. Previously, there was

no software capable of extracting the necessary data from speech signals in real-time. As a result, these

tests have used a small set of prerecorded audio files from one speaker so that audio features could be

extracted and transcribed manually with the help of the popular speech analysis software, Praat [33].

With the completion of Tactile Waves, these experiments can be expanded to use real-time audio

processing. This will allow the research team to continue human studies with a broader vocabulary and

more diverse range of speakers. The use of smartphones will reduce the size and cost of the necessary

hardware, allowing for more subjects to be included. Additionally, the portability of these devices could

allow this research to expand into larger scale studies that include real-world listening environments.

The development of the library will certainly not end with the completion of this thesis, and it is

expected that the aforementioned research will motivate changes and additions to Tactile Waves.

Existing features may be modified or expanded, and new functionality could be added to meet the

evolving needs of this research. The current version (Version 1.0.1) of the library will continue to be

92

updated and improved while still conforming to its primary goal of providing an open sourced, and

openly available sound-to-touch sensory substitution API.

Version 1 of Tactile Waves has been designed specifically for speech processing and is therefore

not equipped for music applications. There is a rapidly growing market for touch based audio monitoring

and feedback devices for audio consumption and creation. Devices like the Woojer [34] provide

vibrotactile feedback to video gamers, movie watchers, and audiophiles to enhance perception and

immersion of low frequency content such as explosions. These devices aim to provide an “IMAX

experience at home”, without the need for large speaker systems, and are typically referred to as bass

augmentation devices. Using this principal, devices like the SUBPAC and Basslet allow music producers

and live performers to monitor the low frequency content of their mixes without the expense and

hearing damage associated with typical low-frequency acoustic monitoring systems such as floor

wedges. The SUBPAC is also is favored by deaf musicians and concert goers as they are no longer left out

of these activities due to their hearing impairment. These users never want to feel as though they are

deaf persons who like music, but as music lovers who also happen to be deaf. SUBPAC’s close

interaction with the deaf community and countless success stories with deaf musicians and music lovers

shows how effectively music can be experienced through vibrotactile devices [35]. In the realm of music,

video games, and movies, bass augmentation devices have exploded in popularity. Both music

production and deaf communities are highly accustomed to DIY, ad-hoc approaches to create new tools

to achieve desired functionality. As a result, these circles could benefit greatly from a music-to-touch

software API.

Version 2 of the library will feature an overhauled design to give creative entrepreneurs a

flexible framework to design touch based audio monitoring devices for live performers, producers, and

deaf musicians and listeners. The toolbox package will be expanded to include a real-time beat

detection engine. Max externals will be created for every object in the library, allowing Tactile Waves to

93

be used in the Max/MSP visual programming environment. Finally, a real-time audio warping engine will

be developed. With these tools, Tactile Waves could be used to build custom bass augmentation

devices, tactile hearing aids, and even real-time visual generation programs for musical performances.

5.2. Final Thoughts

It is my intention to continue developing and supporting both versions of the library indefinitely.

Being released under an open source license, the library is open for contribution. Any contributions that

are be made to the library must first be checked and approved by myself, or any other individuals that I

decide to entrust with this responsibility. I both hope and intend for Tactile Waves to motivate and

enable further research in the fields of sensory substitution and haptic feedback.

94

References

[1] World Wide Hearing. (2017). World Wide Hearing. [online] Available at: http://www.wwhearing.org/

[Accessed 19 Dec. 2017].

[2] A. McCormack and H. Fortnum, “Why do people fitted with hearing aids not wear them?,”

International Journal of Audiology, vol. 52, no. 5, pp. 360–368, May 2013.

[3] S. W. Teoh, D. B. Pisoni, and R. T. Miyamoto, “Cochlear implantation in adults with prelingual

deafness. Part I. Clinical results.,” The Laryngoscope, vol. 114, pp. 1536–40, Sept. 2004.

[4] H. Fryauf-Bertschy, R. S. Tyler, D. M. R. Kelsay, B. J. Gantz, and G. G. Woodworth, “Cochlear implant

use by prelingually deafened children: the influences of age at implant and length of device

use,” Journal of Speech, Language, and Hearing Research, vol. 40, pp. 183–199, Feb. 1997.

[5] B. W. White, F. a. Saunders, L. Scadden, P. Bach-y-Rita, and C. C. Collins, “Seeing with the skin,”

Percept. Psychophys., vol. 7, no. 1, pp. 23–27, 1970.

[6] D. W. Sparks, P. K. Kuhl, A. E. Edmonds, and G. P. Gray, “Investigating the MESA (Multipoint

Electrotactile Speech Aid): The transmission of segmental features of speech,” The Journal of

the Acoustical Society of America, vol. 63, no. 1, pp. 246–257, Jan. 1978.

[7] P. L. Brooks and B. J. Frost, “Evaluation of a tactile vocoder for word recognition,” The Journal of the

Acoustical Society of America, vol. 74, no. 1, pp. 34–39, Jul. 1983.

[8] P. L. Brooks, B. J. Frost, J. L. Mason, and D. M. Gibson, “Continuing evaluation of the Queen’s

University tactile vocoder. I: Identification of open set words.” J Rehabil Res Dev, vol. 23, no. 1,

pp. 119–128, Jan. 1986.

95

[9] P. L. Brooks, B. J. Frost, J. L. Mason, and D. M. Gibson, “Continuing evaluation of the Queen’s

University tactile vocoder II: Identification of open set sentences and tracking narrative.” J

Rehabil Res Dev, vol. 23, no. 1, pp. 129–138, Jan. 1986.

[10] P. L. Brooks, B. J. Frost, J. L. Mason, and D. M. Gibson, “Word and Feature Identification by

Profoundly Deaf Teenagers Using the Queen’s University Tactile Vocoder,” Journal of Speech

Language and Hearing Research, vol. 30, no. 1, p. 137, Mar. 1987.

[11] K. A. Kaczmarek, J. G. Webster, P. Bach-y-Rita, and W. J. Tompkins, “Electrotactile and vibrotactile

displays for sensory substitution systems,” IEEE Transactions on Biomedical Engineering, vol. 38,

no. 1, pp. 1–16, Jan. 1991.

[12] T. Ifukube, C. Wada, T. Izumi, and M. Takahashi, “A new display method of vibratory patterns for a

fingertip tactile vocoder,” in 1992 14th Annual International Conference of the IEEE Engineering

in Medicine and Biology Society, 1992, vol. 4, pp. 1318–1319.

[13] K. A. Kaczmarek, M. E. Tyler, and P. Bach-y-Rita, “Electrotactile haptic display on the fingertips:

Preliminary results,” in Engineering in Medicine and Biology Society, 1994. Engineering

Advances: New Opportunities for Biomedical Engineers. Proceedings of the 16th Annual

International Conference of the IEEE, 1994, vol. 2, pp. 940–941.

[14] I. R. Summers and D. A. Gratton, “Choice of speech features for tactile presentation to the

profoundly deaf,” IEEE Transactions on Rehabilitation Engineering, vol. 3, no. 1, 1995.

[15] P. Bach-y-Rita, et al. “Form perception with a 49-point electrotactile stimulus array on the tongue: a

technical note,” J. Rehabilitation Research and Develop., vol. 35, pp. 427-430, Oct. 1998.

[16] P. Bach-y-Rita and S. W. Kercel, “Sensory substitution and the human–machine interface,” Trends in

Cognitive Sciences, vol. 7, no. 12, pp. 541–546, Dec. 2003.

96

[17] M. Auvray, S. Hanneton, and J. K. O’Regan, “Learning to Perceive with a Visuo — Auditory

Substitution System: Localisation and Object Recognition with ‘The Voice,’” Perception, vol. 36,

no. 3, pp. 416–430, Mar. 2007.

[18] K. A. Kaczmarek, “The tongue display unit (TDU) for electrotactile spatiotemporal pattern

presentation,” Scientia Iranica, vol. 18, no. 6, pp. 1476–1485, Dec. 2011.

[19] N. Lago and F. Kon, “The Quest for Low Latency,” in ICMC, 2004.

[20] R. Steinmetz, "Human Perception of Audio-Visual Skew," Architecture and Protocols for High-Speed

Networks. Springer, Boston, MA, 1994, pp. 235-252

[21] A. de Cheveigné and H. Kawahara, “YIN, a fundamental frequency estimator for speech and music,”

The Journal of the Acoustical Society of America, vol. 111, no. 4, pp. 1917–1930, Apr. 2002.

[22] Funkatronics, “Funkatronics/TactileWaves,” GitHub. [Online]. Available:

https://github.com/Funkatronics/TactileWaves. [Accessed: 15-May-2018].

[23] J.W. Cooley, J.W. Tukey, "An algorithm for the machine calculation of complex Fourier Series,"

Mathematics Computation, Vol. 19, 1965, pp 297-301.

[24] L. Bluestein, "A linear filtering approach to the computation of discrete Fourier transform", IEEE

Transactions on Audio and Electroacoustics, vol. 18, no. 4, pp. 451-455, 1970.

[25] G. Heinzel, A. Rudiger, and R. Schilling, “Spectrum and spectral density estimation by the Discrete

Fourier transform (DFT), including a comprehensive list of window functions and some new flat-

top windows.,” p. 84.

97

[26] C. Ortiz, "Using the Java APIs for Bluetooth Wireless Technology", Oracle.com, 2018. [Online].

Available: http://www.oracle.com/technetwork/articles/javame/index-156193.html. [Accessed:

17- May- 2018].

[27] V. Skarzhevskyy, "BlueCove - BlueCove JSR-82 project", Bluecove.org, 2018. [Online]. Available:

http://bluecove.org/. [Accessed: 17- May- 2018].

[28] "1-D digital filter - MATLAB filter", Mathworks.com, 2018. [Online]. Available:

https://www.mathworks.com/help/matlab/ref/filter.html. [Accessed: 07- Mar- 2018].

[29] R. Sedgewick, Algorithms in Java. Boston: Addison-Wesley, 2010.

[30] Tactile Waves, Bintray.com, 2018. [Online]. Available:

https://bintray.com/funkatronics/tactilewaves/tactilewaves. [Accessed: 25- Apr- 2018].

[31] J. Moritz Jr., P. Turk, J. Williams and L. Stone-Roy, "Perceived Intensity and Discrimination Ability for

Lingual Electrotactile Stimulation Depends on Location and Orientation of Electrodes", Frontiers

in Human Neuroscience, vol. 11, 2017.

[32] J. A. Moritz Jr, “Evaluation of electrical tongue stimulation for communication of audio information

to the brain,” Colorado State University, 2016.

[33] “Praat: doing Phonetics by Computer.” [Online]. Available: http://www.fon.hum.uva.nl/praat/.

[Accessed: 19-Nov-2015].

[34] Woojer, 2016. [Online]. Available: https://www.woojer.com/. [Accessed: 12- Mar- 2018].

[35] "Deaf Community Archives - FEEL SUBPAC", FEEL SUBPAC, 2018. [Online]. Available:

http://feel.subpac.com/category/deaf-community/. [Accessed: 10- May- 2018].

