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ABSTRACT 
 
 
 

DEVELOPMENT OF A SENSORY SUBSTITUTION API 
 
 
 

Sensory substitution – or the practice of mapping information from one sensory modality to 

another – has been shown to be a viable technique for non-invasive sensory replacement and 

augmentation. With the rise in popularity, ubiquity, and capability of mobile devices and wearable 

electronics, sensory substitution research has seen a resurgence in recent years. Due to the standard 

features of mobile/wearable electronics such as Bluetooth, multicore processing, and audio recording, 

these devices can be used to drive sensory substitution systems. Therefore, there exists a need for a 

flexible, extensible software package capable of performing the required real-time data processing for 

sensory substitution, on modern mobile devices. The primary contribution of this thesis is the 

development and release of an Open Source Application Programming Interface (API) capable of 

managing an audio stream from the source of sound to a sensory stimulus interface on the body. The 

API (named Tactile Waves) is written in the Java programming language and packaged as both a Java 

library (JAR) and Android library (AAR). The development and design of the library is presented, and its 

primary functions are explained. Implementation details for each primary function are discussed. 

Performance evaluation of all processing routines is performed to ensure real-time capability, and the 

results are summarized. Finally, future improvements to the library and additional applications of 

sensory substitution are proposed. 
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1. Introduction  
 
 
 

Worldwide, around 1.3 billion people suffer from hearing impairment, with an estimated 360 

million of those afflictions severe enough to be considered disabling [1]. Although a variety of 

treatments exist, such as amplification devices, implants, and speech therapy, many individuals remain 

untreated due to severe damage of the auditory pathway, medical risk factors, and/or monetary 

limitations. Amplification devices, such as in/over-ear hearing aids, work by applying selective gain 

adjustments to certain frequency ranges in the audio spectrum to compensate for the wearer's 

audiogram. When properly configured, amplification devices are an effective solution for patients with 

only partial hearing loss, such as noise induced and age-related hearing loss. Unfortunately, many 

people who are fitted with these products do not use them, commonly due to device value, fit/comfort, 

and maintenance of the device [2].  While some of these reports can be attributed to the quality of the 

hearing aid device itself, individual biases such as social stigma, perception of the amplified sound, and 

monetary or motivational obstacles with the device maintenance also play a role [2]. For those with 

more severe loss, implants are used to bypass damaged or non-functioning structures within the 

auditory pathway. For example, Cochlear implants (manufactured by The Cochlear Corporation), are 

used to treat individuals with severe bilateral hearing loss, and attempt to collect and process audio 

signals and directly stimulate the auditory nerve. These devices are highly effective for persons with 

both pre-lingual and post-lingual hearing loss, although the age of implantation influences success in 

prelingually deafened patients [3-4]. Furthermore, many who could benefit from an implant are unable 

to afford the device and procedure, or simply do not wish to undergo an invasive surgery with risk of 

complication or risk jeopardizing their identity in the deaf community. The obstacles to implants are 

worsened in developing countries lacking trained medical personal able to perform these operations 
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and servicing the device and care for patients. There is a need for an affordable, accessible, and non-

invasive treatment capable of catering to a wide range of people suffering from hearing afflictions.   

By reducing audio information from spoken language into simplified digital representations, 

language can be projected tactilely to virtually any location on the body through the use of tactile 

stimulation hardware. The goal of the Tactile Waves software package is to provide a research tool to 

facilitate the evaluation of encoding schemes to better understand how to best provide auditory 

information to the brain through the somatosensory pathway.  

1.1. Sensory Substitution 
 

The fundamental idea behind sensory substitution is simple: information normally received by 

one sensory organ can be transmitted to the brain through a different sensory organ. Sensory 

substitution takes advantage of the plasticity of the human brain: with training the brain can learn to 

interpret meaningful signals presented controllably through a non-conventional sensory pathway. The 

most successful example of sensory substitution is a blind person's use of their sense of touch to acquire 

information that would normally be acquired through their eyes. Braille is used to communicate written 

text through the nerve receptors in the fingertips, while vibrations transmitted through a walking cane 

yield information about the surrounding world. Sign language and Closed Captioning can be considered 

examples of sensory substitution as well, as a deaf user is able to use their sense of sight to acquire 

lingual information that would normally be spoken or played aloud.  

Since the 1960's sensory substitution research has been used to convey information to a 

subject's brain that would otherwise have been lost. With the use of electrotactile or vibrotactile 

stimulation, information traditionally acquired through one sensory pathway can be transmitted 

through the somatosensory pathway. Researchers have used the sense of touch to transmit many 

different data sources to the brain including audio, visual, and vestibular information. Various locations 
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on the body have been used, with varying success [5-18]. Sensory interfaces used have ranged in size 

and configuration, from a single vibration motor, to a 2D array of 400 distinctly vibrating tips.  

1.2. Mapping Sound to Touch 
 

The primary task of a sensory substitution system is to take some arbitrary information and map 

it to a discrete set of sensory receptors in the body, while ensuring the input information is supplied 

within the sampling constraints of nerve receptors for proper transmission to the brain. The input data 

must be processed in a way that captures the necessary features to maintain useful intelligibility, while 

reducing the data to the channel configuration and maximum throughput of the sensory stimulation 

device. If too much information is present at the input, it must be either compressed or filtered to 

reduce the excess or redundant data. This presents the primary difficulty for designing a software 

package for sound-to-touch sensory substitution systems: How should a system encode time-varying air 

pressure values for representation on an arbitrary number of receptors on the body to provide useful 

information to the brain?  

This thesis aims to provide a software library and design framework to aid in further research 

investigating this question. Design considerations include determining the constraints imposed by the 

electronic processing hardware that is used. It must be defined and compared against the temporal 

acuity of human sensory systems to verify the efficacy of typical modern computational hardware. Can 

today’s typical mobile (laptop and smartphone) processing hardware provide robust audio processing 

for sound-to-touch sensory substitution with latencies at or below the threshold (60 ms) needed for 

distinct perception of tactile stimuli?  

1.3. Tactile Waves  
 

Currently, a software library capable of performing audio signal management and processing for 

sound-to-touch sensory substitution systems does not exist. Previous sensory substitution research has 
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made use of custom built hardware and software to acquire audio and represent it tacitly on various 

locations on the body [5-18], and there are fundamental systemic components that these systems share. 

  
Figure 1.1: Visualization of the main components of a generalized sensory substitution system. 

As shown in Figure 1.1, a sensory substitution system from source to sink has 4 main 

components: 

1. Information/Data Source – The raw signal of interest. In the case of sound-to-touch this would 

be an audio source such as a person speaking or playback of an audio file.  

2. Data Acquisition and Processing– The raw input signal must be captured and buffered before 

further processing. This involves discretizing and digitizing the source via sampling.  

3. Sensory Interface – An array of N transducers on the body such that each channel can transmit 

time varying signals to separate receptors in the body, distinct from all other channels.  

4. Information/Data Sink – Sensory receptors in the body that communicate with pathways that 

can deliver the electrical signals to the brain in response to stimulus from the sensory interface.  

The primary contribution of this thesis is the development of a dedicated Java library containing 

both a toolbox and a prebuilt, general-use audio engine for audio acquisition, preprocessing, analysis, 

and feature extraction. This library allows researchers to use either a Java Virtual Machine (JVM) or 

Dalvik Virtual Machine (DVM) to serve as the data acquisition and processing component of a sound-to-

touch sensory substitution system. Because the JVM is directly supported on Windows, Mac, and Linux, 

Java programs can be built for virtually any computer. The DVM is specific to Android devices, so the 
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same programs built for a computer can be built for nearly any Android device. Additionally, Java can 

run on iOS devices through Oracle's ADF Mobile, as well as on embedded devices with the use of one of 

Oracle's embedded runtime environments.  This broad platform compatibility allows Tactile Waves to 

target as many potential users and applications as possible.  

Many general-purpose DSP libraries are capable of performing a variety of useful audio analysis. 

What do these libraries lack for sensory substitution applications? Why would a researcher use Tactile 

Waves over another library, or combination of libraries? The primary problem (for sensory substitution 

applications) with these more traditional DSP libraries is their audio-in, audio-out design. They are 

designed to capture audio from a microphone or media file, perform some processing on the sound, and 

play back the resulting audio to a speaker or file. For sound-to-touch sensory substitution, audio 

playback is not needed. Instead, some signal or set of commands must be generated to activate 

channels on the sensory interface in response to the audio input. Additionally, all processing and 

analysis must be capable of low-latency real-time operation. Currently, the only Java library capable of 

performing real-time audio analysis and feature extraction is Tarsos DSP. This library was used in the 

preliminary stages of this research, but it was designed primarily for music information retrieval, 

synthesis, and DSP education. As a result, sensory substitution applications are outside of its intended 

scope. There is a need for a Java DSP library capable of real-time mapping of sound-to-touch, and Tactile 

Waves was developed to meet this need.  

1.4. Summary  
 

The primary contribution of this thesis has been to develop a software library for the Java 

Virtual Machine (JVM) that provides a toolbox of audio processing objects that can be used to perform 

preprocessing, feature extraction/analysis, and transmission of speech signals for sound-to-touch 

sensory substitution devices. The challenges and design considerations for real-time audio processing 
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are discussed, and a playback latency limit is established. Each subpackage within Tactile Waves is 

presented and the function and implementation of each object is detailed.  Computationally expensive 

methods from objects within the toolbox package are tested on both Windows and Android to verify 

real-time operation with various audio buffer lengths. Finally, future improvements to the library are 

summarized and commercial applications are explored.  
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2. Real-Time Digital Signal Processing 
 
 
 

The primary design consideration and bottleneck of real time audio processing is latency. An 

audio system whose sole task is to capture, digitize and playback a signal will have some amount of 

delay between the original and replayed signal. Additional analysis and processing of the signal by the 

system will increase this latency at a rate proportional to the computation complexity of the processing 

performed. For musical applications of DSP, latencies of 20-30 ms are considered acceptable, with 10 ms 

being ideal [19-20]. Higher latencies will introduce issues for listeners, as the delay between the source 

and processed signals becomes perceptible and destructive phase interference, known as comb filtering, 

can be introduced. Comb filtering is an artifact that is produced when two similar but time delayed (out 

of phase) signals are present at perceptible levels, as is the case when both source and processed signal 

are played together. However, due to spatial reverb effects that are always present in real listening 

environments, comb filtering is always present to some degree. This suggests that the brain is 

accustomed to adjusting for this degradation. Additionally, for applications involving hearing-to-touch 

substitution, the source and processed signals are not perceived simultaneously. Therefore, phase 

cancellation effects are disregarded and only the problems of perceived synchronization and continuous 

playback are addressed.  

Most audio processing procedures require the signal being analyzed to be continuous and 

stationary. When an audio source is sampled by an analog-to-digital converter (ADC), it is discretized 

into a series of periodically spaced values representing the amplitude of the signal at each point in time. 

Audio signals are, therefore, a 1-dimensional, time varying sampling of relative air pressure amplitude. 

Real world audio that contains useful information such as language, music and environmental sounds is 

constantly varying and is therefore non-stationary. To perform useful processing on this information, a 

technique known as short-time analysis is used. Short time analysis takes a small chunk of these 
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consecutive audio samples acquired from the ADC, and stores them in a region of computer memory 

known as a buffer. This buffer contains a short segment of the audio signal, the length of which is 

typically chosen as a power of 2 and will typically vary from 256 to 8192 samples, depending on the type 

of analysis performed. This buffer is assumed to be stationary and continuous by treating it as being 

circular. That is, during analysis of the buffer, it is assumed to repeat end to end out to infinity. This 

allows a DSP system to process a continuous audio source piece by piece, yielding information about the 

audio signal at each "short-time" snapshot. 

Because each buffer contains only a short glimpse of a complex, time varying signal, 

discontinues are introduced at the beginning and end of the buffer where the signal is truncated. These 

discontinues lead to errors and inaccurate results during analysis. Applying a window function (also 

called a smoothing window) to each buffer prior to analysis is therefore a standard preprocessing step. 

Windowing functions aim to remove or soften the discontinuities at the ends of the buffer by tapering, 

or smoothing, the signal down to near zero at each end. The simplest windowing function available is 

the Rectangular Window, shown for a buffer size of 256 below in Figure 2.1: 

 

Figure 2.1: A 256-point rectangular windowing function. 
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The rectangular window contains only unity amplitude, so applying a rectangular window is 

precisely the same as performing no windowing at all. Therefore, using no window function is described 

as using a rectangular window. More advanced windowing functions aim to produce unity amplitude (or 

near unity) at the center of the buffer, and taper down to zero (or near zero) at either end. Various 

window functions are available, one of which known as the Hann Window is shown for a 256-sample 

buffer in Figure 2.2. 

 

Figure 2.2: A 256-point Hann Windowing Function 
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Figure 2.3: 1024-sample random noise signal 

To perform short-time analysis on this signal, it is first broken into consecutive, non-overlapping 

buffers of 256 samples and each buffer is multiplied by a 256-point Hann window function. The 

windowed signal is shown below in Figure 2.4.  

 

Figure 2.4: 1024-sample white noise signal windowed with 256-point Hann with no overlap 

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 256 512 768 1024

White (Random) Noise

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 256 512 768 1024

Windowed Signal - No Overlap



 
 

11 
 

Unfortunately, applying the window function in this manner has degraded the signal due to the 

amplitude modulation performed by the window. Information is lost at the boundaries of each buffer, 

and the total signal energy has been cut in half, as shown in Figure 2.4.  

 To overcome these issues, overlapping buffers can be used. By overlapping buffers, samples at 

the end of one buffer will be reused in the beginning of the next buffer. Therefore, information near the 

ends of each windowed buffer is not lost. The number of overlapping samples between one buffer and 

the next determines the amount of overlap, which is chosen based on the total buffer length, the 

window function being used, and the analysis performed on the windowed samples. For example, to 

account for the Hann window’s halving of the signal energy, a 50% buffer overlap is used. By applying a 

256-point Hann window to the white noise signal in Figure 3.3 with an overlap of 128-samples (50%), 

the energy of the signal is preserved. By overlap-adding each buffer, the original signal can be perfectly 

reconstructed, as shown in Figure 2.5. 

 

Figure 2.5: 1024-sample white noise signal windowed with 256-point Hann with 50% overlap 
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𝑡 =
𝑁 − 𝑜𝑣𝑒𝑟𝑙𝑎𝑝

𝑓
 

Where 𝑁 is the length of the buffer, in samples, 𝑜𝑣𝑒𝑟𝑙𝑎𝑝 is the number of overlapping samples, and 𝑓  is 

the sampling frequency. Typical sampling frequencies for speech processing range from 8000 to 24000 

Hz, with music or other more complex audio signals utilizing higher sample rates ranging from 44100 to 

192000 Hz. For example, an audio buffer of 1024 samples acquired at 44.1 kHz represents a 23.2 ms 

duration of audio. This value is significant because it represents the maximum latency limit of the 

processing system. For continuous playback of the processed audio there must be an audio buffer 

available at every 23.2 ms interval, otherwise there will be skips and drop outs in the output stream. If 

overlapping buffers are used, this value is reduced by the amount of overlap. The system must, 

therefore, be able to process each buffer in less than the time it takes for the buffer to be played as 

audio. Because each 1024 sample buffer will take 23.2 ms to play aloud as audio, the system must be 

able to perform its processing on each buffer in 23.2 ms or (ideally) less. Scaling the size of the buffer 

will scale this maximum latency limit by the same factor. Because of this practical latency limit, all 

experiments performed herein to investigate the real-time performance of the software modules are 

analyzed based on the subroutines ability to process a buffer in less than the time-domain length of the 

buffer.  

It is important to consider the effect of buffer length on computation time. Choosing a larger 

buffer size allows for longer processing times, so one might be tempted to choose the largest buffer 

possible while still maintaining perceived synchronization. However, the amount of processing needed 

also scales proportionally with the size of the buffer. By doubling the buffer from 1024 to 2048 samples, 

the number of samples that require processing at each step has also been doubled. Depending on the 

computational complexity, this may have a substantial impact on the required processing time. For 

example, the common radix-2 FFT algorithm, made popular by J.W. Cooley and John Tukey in 1965, is 
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bound by 𝑂(𝑛 log 𝑛) complexity, while its less efficient counterpart, the DFT, is bound by a complexity 

of 𝑂(𝑛 ). Figure 2.6 shows the required computations for each complexity for increasing buffer sizes, as 

well as a basic O(n) complexity for comparison. 

 

Figure 2.6: Required processing steps as a function of buffer size for different computational complexities 
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cue is less than +/-80 ms, the delay will most likely not be perceived. Certain factors can drastically 

change this value. For example, increasing distance between listener and the visual content can increase 

the acceptable delay [20]. As a result of this effect, all audio processing performed on a single audio 

buffer must be performed in less than 80 ms. A conservative limit of 60 ms is chosen to ensure a user 

will not be able to perceive the delay between visual cues. From this value, a practical buffer size limit 

can be selected based on the chosen/available sample rate. For example, at 44.1 kHz a buffer size of 

2048 results in a playback latency of 46.4 ms, which is below the 60ms perception limit.  

An audio processing system must adhere to these considerations to be capable of real-time 

operation.  Tactile Waves provides a programming interface that allows users to build such a system, 

customized for their application.  
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3. Development 
 
 
 

In this chapter, the Tactile Waves sensory substitution library is discussed in detail. The 

programming language, development environment, and publishing platforms that were used to create 

and release the library are presented. Implementation requirements are summarized before providing a 

brief technical primer in Object Oriented Programming. Finally, the API is described in detail via a 

walkthrough of each subpackage in the library. Each object within each subpackage is exposed, and their 

functionality and implementation details are provided.  

3.1. Programming Environment  
 

The Tactile Waves API is written in the Java programming language. Java was chosen for its 

multi-platform interoperability. Programs built and compiled on one machine can run on any other 

machine that supports the Java Virtual Machine (JVM). Currently, the JVM is directly supported on 

Windows, Mac OS, and Linux. Android’s Dalvik Virtual Machine is used to run Java code on Android 

devices such as smartphones and watches. Any programming logic written for the JVM is compatible 

with the DVM, and vice versa, allowing Tactile Waves to be used for both PC and mobile applications.  

 The development of Tactile Waves was performed in an Integrated Development Environment 

(IDE) to simplify project management, testing, and documentation. Because the Android platform is the 

primary deployment target for the API, the Android Studio 3.0 IDE was used. Java 8 is the latest version 

of Java provided by Oracle. However, Version 3 of Android studio uses Java 7, with a subset of features 

from Java 8, so the library was designed within these constraints to ensure Android compatibility. While 

Tactile Waves can be used in iPhone applications through Oracle’s ADF Mobile, this platform has not 

been tested due to the prohibitive cost and restrictive ecosystem of Apple devices.  



 
 

16 
 

 Git was used for version control, and the source code for the library is stored in a public 

repository on GitHub [22]. GitHub is also used to host a static web page with the library containing 

usage/install instructions, documentation, download links, etc. Documentation is generated with 

JavaDoc and is bundled with the library download, as well as included in the web page. Downloads are 

provided through Bintray and remote linking is available from the popular jCenter Android library 

repository.  

3.2. Implementation 
 

The primary function that Tactile Waves aims to accomplish is the management of an audio 

stream from source to sensory interface in a sensory substitution system (Figure 1.1). This requires 

sampling of audio from a microphone or audio file, performing some useful processing on the audio, 

transforming the audio data into the correct dimensionality and size, and transmitting the transformed 

data to a sensory interface worn on the body. In the case of live speech, these operations must be 

performed continuously with acceptable latencies for real-time operation. The processing stream must 

also be designed in a way that is flexible and extensible. The interface should allow a user to customize 

the processing chain without writing custom code, but also allow a user to extend the functionality with 

their own custom code if desired. Finally, verbose documentation must be provided for all public classes 

and methods to allow users to see the operation of each function without having to view the API source 

code.  

3.3. Object Oriented Programming – A Technical Primer 
 

The following sections describe the code design of the libraries main packages in detail, and 

therefore requires the use of terms that may be new to those unfamiliar with object oriented 

programming (OOP). Readers who are themselves programmers, or have experience with OOP, may 

wish to skip over this section.  
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In the following sections, whenever a piece of code or code object is discussed in text, it will be 

displayed in a monospace font to distinguish it as such. 

Object oriented programming, or OOP, is a term used to describe a common programming 

design paradigm that is based around the creation and interaction of objects. An object is a collection of 

related state and behavior. State information is stored in data members known as attributes while 

behaviors are chunks of encapsulated code known as methods. A programmer can invoke the methods 

of an object to illicit the object’s behavior, which may include changing the state of the object. Because 

each object has its own state and behavior, multiple instances of the same object can be created and 

used simultaneously. Objects can interact with or depend on one another, changing the state, or 

invoking behaviors to create complex interactions. This is the main idea behind OOP. 

A class is a blueprint, or a template that describes the default state and behavior that is used to 

create an object. The relationship between classes and objects is best described with an example. 

Suppose a program needed to store information about several different dogs. A Dog class could be 

created that describes the state and behavior of any Dog objects. An example of a possible 

implementation of the Dog class is shown below (in Java-esque pseudocode): 

class Dog { 

  attributes: breed, age, name 

  behaviors: get recommended diet 

} 

The program can create any number of objects that describe different dogs using this Dog class as a 

prototype. The above code defines the class Dog, but to create an actual object of type Dog, an instance 

of Dog must be instantiated. Each Dog instance will have its own breed, age, and name that is separate 

from any other instances of the Dog class. Rover, a 4-year-old golden retriever, and Spot, an 8-year-old 

border collie, will be represented by 2 separate objects that are both of the class Dog. An instance of a 
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class might change its behaviors based on the state of the object defined by its attributes. For example, 

the behavior “get recommended diet” could be designed to return a recommended diet for a dog based 

on the breed and age of the dog stored in the instance of each Dog object. A benefit of this design is 

that the program can reuse the code contained in the Dog class for all instances, rather than rewriting 

nearly identical code for each dog that the program needs to store.  

Now suppose the program required the storage of a new type of a dog: a service dog. To 

properly describe a service dog, additional state information and behaviors are required beyond what 

the basic Dog class provides. A subclass called ServiceDog could be created that extends from the 

original Dog class: 

class ServiceDog extends Dog { 

  attributes: training 

  behaviors: get service type 

} 

Any objects that are creating using the ServiceDog class will contain all the attributes and behaviors 

of the original Dog class, as well as the new attributes and behaviors defined in the ServiceDog class. 

This idea is called inheritance in OOP, as the subclass ServiceDog inherits the attributes and 

behaviors of the Dog superclass. Again, this design allows for code reuse, which generally leads to 

smaller programs and easier code maintenance.  

 In the above example ServiceDog inherits from a concrete superclass called Dog, and either 

can be used to create objects. But subclasses can also inherit from an abstract superclass, or a class that 

cannot be instantiated into a concrete object. Consider the abstract class below called Pet: 

 abstract class Pet { 

  attributes: age, name, owner 

  abstract behaviors: get recommended diet 

} 
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This class is declared abstract, meaning that it cannot be directly instantiated and must instead be 

subclassed into concrete classes that extend from the abstract class Pet.  Abstract classes can also 

contain abstract methods (behaviors). An abstract method is not implemented in the abstract class, but 

is instead implemented in the concrete subclasses of the abstract class.  A new Dog class that is a 

subclass of Pet is shown below: 

class Dog extends Pet { 

  attributes: breed 

  behaviors: get recommended diet 

} 

Just as with the ServiceDog example, the Dog class contains all of the attributes and behaviors defined 

by its superclass, Pet, as well as the new attributes and behaviors defined in the subclass. A brand-new 

object type can be created that is different than Dog, but still extends the abstract Pet class: 

class Cat extends Pet { 

  attributes: breed 

  behaviors: get recommended diet 

} 

Now the program can describe both cats and dogs, which are completely different objects, but both are 

subtypes of the abstract idea of a pet, and can therefore be used interchangeably as varying types of 

pets. It can be said that in the real world, a dog is a type of pet, and a cat is a type of pet, but a pet is not 

a type of cat or dog. In fact, a pet is not a type of any animal. It is an abstract concept that describes any 

animal that a person keeps and cares for.  The same statements can be said about the abstract Pet, and 

concrete Dog and Cat classes. In this way, objects can be created in ways that mimic humans real-

world understanding of objects and types.  

An Interface is a construct in OOP that defines a contract between classes and the programmer. 

Any class that implements an interface is guaranteed to implement the behavior described by that 
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interface, i.e. it must adhere to the contract laid out by the interface. Because interfaces only describe 

the required behavior of implementing classes, they cannot have attributes.  An interface called 

Drawable is shown below: 

interface Drawable { 

  behaviors: draw 

} 

Any objects that implement the Drawable interface, are “contractually obligated” to implement a 

behavior called draw. For example, the Dog class could implement the Drawable interface, and 

define a draw method that draws a dog to the screen. Meanwhile the Cat class could also implement 

the Drawable interface, and define a draw method that draws a cat to the screen. Each class contains 

its own implementation of the Drawable interface, and although the implementation differs, the 

behavior is the same: both objects are capable of drawing a visual representation of the object they 

represent to the screen. By using interfaces to define certain behaviors, objects of different types can be 

replaced in a program without altering the correctness of that program.  

 And finally, a package is a collection of classes and interfaces, and a subpackage is simply a 

package within a package. Packages are used to logically organize code into groups of related code files, 

and can be thought of as being analogous to a folder system on a computer. A folder contains a group of 

files, and can contain other folders that also contain files and folders and so on. Much like folders on a 

computer help users organize their files, packages help programmers organize their code.  

3.4. Tactile Waves Package Overview 
 

An overview of the tactilewaves package is shown in Figure 3.1. The com subpackage contains 

classes for sending data over Bluetooth, and the android subpackage within contains Bluetooth code 

that is specific to the Android platform. The dsp subpackage contains all the classes that make up the 

core audio processing engine, as well as 2 additional subpackages, toolbox and utilities. The toolbox 
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subpackage contains a collection of useful algorithms such as filtering and Fourier transforms, while the 

utilities subpackage contains a collection of classes to perform utility operations such as data sorting. 

Finally, the io subpackage contains all the necessary code for the input and output of audio data from an 

audio file or a microphone, and the android subpackage within contains audio input/output code that is 

specific to the Android platform. 

tactilewaves ┐ 

       ├ com ┐ 

         │     └ android 

       ├ dsp    ┐ 

         │     ├ toolbox 

         │     └ utilities 

       └  io     ┐ 

                  └ android 

Figure 3.1: Tactile Waves Package structure overview 

3.5. The Audio Engine 
 

Tactile Waves uses a custom audio engine that was built specifically for sensory substitution 

applications. A set of objects are used to manage an audio stream from acquisition, through a chain of 

processing, and finally transform the audio signal into signals or commands that can then be sent to 

stimulation hardware worn on the body. The objects that make up the audio engine are contained 

within the dsp and io subpackages and are summarized in Tables 1 and 2.  

Table 1: Tactile Waves Audio Engine Class Summary 

Class Name Description 

WaveFormat Describes the format of audio being used 

WaveInputStream Manages reading from an input stream 

WaveFloatConverter Converts byte encoded audio to floats (-1,1) 

WaveFrame Stores 1 frame of audio and supporting data/objects 
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WaveManager Core audio processing object – manages thread to prepare and process 
frames of audio 

 

Table 2: Tactile Waves Audio Engine Interface Summary 

Interface Name Description 
WaveFrameListener Defines listener functionality to create objects that listen for processed 

WaveFrame events 
WaveProcessor Defines processor functionality for building objects that perform some 

processing on a WaveFrame 
 

WaveFormat 

The WaveFormat class allows the creation of WaveFormat objects that house the 

parameters that describe the format of the audio in use. The format parameter member variables are 

summarized in Table 3. 

Table 3: WaveFormat Member Summary 

Member Name Type Meaning 
mEncoding Integer Constant Represents the encoding method used using integer 

constants 
mBigEndian Boolean True for Big Endian byte order, False for Little Endian 

mSampleRate Integer The sample rate (Hz) of the audio  

mBitDepth Integer The number of quantization bits used (bits/sample) 

mChannels Integer The number of audio channels 

mBytesPerSample Integer The number of bytes needed for 1 sample of audio 

 

The mEncoding parameter is an integer constant that represents the type of encoding used to 

byte-encode the underlying audio associated with this format. Three static integer constants are defined 

in the WaveFormat class that define the state of the mEncoding variable. If the encoding has not 

been specified, mEncoding will equal NOT_SPECIFIED. This is the default value of the mEncoding 
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parameter. Currently, only PCM (linear quantization) encoding is supported, in both signed and unsigned 

forms. Depending on the encoding method used, this parameter will take the state of either 

ENCODING_PCM_SIGNED, or ENCODING_PCM_UNSIGNED. The mBigEndian parameter is a Boolean 

(true/false) data type that specifies the byte order (endianness) used in the underlying audio stream. If 

true, the bytes in the stream are ordered in Big Endian byte order – meaning the most significant byte 

will be read first, followed by the second most significant byte. If false, Little Endian byte order is used, 

and the bytes will be ordered with the least significant bytes first – the opposite of Big Endian. The 

mSampleRate member is an integer variable that holds the sample rate, in Hz, that was used to record 

the audio in question. On Android devices, this is almost always 44100 Hz (the default sampling rate on 

Android), but any sample rate is supported by WaveFormat. The mBitDepth describes the number 

of bits used to quantize the audio samples in the given encoding scheme. As little as 8 bits can be used 

for speech without overly degrading the sound quality, but 16 bits or more are needed for audio files 

containing music or other more complex audio content. When recording from the Android microphone, 

this bit depth will almost always be 16 bits (the default for Android). Additionally, most audio files are 

stored at 16 bits, due to its balance between quality and file size. Regardless, any bit depth that is a 

multiple of 8 bits is supported (8, 16, 24, 32, etc). The channels parameter stores the channel count 

of the audio described by this WaveFormat object. A mono file will have 1 channel, while a stereo file 

has 2 (left and right) channels. More than 2 channels indicate some type of multichannel surround 

sound type audio, and is not currently supported by Tactile Waves. Finally, mBytesPerSample is an 

additional parameter that is not needed to correctly describe the audio format, but it has been included 

because of its usefulness in other classes. It stores the number of bytes needed per sample of audio and 

can be calculated from other WaveFormat parameters:  

𝐵𝑦𝑡𝑒𝑠𝑃𝑒𝑟𝑆𝑎𝑚𝑝𝑙𝑒 = 𝐶ℎ𝑎𝑛𝑛𝑒𝑙𝑠 ∗
𝐵𝑖𝑡𝐷𝑒𝑝𝑡ℎ

8
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Because this can be calculated using 2 other preexisting format parameters, it is not necessary. 

However, it is useful when decoding audio as it describes how many bytes must be read at once to read 

one sample of audio from an encoded stream so its inclusion saves users from having to repeatedly 

implement the calculation. 

WaveInputStream 

The WaveInputStream class is an abstract class that was created to allow the creation of any 

number of subclasses that house different types of input streams. By wrapping input streams into 

WaveInputStream subclasses, implementation differences between the streams can be abstracted 

away. This allows Tactile Waves to pipe audio from any audio source without requiring specific code for 

each source. Code can be reused between all subclasses of an abstract class, so this design also reduces 

code complexity and eases maintenance.  

Any object that is a subclass of WaveInputStream must implement the following methods: 

read(), readSample(), getFormat(), and close(). The read() method attempts to read a 

single byte from the input stream and return it. The readSample() method attempts to read a single 

sample from the input stream. The number of bytes required to construct one sample is defined by the 

WaveFormat associated with the input stream. Using the read() and readSample() methods 

from each subclass, all WaveInputStream objects can utilize additional read()methods to read 

multiple samples at once, without needing to implement code to do so. The methods getFormat(), 

and close()are necessary utility methods that allow the user to obtain the WaveFormat associated 

with the input stream and close the input stream, respectively.  
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WaveFloatConverter 

The WaveFloatConverter class is a static class whose sole responsibility is the conversion 

of multi-channel encoded audio bytes to single channel audio samples (floats), and back again. Its 

primary methods are toMonoFloat() and toMonoFloatArray() which convert an array of bytes 

to a single sample or array of samples, using single precision floating point numbers. The methods 

toMonoDouble() and toMonoDoubleArray() perform the same task, but instead return audio 

samples as double precision (64-bit) floating point numbers. Finally, the toBytes() method performs 

the reverse operation, converting single or double precision audio samples back to encoded bytes, 

according to the supplied WaveFormat. 

WaveFrame 

The WaveFrame class represents a single frame of audio. The member objects of this class are 

listed below in Table 4. 

Table 4: WaveFrame Member Summary 

Member Name Type Meaning 
mFormat WaveFormat The audio format of this frame  

mSamples float array The sample buffer, or the audio frame itself 

mLength integer The length of the frame (sample buffer) 

mFeatures HashMap Collection of audio features in the frame such as the 
pitch, or a list of formant frequencies 

 

Each instance of the WaveFrame class contains the actual audio samples and WaveFormat 

associated with one frame of audio that has been read from a WaveInputStream. The frames audio 

data is stored in the mSamples object, with mLength storing the length of the frame. The 

WaveFormat describing the underlying audio format is stored in the mFormat variable. Apart from 
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energy/volume calculations on the frame, this class is not responsible for performing any actual signal 

processing on the audio buffer. The sole purpose of this object is the storage of a frame of sampled 

audio data. These objects are created and passed through a processing chain by the WaveManager 

object, and sent to any WaveFrameListener objects upon completion. During processing, extracted 

audio features can be stored in the objects mFeatures object, which is described in more detail 

below.  

WaveManager 

The WaveManager class contains the core audio processing thread and is responsible for the 

acquisition and management of sampled audio data. Its member objects are summarized below in Table 

5. 

Table 5: WaveManager Member Summary 

Member Name Type Meaning 
mRunning boolean Is the audio thread currently running? 

mInput WaveInputStream The input stream to read audio from  

mFormat WaveFormat The audio format in use 

mListeners List List of WaveFrameListeners to notify of 
completed WaveFrame objects 

mSamples Float array A buffer to store audio samples 

mOverlap integer # of samples to overlap between frames  

mLength integer The number of samples used in each audio frame  

mFramesProcessed integer The number of audio frames that have been 
successfully processed 

mTotalSamplesRead integer The total number of samples that have been 
read from the WaveInputStream 

mFXChain LinkedList A list of WaveProcessor objects that are 
executed sequentially on each WaveFrame 
produced  
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An instance of WaveManager will attempt the read audio encoded as bytes from mInput. 

These bytes are immediately converted to audio samples according to the format parameters specified 

by mFormat. For each frame, mOverlap samples from the previous frame are combined with 

mLength – mOverlap 

new samples from the input stream. These samples are then copied into a new WaveFrame object, and 

this object is then passed to the process() method of each object in mFXChain for processing. After 

executing the entire processing chain, the processed WaveFrame is sent to any listeners stored in the 

mListeners member, and the WaveManager repeats these steps for the next frame, until it is 

stopped.  

This object is the primary component of Tactile Waves’ audio engine, and is the object that 

users will primarily interact with when using the library. An instance of WaveManager is created by 

supplying its constructor with 3 parameters: a WaveInputStream, and 2 integers that specify the 

number of samples used for the frame length and overlap. At this point, the WaveManager will be 

ready to begin reading audio samples from the input stream and assembling them into WaveFrame 

objects for further processing. However, when the object is created, it is initialized with an empty 

processing chain. In order to perform some useful processing on each WaveFrame, one or more 

WaveProcessor objects must be added to the processing chain using the WaveManager’s 

addEffectToChain() method. It is important to note that the processors within mFXChain will be 

executed sequentially, in the order they were added. Immediately after creation, each WaveFrame is 

sent to the first processor in the chain, and once it has completed its processing, the WaveFrame is sent 

to the second processor in the chain, and so on until all processors in the chain have been executed.  
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WaveProcessor 

The WaveProcessor interface defines the required functionality that an object must 

implement to be used in a WaveManager’s processing chain. The interface specifies two methods: 

process() and processingFinished(). The process() method should contain all of the 

code required to perform whatever processing is required for each WaveFrame. The processor can 

make use of the WaveFrame method getSamples() to obtain a reference to the frame’s samples 

and perform some useful processing with or on the buffer. Optionally, a WaveProcessor can add any 

number of arbitrarily formatted “features” to the WaveFrame using its addFeature() method. Each 

processors process() method is called once by the WaveManager for every frame of audio. The 

processingFinished() method is called after all processing has been completed on a 

WaveFrame and should therefore contain any clean-up code that requires execution after the 

processor has finished. This might include deallocation of resources, and resetting of variables or 

parameters. If no clean-up code is required by the processor, the processingFinished() method 

can be left blank.  

WaveFrameListener 

The WaveFrameListener interface specifies the required functionality of listener objects 

with just one method: newFrameAvailable(). After successfully executing the processing chain, a 

WaveManager will call any active listener’s newFrameAvailable() method, passing it the newly 

processed WaveFrame object. The listener can then trigger some response to this event such as 

updating the UI, or sending WaveFrame features over Bluetooth. This allows heavy, time consuming 

tasks like these to be performed in a dedicated thread, separate from the WaveManager’s audio 

processing thread.  
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In general, the WaveProcessor interface should be used for any tasks that should be run in 

the audio processing thread, while the WaveFrameListener interface should be used for any tasks 

that require access to the processed WaveFrame objects, but should not be performed within the 

audio thread.  

3.6. The Toolbox 
 

Tactile Waves features a list of toolbox objects that are used to perform single DSP tasks such as 

computing the Fourier Transform of an audio buffer. These methods are listed in Table 6 and described 

in more detail in this section.  

Table 6: Tactile Waves Toolbox Class Summary 

Object Name Responsibility Requires Instantiation? 
FFT Fourier Transforms of audio buffers Optional instantiation for speed, 

otherwise no 
Window Windows audio buffers Instantiation available, but not 

required 
DCT Discrete Cosine Transforms, Type-I and II No 

Filter Filters an audio buffer Custom filters require 
instantiation, otherwise no 

Cepstrum Cepstral Transforms on audio buffers No 

MFCC Computes Mel Frequency Cepstrum 
Coefficients 

No 

LPC Linear Predictive Coding Analysis No 
 

YIN Implements YIN Pitch Detection Algorithm Yes, required for algorithm 
correctness  

ZCR Computes the zero-crossing rate of an audio 
signal 

No 

 

These classes and their methods are designed to provide as much static access as possible. That 

is, toolbox methods should be available to the user without requiring creation of an instance of the 

containing object, wherever possible. This design favors performance and reduced memory usage.  
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FFT 

The FFT class is an all in one tool for performing Discrete Fourier Transforms on arrays. 

Converting a signal to the frequency domain is a useful processing step in its own right, but many other 

tools in the package require the use of FFT’s in their algorithms. Therefore, performance optimizations 

made within the FFT class will necessarily translate to optimizations in other algorithms that rely on the 

FFT (such as the DCT). Iterative, rather than recursive, implementations are used because they are 

significantly faster. Additionally, because Tactile Waves is an audio processing library, and audio is 

always a real signal, the real DFT is used over the complex DFT wherever possible, and has been 

optimized to yield a 20-30% speed increase over the complex DFT.  

FFT supports any transform size. Power-of-2 buffer lengths are supported through the famous 

Cooley-Tukey Radix-2 Fast Fourier Transform [23], and are the most performant (𝑂(𝑛 log 𝑛)). All other 

buffer sizes are supported using Leo Bluestein’s algorithm [24]. Several data types are supported. Arrays 

of both single and double precision floating point numbers as well as arrays of Complex objects (see 

Utilities section) can be used with FFT. The algorithm is implemented with an iterative decimation-in-

time (DIT) approach, summarized and explained in detail below: 

Complex FFT Algorithm Summary 

1. Decompose N sample signal into N 1-sample signals 

2. Transform each of the 1-sample signals into the frequency domain 

3. Recombine N 1-point spectra into a single N-point spectrum 

The first step in the DIT complex FFT algorithm is to decompose 1 signal of N samples into N 

signals of 1 sample in the time domain (hence decimation-in-time). An example of this decomposition is 

shown for an 8-sample signal in Table 7. In the first step, the 8-sample signal is decomposed into 2 
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signals of 4 samples. In the next step, both 4-sample signals are decomposed into a total of 4 signals of 2 

samples, and so on until the signal is broken down into N signals of 1 sample.  

Table 7: Example of interlace decomposition with an 8-sample signal 

1 signal of 8 samples 0             1             2             3             4             5             6             7 
↙                                                            ↘ 

 2 signals of 4 samples 0            2            4            6 
↙                        ↘ 

1            3            5            7 
↙                        ↘ 

4 signals of 2 samples 0           4 
↓          ↓ 

2           6 
↓          ↓ 

1           5 
↓          ↓ 

3           7 
↓          ↓ 

8 signals of 1 sample 0 4 2 6 1 5 3 7 

 

A technique known as interlace decomposition is used at each decomposition step, which 

separates the signal into even and odd components.  To accomplish this even/odd reordering efficiently 

with code, a technique known as bit reversal sorting is used. This operation simply takes the binary 

address of each sample and reverses it to yield the samples new address. For the 8-sample signal, the 

sample at address 0 (binary 000) is not moved because the reverse of 000 is 000. The sample at address 

1 (binary 001) is moved to address 7 because the reversal of 001 is 100, or a decimal 7. The 8-sample 

signal decomposition example is shown again using bit reversal sorting in Table 8.  

 Table 8: Example of bit reversal sorting with an 8-sample signal 

Sample indices before bit reversal Sample Indices after bit reversal  

Decimal Binary Decimal Binary 

0 000 0 000 

1 001 4 100 

2 010 2 010 

3 011 6 110 

4 100 1 001 

5 101 5 101 

6 110 3 011 

7 111 7 111 
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Note how the ordering of sample indices after bit reversal sorting is identical to the ordering seen in the 

final step of the interlace decomposition in Table 7.  

Once the time domain signal has been decomposed into N 1-sample signals, the algorithm must 

convert the signals into the frequency domain by calculating the spectrum of each signal. Here lies the 

beauty of the algorithm: the spectrum of a 1-sample signal is itself, so the algorithm needs to do nothing 

to convert each signal to the frequency domain.   

All that is left for the algorithm is to recombine the N 1-sample frequency spectra into 1 N-sample 

frequency spectrum. The recombination is done in the exact opposite order that the interlace 

decomposition was performed. An example of a single recombination step is shown in Table 9. At each 

step, the signals are combined by duplicating each frequency spectrum, and adding the results together. 

This is known as a “butterfly calculation”, due to the shape outlined by the diagram in Table 9 that 

resembles a butterfly’s wings. For the spectra to match up when added, the odd point spectrum is 

shifted by 1 sample. Shifting in the frequency domain is performed by multiplication with a sinusoid. 

After recombination, the algorithm yields a single N-point frequency spectrum of the original N-sample 

signal and the algorithm terminates. 

Table 9: Example of a recombination of 2, 1-sample spectra into a single 2-sample spectrum 

2 1-sample 
Spectra Input 

Even Spectrum 
↓ 

Odd Spectrum 
↓ 

Shift Odd 
Spectrum 

↓ 
↓ 

*Sinusoid 
↓ 

 
 

Butterfly 
Calculation 

duplicate 
↙                        ↘ 

duplicate 
↙                        ↘ 

E E O*S O*S 
↓ 
↓ 

                ↘  
                             ↘ 

      ↙   
↙ 

*-1 
 ↓ 

              ↓                                                ↙ ↘                                                 ↓ 
1 2-sample 

Spectrum Output 
           E                 +                       O*S 

Positive Frequencies 
       E                         –               O*S 

Negative Frequencies 
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 Because this is a complex FFT, it operates on complex signals. A complex signal is a signal that is 

comprised of complex numbers, or numbers that have both a real and imaginary part, as shown by the 

equation: 

𝑧 = 𝑥 + 𝑦𝑖 

Where 𝑧 is a complex number comprised of real part 𝑥 and imaginary part 𝑦, and 𝑖 is the imaginary 

number √−1. The complex FFT of a complex signal results in a complex spectrum, or a spectrum 

comprised of both real and imaginary parts. But what if the input signal is not complex? The complex 

FFT will work fine in this situation, as a real signal can be represented as a complex signal with all 

imaginary components equal to zero. However, many computation steps are “wasted” in this case on 

the calculations involving the all zero valued imaginary components. Audio signals are always real 

signals, never complex, so it would be preferable to not have to waste time on the complex signal 

calculations. Luckily, there exists an alternate algorithm that takes advantage of this situation by 

eliminating the unnecessary calculations associated with the real valued signal: the real FFT. 

Notice how the very first step of the complex FFT works: An N sample signal is split in half and 

broken down into its even and odd decompositions, and the step is repeated on the even/odd halves. In 

other words, in the first step an N sample complex signal is divided into 2 N/2 sample complex signals. 

The real FFT uses a clever trick that takes advantage of this step and “fools” the complex FFT into doing 

the majority of its work for it. The real FFT takes an N sample real signal and breaks it into its even/odd 

halves, just as with the complex FFT. The 2 halves of the real signal are then reinterpreted as the real 

and imaginary components of a complex signal, yielding a single N/2 sample complex signal. This 

complex signal is then passed to the complex FFT which returns a N/2 complex spectrum. The real FFT 

can again reinterpret the real and imaginary components of this spectrum as 2 halves of a real 
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spectrum. The real FFT can now perform the final recombination step, combining the 2 N/2 sample 

spectra into a single N sample spectrum. A summary of this algorithm is described below:  

Real FFT Algorithm Summary 

1. Separate N point real signal into N/2 point even and odd halves 

2. Compute the complex FFT of the N/2 point even/odd halves 

3. Recombine N/2 length spectra into N length spectrum 

Therefore, real FFT of an N point signal is essentially just an N/2 point complex FFT, plus a few 

extra computations for the final recombination step. This results in up to a 40% increase in performance 

over the complex FFT. 

Window 

The Window class is responsible for applying windowing functions to audio/data buffers. At the 

time of this writing, Window contains 6 different window functions, summarized in Figure 3.2. Window 

also includes a rectangular window, which is computed by doing nothing to the incoming signal and has 

been omitted from the graphs.  
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Figure 3.2: Summary of all available window functions in Tactile Waves 

The response of an 𝑁-point window function can be computed by finding the normalized 

magnitude spectrum of the window itself, and shifting the result by 𝑁/2. Alternatively, the exact 

response can be computed directly using the following equations [25]: 

𝑎 (𝑓) = 𝑤 cos(2𝜋𝑓𝑗 𝑁⁄ ) , (𝑟𝑒𝑎𝑙 𝑝𝑎𝑟𝑡) 

𝑎 (𝑓) = 𝑤 sin(2𝜋𝑓𝑗 𝑁⁄ ) , (𝑖𝑚𝑎𝑔𝑖𝑛𝑎𝑟𝑦 𝑝𝑎𝑟𝑡) 

𝑎(𝑓) =
𝑎 + 𝑎

∑ 𝑤
 

The Window class includes two getResponse()methods that return the response of a 

window function using these equations. These methods were used to generate the response of each 

window in the class (excluding rectangular).  
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The Hann window (sometimes called the Hanning window) is probably the most used window 

function in speech and music processing.  This function is equivalent to one period of a 0.5 amplitude 

sine wave, shifted up by 0.5 and over by , and can be computed using the following simplified 

equation: 

𝑤 =  𝑠𝑖𝑛
𝜋𝑖

𝑁
 

This results in a window that is exactly zero at 0 and 𝑁 + 1, one half at 𝑁/4 and 3𝑁/4, and one at 𝑁/2, 

leading to a side lobe roll off of about 18 dB/octave as shown in Figure 3.3. 

 

Figure 3.3: Hann Window Response 

The Hamming window is very similar to the Hann window, in that it is comprised of a shifted 

sine wave. It is defined as one period of a 0.46 amplitude sine wave, shifted up by 0.54 and over by . 

Substituting sin(𝜃 +  ) for cos(𝜃) yields the final equation for the Hamming window: 

𝑤 = 0.54 − 0.46 cos
2πi

𝑁
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Unlike the Hann window, this window does not touch zero at its ends, resulting in more spectral leakage 

in the side lobes. The response of the Hamming window is shown in Figure 3.4 below.  

 

Figure 3.4: Hamming Window Response 

The Blackman window is a modified version of the Hamming window that is meant to increase 

side lode attenuation. It is nearly identical to the Hamming window with an added sin function, defined 

by the following equation: 

𝑤 =  0.42 − 0.5 cos
2πi

𝑁
− 0.08 cos

4πi

𝑁
 

This window combines the first lobe cancelation of the Hamming window, with the improved 

attenuation of the Hann Window. The Blackman window response is shown below in Figure 3.5. 
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Figure 3.5: Blackman Window Response 

The flat-top window differs drastically from previous windows in that it is partially negative. 

Window implements a cosine-sum version of the flat-top window, defined by the following equation: 

𝑤 =  0.216 − 0.417 cos
2πi

𝑁
+ 0.277 cos

4πi

𝑁
− 0.084 cos

6πi

𝑁
+ 0.007 cos

6πi

𝑁
 

This window’s response can be seen in Figure 3.6. It has poor frequency resolution (indicated by the 

wide main lobe), but it is the best window for measuring the actual amplitude of a frequency 

component.  

-156
-144
-132
-120
-108

-96
-84
-72
-60
-48
-36
-24
-12

0

-128 -96 -64 -32 0 32 64 96 128

Am
pl

itu
de

 ()
dB

Frequency Offset (bins)

Blackman Window Response



 
 

39 
 

 

Figure 3.6: Flat-top Window Response 

The Window class includes two adjustable windows that allow the user to customize the 

window shape to fit their needs. The first of which is the Gaussian window, defined by: 

𝑤 = 𝑒 ⁄  

Where 𝑛 = 𝑖 −  and 𝜎 =
∝

 . The parameter ∝ is used to adjust the window shape. At ∝ = 2.5, the 

shape of the Gaussian window is similar to the Hamming window, but with reduced sidelobe 

attenuation, and a slightly wider main lobe. Increasing ∝ results in greater sidelobe attenuation, at the 

cost of a wider main lobe. The response of the Gaussian window is shown in Figure 3.7. 
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Figure 3.7: Gaussian Window Response 

The second adjustable window, the Kaiser window, approximates a window known as the 

discrete prolate spheroidal sequence (DPSS) or Slepian window. The DPSS window maximizes the energy 

of the main lobe, but is very difficult to compute. Therefore, the Kaiser window is commonly used in its 

place. The Kaiser window function is defined by the equation:  

𝑤 =

𝐼 𝜋 ∝ 1 −
𝑖 − 𝑁 2⁄

𝑁 2⁄

𝐼 (𝜋 ∝)
 

Where 𝐼  is the zero-th order modified Bessel function of the first kind: 

𝐼 (𝑧) =
1

𝜋
𝑒  ( )𝑑𝜃 

To numerically evaluate an integral of a continuous function in code, it must be discretized. Any integral 

can be discretely approximated using the trapezoidal rule:  

𝑓(𝑥) 𝑑𝑥 ≈ 𝑏 − 𝑎
𝑓(𝑎) + 𝑓(𝑏)

2
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The accuracy of the approximation can be increased by dividing the integral into 𝑛 sub integrals, 

evaluating the trapezoid rule for each, and summing the results. This technique is known as the 

composite trapezoidal rule: 

𝑓(𝑥) 𝑑𝑥 ≈
𝑏 − 𝑎

𝑛

𝑓(𝑎)

2
+ 𝑓 𝑎 + 𝑘

𝑏 − 𝑎

𝑛
+

𝑓(𝑏)

2
 

The Kaiser window uses the composite trapezoidal rule with 𝑛 = 20 to closely approximate 𝐼 . The 

window’s response is shown in Figure 3.8. 

 

Figure 3.8: Kaiser Window Response 

At ∝ = 3, the Kaiser window resembles a combination of the Blackman and Flat-top windows, 

with the narrower peak like the Blackman, and flatter side lobe roll off like that of the Flat-top. Just like 

the Gaussian window, increasing ∝ results in greater sidelobe attenuation, at the cost of a wider main 

lobe.  
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DCT 

The DCT class implements a Type-II and Type-III discrete cosine transform, or DCT. A DCT is 

closely related to the discrete Fourier transform (DFT), but instead represents a finite data series as a 

sum of cosine waves, rather than a sum of complex sinusoids. There are eight different DCT variations, 

four of which are commonly used in DSP. The Type-II DCT is the most common, and is therefore simply 

referred to as “the DCT”. The Type-II DCT of a data series 𝑥 of 𝑁 points is defined by: 

𝑦(𝑘) = 𝑥(𝑛) cos
𝜋

2𝑁
(2𝑛 + 1)𝑘 , 0 ≤ 𝑘 < 𝑁 

To find the inverse (of any DCT), 𝑘 and 𝑛 must be switched. In the case of the Type-II DCT, its inverse is 

the Type-III DCT, referred to as “the inverse DCT” or “the IDCT” and is defined for a data series 𝑥 of 𝑁 

points by: 

𝑦(𝑘) =
𝑥(0)

2
+ 𝑥(𝑛) cos

𝜋

2𝑁
𝑛(2𝑘 + 1) , 0 ≤ 𝑘 < 𝑁 

A DCT matrix is often normalized to ensure its orthogonality after transformation. For example, 

MATLAB uses this orthogonal normalization scheme by default in its dct() and idct() functions. The 

DCT is normalized by scaling the entire matrix by  and dividing the 𝑦(0) term by √2. The normalized 

DCT is then defined by:  

𝑦(𝑘) =
2

𝑁
𝑥(𝑛) cos

𝜋

2𝑁
(2𝑛 + 1)𝑘 , 0 ≤ 𝑘 < 𝑁 

𝑦(0) =
𝑦(0)

√2
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Similarly, the IDCT is normalized by dividing the 𝑥(0) term by √2 instead of 2, and scaling the entire 

matrix by  . The normalized IDCT is then defined by: 

𝑦(𝑘) =
2

𝑁

𝑥(0)

√2
+ 𝑥(𝑛) cos

𝜋

2𝑁
𝑛(2𝑘 + 1) , 0 ≤ 𝑘 < 𝑁 

Computing an N length DCT of an N length input signal requires 𝑂(𝑛 ) processing complexity 

with any of the above equations. Fortunately, there is an alternate algorithm that takes advantage of 

the DCT’s close relation to the DFT to perform the transformation with reduced complexity. The Type-II 

DCT of an 𝑁-length input signal is exactly equivalent to a DFT of a 4𝑁-length signal with even symmetry 

and all the even indexed input values set to zero. Because the DFT can be computed with the 𝑂(𝑛 log 𝑛) 

FFT algorithm, this alternative is more performant. However, the 4𝑁-length FFT limits the algorithms 

performance, making it slower than the standard DCT at smaller input sizes. Therefore, for optimal 

performance the algorithm must be modified to use an 𝑁-length FFT. The modified DCT and IDCT 

algorithms are summarized in Table 10 and 11 with an example 10-point input signal. These algorithms 

are computationally equivalent to a single 𝑁-length real FFT, plus some additional overhead for the 

rearranging and multiplication.  

Table 10: Modified DCT algorithm with 10-point input 

10-point input signal 0             1             2             3             4             5             6             7             8             9          
↓ 

Rearrange input 0             2             4             6             8             9             7             5             3             1          
↓ 

Take real FFT of input realFFT() 
↓ 

Multiply by half 
sample shift ∗ 𝑒  

↙              ↘ 
Discard imaginary real imaginary 
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Table 11: Modified IDCT algorithm with 10-point input 

10-point input signal 0             1             2             3             4             5             6             7             8             9          
↓ 

Multiply by half 
sample shift ∗ 𝑒  

↓ 

Take real FFT of input complexFFT() 
↓ 

Discard imaginary real 
↓ 

imaginary 

Real part 0             2             4             6             8             9             7             5             3             1          
↓ 

Rearrange output 0             1             2             3             4             5             6             7             8             9          
↓  

 The DCT is primarily used for its energy compaction property: The DCT of a signal will contain 

nearly all the signals energy in the first few DCT bins. That is, nearly all the signal’s energy (information) 

will be contained in a small number of the transformed samples. This property can be seen in Figure 3.9 

for the 10-point input signal [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]. 

 

Figure 3.9: Type-II DCT of Input Sequence 

Here, the DCT of [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] contains nearly all the signals energy in the first 2 bins. 

The other 8 bins are nearly zero. In fact, the first 2 bins contain 99.89% of the original signal’s total 
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energy, and the original signal can be represented using only these first 2 bins. By discarding the 

remaining 8 bins, and taking the IDCT of the 2 retained bins, the original signal can be reconstructed. 

The reconstructed signal is shown overlaid with the original signal in Figure 3.10. 

 

Figure 3.10: Input reconstructed via DCT with 80% data reduction 

After an 80% data reduction, the signal can still be reconstructed with only a small amount of 

error. This energy compaction by the DCT is the primary mechanism used in JPEG image compression 

and MP3 audio compression.  

Filter 

The Filter class aims to be a comprehensive data filtering toolkit for the Tactile Waves 

library. In DSP applications, filters are used to remove, attenuate, or amplify specific frequency regions 

in an audio signal.  Filter implements a single, general purpose recursive filter algorithm in the 

method filter(). This method accepts 3 input arrays containing the filter’s numerator coefficients, 

denominator coefficients, and the signal/data series to be filtered. The data array can be an array of 

single or double precision floating point numbers, while the coefficients must be double precision 
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floating point arrays. Both finite impulse response (FIR) and infinite impulse response (IIR) filters can be 

described by the rational transfer function: 

𝐻(𝑧) =
𝑌(𝑧)

𝑋(𝑧)
=

𝑏 + 𝑏 𝑧 + ⋯ + 𝑏 𝑧

𝑎 + 𝑎 𝑧 + ⋯ + 𝑎 𝑧
 

Where 𝑋(𝑧) is the Laplace Transform of the input signal 𝑥, 𝑌(𝑧) is the Laplace Transform of the filtered 

output signal 𝑦, 𝑏 is the list of 𝑛  numerator coefficients, and 𝑎 is the list of 𝑛  denominator 

coefficients. The normalized form of this transfer function divides all the coefficients by 𝑎 : 

𝐻(𝑧) =
𝑌(𝑧)

𝑋(𝑧)
=

𝑏
𝑎

+
𝑏
𝑎

𝑧 + ⋯ +
𝑏
𝑎

𝑧

1 +
𝑎
𝑎

𝑧 + ⋯ +
𝑎
𝑎

𝑧
 

𝐻(𝑧) can then be expressed as the difference equation: 

𝑎(0)𝑦(𝑛) = 𝑏(0)𝑥(𝑛) + 𝑏(1)𝑥(𝑛 − 1) + ⋯ + 𝑏(𝑛 )𝑥(𝑛 − 𝑛 ) − 𝑎(1)𝑦(𝑛 + 1) − ⋯

− 𝑎(𝑛 )𝑦(𝑛 − 𝑛 ) 

Which can be easily implemented in code. Here the numerator coefficients, 𝑏, are called the 

feedforward coefficients, and 𝑛  is the feedforward filter order. Similarly, the denominator coefficients, 

𝑎, are called the feedback coefficients, and 𝑛  is the feedback filter order. Filter uses this equation in 

the filter() method to execute all filtering operations that Filter performs.  

 The filter() method is a static method, so it does not require instantiation. However, a filter 

can be saved and reused by instantiating a Filter object.  The constructer takes two arguments: an 

array of numerator coefficients and an array of denominator coefficients. These coefficients are saved 

with the object, and the non-static version of filter() can be called at any time to perform filtering 

with the saved coefficients.  
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 Custom digital filters can be designed from analog prototypes using the allPole() 

biquad(), and chebyshev() methods. The allPole() method can be used to design 2-pole 

Butterworth, Critically damped, and Bessel IIR filters. Both low and high pass filters are supported, as 

well as filter cascading. The 3 filter types are compared in Figure 3.11 for a single 100 Hz low-pass 

design. High-pass versions of these filters would produce an identical response, flipped horizontally 

about the critical frequency of 100 Hz.  

 

Figure 3.11: Low-pass filter responses of all pole filters 

The roll-off of these all-pole filters can be improved by cascading the filter, or passing the signal 

through multiple times (after adjusting the filter coefficients accordingly). An example of this is shown in 

the following figure for a Butterworth filter with various passes, or cascades. As the number of filter 

passes in increased, the stopband roll-off increases. 
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Figure 3.12: Example of Butterworth filter cascading 

The biquad() method is capable of designing a diverse pallet of adjustable biquadratic filters. 

Low/high-pass, all-pass, band-pass, notch, peak (bell), and low/high shelf filter shapes are supported, 

and each can be adjusted through the design parameters.  Each of these filter shapes is shown in Figure 

3.13 for a critical frequency of 100 Hz. Lines with smaller dashes indicate an increase in the Q/gain 

parameter of the filter. High-pass and high-shelf filters have been omitted, as their response is identical 

to their low-pass and low-shelf counterparts, flipped horizontally about the critical frequency.  
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Figure 3.13: Biquadratic Filter Responses 

 The chebyshev() method allows for the design of N-pole digital Chebyshev IIR filters with 

adjustable passband ripple. Doubling the number of poles will double the slope of the stopband roll-off 

at the cost of stability (Figure 3.14), and increasing the passband ripple will increase slope of the 

stopband roll-off at the cost of ripple in the passband (Figure 3.15). With the potential for such sharp 

stopband attenuation, the Chebyshev filters are intended to be used in situations that require exact 

frequency separation, such as resampling.  
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Figure 3.14: 0% ripple Chebyshev filter response with varying number of poles 

 

Figure 3.15: 4-pole Chebyshev filter response with varying passband ripple 

Cepstrum 

The Cepstrum class is responsible for performing cepstral transforms on audio data/signals. 

Much like how a Fourier transform computes the spectrum of a time domain signal by converting it into 

the frequency domain, a cepstral transform computes the “cepstrum” of a time domain signal by 

converting it into the “quefrency” domain. The names “cepstral” and “cepstrum” come from reversing 
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the first four letters of the words “spectral” and “spectrum”, and “quefrency” is a reordering of the 

letters in “frequency”. Similarly, a filtering like operation in the quefrency domain is called “liftering”. As 

the name might imply, the cepstral transform is closely related to the Fourier (spectral) transform. A 

cepstrum is defined as the inverse Fourier transform of the logarithm of the spectrum of a signal, and 

there are several variations based on the type of spectrum used. Cepstrum implements the real 

cepstrum, power cepstrum, and complex cepstrum. The real cepstrum is found by taking the inverse 

Fourier transform of the log of the magnitude spectrum: 

𝑟𝑒𝑎𝑙 𝑐𝑒𝑝𝑠𝑡𝑟𝑢𝑚 = 𝐼𝐹𝐹𝑇(log(|𝐹𝐹𝑇(𝑥)|)) 

Whereas the power cepstrum uses the power spectrum, rather than the magnitude spectrum: 

𝑝𝑜𝑤𝑒𝑟 𝑐𝑒𝑝𝑠𝑡𝑟𝑢𝑚 = 𝐼𝐹𝐹𝑇(log(|𝐹𝐹𝑇(𝑥)| )) 

Because the magnitude and power spectrums throw away the signal phase, the original signal 

cannot be reconstructed from these spectra alone. Similarly, the original signal cannot be reconstructed 

from the real or power cepstra. When reconstruction of the original signal after transformation is 

required, the complex cepstrum is used. The complex cepstrum is the result of the inverse Fourier 

transform of the complex log of the complex spectrum:  

𝑐𝑜𝑚𝑝𝑙𝑒𝑥 𝑐𝑒𝑝𝑠𝑡𝑟𝑢𝑚 = 𝐼𝐹𝐹𝑇 log 𝐹𝐹𝑇(𝑥)  

The original signal can then be reconstructed by reversing these steps: 

𝑖𝑛𝑣𝑒𝑟𝑠𝑒 𝑐𝑜𝑚𝑝𝑙𝑒𝑥 𝑐𝑒𝑝𝑠𝑡𝑟𝑢𝑚 = 𝐼𝐹𝐹𝑇(𝑒 ( )) 

Where 𝑒 is the complex exponential function (the inverse of the complex logarithm).  
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 Cepstral analysis takes advantage of a basic property of logarithms that makes it an important 

tool in speech processing. The product rule of logarithms states that the logarithm of a product can be 

separated into a sum of the log of its factors: 

log (𝑥𝑦) = log (𝑥) + log (𝑦) 

By defining 𝐹𝐹𝑇(𝑥) = 𝐹𝐹𝑇(𝑠) × 𝐹𝐹𝑇(𝑓), the definition of a cepstrum can then be rewritten as: 

𝑐𝑒𝑝𝑠𝑡𝑟𝑢𝑚 = 𝐼𝐹𝐹𝑇 log 𝐹𝐹𝑇(𝑠) + log 𝐹𝐹𝑇(𝑓)  

Which shows that multiplication in the frequency domain transforms into a linear combination in the 

cepstral domain. Because multiplication in the frequency domain is equivalent to convolution in the 

time domain, the cepstral transform turns a time domain convolution into a linear combination 

(summation) of its components. Unlike convolution, a linear combination can be easily separated. In this 

way, the cepstral transform can be used for deconvolution, which is achieved through a process known 

as “liftering” 

 Liftering is a similar operation to filtering in the frequency domain where a signal’s spectrum is 

multiplied by a desired frequency response to attenuate or amplify certain frequency regions. Liftering is 

the process of removing either high-time or low-time quefrency components from the cepstrum. Low-

time liftering is achieved by multiplying the cepstrum by a rectangular window that covers the quefrency 

region of interest. A low-time liftering window can be defined as: 

𝑤(𝑛) =

 1, 0 ≤ 𝑛 ≤ 𝐿

  0, 𝐿 < 𝑛 ≤
𝑁

2

 

Where 𝐿  is the cutoff length of the liftering window, in samples. This window will zero out all quefrency 

components with periods longer than 𝐿  , and leave the rest of the cepstrum intact. This operation 

effectively removes low frequency content from the cepstrum.  
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 Similarly, high-time liftering applies a rectangular window that preserves quefrency components 

above the cutoff, 𝐿 . A high-time liftering window is therefore the opposite of the low-time liftering 

window:  

𝑤(𝑛) =

 0, 0 ≤ 𝑛 < 𝐿

  1, 𝐿 ≤ 𝑛 ≤
𝑁

2

 

This window will zero out all quefrency components with periods shorter than 𝐿  , which effectively 

removes high-frequency content from the cepstrum.  

MFCC  

The MFCC class computes the Mel-frequency cepstral coefficients (MFCC’s) of an audio signal. 

The MFCC’s are simply a group of numbers that collectively make up the Mel-frequency cepstrum 

(MFC), which is a modified power cepstrum.  The MFC is defined as the discrete cosine transform of the 

logarithm of the Mel-frequency centered triangular filtered power spectrum of a signal, mapped to the 

Mel scale. The steps to compute the MFC are as follows: 

1. Compute the 𝑁-length power spectrum of the signal 

2. Compute the 𝑀 Mel-filter bank energies  

3. Take the logarithm of the filter bank energies 

4. Compute the discrete cosine transform of the log filter bank energies to yield 

cepstral coefficients, or MFCCs 

5. Apply liftering operation (optional step)  

To convert a frequency in Hz to the Mel scale, the following equation is used:  

𝑀(𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦) = 2595 log (1 +
𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦

700
) 
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To convert from the Mel scale back to frequency, the inverse operation is performed: 

𝑀 (𝑚𝑒𝑙) = 700(10 ⁄ − 1) 

These two equations are used to compute the filter bank FFT bins, 𝑓(𝑖): 

𝑓(𝑖) = 𝑓𝑙𝑜𝑜𝑟
(𝑁 + 1)𝑀 (𝑚𝑒𝑙(𝑖))

𝑓
 

Where 0 ≤ 𝑖 ≤ 𝑀 + 1, and  

𝑚𝑒𝑙(𝑖) = 𝑚𝑒𝑙(0) +
𝑖

𝑀 + 1
 𝑚𝑒𝑙(𝑀 + 1) − 𝑚𝑒𝑙(0)  

𝑚𝑒𝑙(0) = 𝑀(𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦)  

𝑚𝑒𝑙(𝑀 + 1) = 𝑀(𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦) 

Which defines the start, center, and ending FFT bin for each triangular filter in the filter bank. The 𝑚  

filter will start at 𝑓(𝑚 − 1), reach unity at 𝑓(𝑚) and end at 𝑓(𝑚 + 1). The filter bank can then be 

defined as:  

ℎ (𝑘) =

⎩
⎪⎪
⎨

⎪⎪
⎧

0                      𝑘 < 𝑓(𝑚 − 1)

𝑘 − 𝑓(𝑚 − 1)

𝑓(𝑚) − 𝑓(𝑚 − 1)
     𝑓(𝑚 − 1) ≤ 𝑘 ≤ 𝑓(𝑚)

𝑓(𝑚 + 1) − 𝑘

𝑓(𝑚 + 1) − 𝑓(𝑚)
     𝑓(𝑚) ≤ 𝑘 ≤ 𝑓(𝑚 + 1)

0                     𝑘 > 𝑓(𝑚 + 1)

 

Where 1 ≤ 𝑚 ≤ 𝑀 and 0 ≤ 𝑘 ≤ 𝑁/2. An example of a Mel-filter bank running with 10 banks in the 

range 0-8000 Hz is shown in Figure 3.16. 
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Figure 3.16: A 10-band Mel filter bank from 0-8000 Hz 

The entire process for computing the MFCCs of a signal can now be defined by the following 

equation: 

𝑀𝐹𝐶𝐶 = 𝐷𝐶𝑇 log |𝐹𝐹𝑇(𝑥)| ∗ ℎ (𝑘)  

The optional liftering step above amounts to simply point-wise multiplying the MFCC vector by a 

weighting function 𝑤 : 

𝑀𝐹𝐹𝐶 = 𝑤 ∗ 𝑀𝐹𝐹𝐶  

Many different weighting functions exist for various types of liftering. MFCC includes three popular 

liftering methods: linear, sinusoidal, and exponential. The equations for each lifter are listed in Table 12 

Table 12: MFCC Liftering Methods 

Linear [K.K. Paliwal] Sinusoidal [Biing-Hwang Juang] Exponential [Mike Brookes] 

𝑤 = 𝑖 𝑤 = 1 +
𝐷

2
sin

𝜋𝑖

𝐷
 

𝑤 = 𝑖 𝑒 ⁄  

𝑠 = 1.5, 𝜏 = 5 
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LPC  

The LPC class implements a linear predictive coding algorithm using an autocorrelation method. 

Linear predictive coding attempts to provide a compressed representation of the spectral envelope of a 

speech signal using a linear prediction model. A 𝑃 -order FIR filter is fit to a data series x that predicts 

the current value of x based on previous values: 

𝑥 (𝑛) = 𝑎(1)𝑥(𝑛 − 1) + 𝑎(2)𝑥(𝑛 − 2) + ⋯ + 𝑎(𝑃)𝑥(𝑛 − 𝑃) 

Where 𝑎 is a vector containing the models 𝑃 + 1 prediction coefficients, and 𝑎(0) = 1. LPC finds the 

optimal coefficients by solving the Yule-Walker system of equations: 

𝑅𝑎 = 𝑟 

Where 

𝑅 =
    

𝑟(0)        𝑟∗(1)   ⋯
𝑟(1)        𝑟(0)    ⋱

⋮    ⋮ ⋱

𝑟∗(𝑛 − 1)
𝑟∗(𝑛 − 2)

⋮
𝑟(𝑃 − 1) 𝑟(𝑃 − 2) … 𝑟(0)

, 𝑟 =

−𝑟(1)

−𝑟(2)
⋮

−𝑟(𝑃)

 

And 𝑟(𝑚) is the autocorrelation function of a signal 𝑥, defined as follows: 

𝑟(𝑚) = 𝑥(𝑛)𝑥(𝑛 + 𝑚) 

Because 𝑅 is a Toeplitz (diagonal-constant) matrix, the system can be solved for 𝑎 in 𝑂(𝑛 ) flops using 

Levinson-Durbin recursion.  

 Levinson-Durbin recursion recurses over the model order to calculate the coefficients for a 𝑃 -

order predictor from a (𝑃 − 1) -order predictor, denoted by the subscripts 𝑃, 𝑃 − 1, etc. The system 

of equations representing the (𝑃 − 1) -order predictor, can be found by omitting the last row and 

column from 𝑅 : 
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𝑅

𝑎 (1)

𝑎 (1)
⋮

𝑎 (𝑃 − 1)

= 𝑟 − 𝑎 (𝑃)�̂�  

Multiplying by in inverse of 𝑅  gives:  

𝑎 (1)

𝑎 (1)
⋮

𝑎 (𝑃 − 1)

= 𝑅 𝑟 − 𝑅 �̂� 𝑎 (𝑃) 

Substituting 𝑎 =  𝑅 𝑟 yields the final equation for calculating the predictor coefficients:  

𝑎 (1)

𝑎 (1)
⋮

𝑎 (𝑃 − 1)

= 𝑎 − 𝑎 (𝑃)𝑎  

The 𝑖  coefficient for a 𝑃 -order model can be found from: 

𝑎 (𝑖) = 𝑎 (𝑖) − 𝑎 (𝑃)𝑎 (𝑃 − 1) 

 

Where 

𝑎 (𝑃) =
𝑟(𝑃) − �̂� 𝑎

𝑟(0) − �̂� 𝑎
 

and 

�̂� =

𝑟 (𝑃)

𝑟 (𝑃 − 1)
⋮

𝑟 (1)

, 𝑎 =

𝑎 (𝑃)

𝑎 (𝑃 − 1)
⋮

𝑎 (1)

 

 LPC computes the autocorrelation of the input signal x (using FFT), then performs Levison-

Durbin recursion as described above to find the 𝑃 + 1 coefficients of the predictor. These coefficients 
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define a 𝑃 -order polynomial that approximates the spectral envelop of the signal. This can be used for 

a variety of useful processing. For example, the formant frequencies of the signal can be found from the 

roots of the polynomial. For each complex root 𝑧, with a positive imaginary component, the 

corresponding formant frequency and bandwidth can be found from the following equations: 

𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 = arg(𝑧) ∗
𝑓

2𝜋
, 𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ = log (𝑚𝑎𝑔(𝑧))

−𝑓

4𝜋
 

 LPC provides two static methods, lpc() and estimateFormants(). The lpc() method 

takes a signal 𝑥, and an integer specifying the model order, 𝑃 and returns the 𝑃 + 1 predicator 

coefficients. The estimateFormats() method takes a signal 𝑥, and two integers specifying the 

number of requested formants, and the sampling rate of the signal. The method first calls lpc() with a 

model order of 2 ∗ # 𝑜𝑓 𝑓𝑜𝑟𝑚𝑎𝑛𝑡𝑠 + 2. The roots of the polynomial are found using RootSolver, 

and the formant/bandwidth pairs are calculated and returned.  

YIN  

The YIN class implements the YIN pitch detection algorithm (PDA), as described by de 

Cheveigné and Kawahara in [21]. A pitch detection algorithm attempts to estimate the fundamental 

frequency, or pitch, of an audio signal. The fundamental frequency, F_0, is defined as the inverse of the 

period of a periodic waveform, where the period is defined as the smallest time shift that leaves the 

signal invariant.  Pitch estimation techniques based on autocorrelation attempt to exploit this 

assumption by comparing a signal to many time delayed versions of itself. If there is a delay time that 

appears to leave the signal unchanged, then that delay time must be equal to the period of that signal. 

The autocorrelation function (ACF) is used to accomplish this task efficiently, as it is a measure of the 

correlation between a signal and a delayed version of itself, as a function of the delay time. In the Yin 

paper, the autocorrelation function of a signal 𝑥 is defined as: 
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𝑟(𝜏) = 𝑥 𝑥  

Which yields the autocorrelation of 𝑥 at a lag of 𝜏 samples. To demonstrate the relation between auto 

correlation and pitch, consider a 0 dbFS 10 Hz sine wave that has been corrupted with noise at an SNR of 

0 dB and sampled at 200 Hz. A 128-sample chunk of this waveform is shown in Figure 3.17. 

 

Figure 3.17: 10 Hz sine wave + noise sampled @ 200 Hz 

 

The autocorrelation function of this sine wave is shown in Figure 3.18 for the range 0 < 𝜏 < 64 

samples.  
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Figure 3.18: Autocorrelation of noisy sine wave 

The ACF peaks at 0 samples (no lag), and every integer multiple of 20 samples. The period (in 

samples) of the waveform is found by selecting the smallest non-zero lag which contains a peak. Dividing 

the sampling rate (200 Hz) by this value (20 samples), yields the pitch of the signal – 10 Hz. This is the 

fundamental idea behind autocorrelation based pitch estimation.  

 The Yin algorithm implements an autocorrelation based pitch estimation, with the addition of 

several error correction steps that make it one of the most accurate PDAs available [YIN]. Apart from the 

additional steps, the algorithm has one key difference from the procedure described above. Instead of 

using the autocorrelation function, the difference function is used. The difference function of a signal 𝑥 

is defined by: 

𝑑(𝜏) = (𝑥 − 𝑥 )  

Which can be written in terms of the autocorrelation function by: 

𝑑(𝜏) = 𝑥 𝑥 − 2𝑥 𝑥 + 𝑥 𝑥 = 𝑟(0) + 𝑟 (0) − 2𝑟(𝜏) 
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The first step in the algorithm is to compute this difference function, followed by a normalization step to 

normalize the difference function using its cumulative mean. The equation to compute the cumulative 

mean normalized difference function is defined as: 

𝑑 (𝜏) =

           1               𝜏 = 0
𝑑(𝜏)

1
𝜏

∑ 𝑑(𝑗)
    𝑒𝑙𝑠𝑒  

Where the ACF shows the amount of correlation between a signal and a time delayed copy, the 

difference function shows the how different a signal is from a time shifted copy.  For example, the 

normalized difference function of the noisy sine wave used above is shown below in Figure 3.19. 

 

Figure 3.19: Cumulative normalized difference function of noisy sine wave 

Here, the function is at a minimum at lag values that are integer multiples of 20 samples. 

Because the added noise breaks the perfect periodicity of the sine wave, the difference function is non-

zero everywhere. A perfectly periodic signal would result in zeros at integer multiples of the period, as 

any time delay that is evenly divisible by the period leaves the signal invariant.   

 It is possible for the difference function to contain dips at lag values greater than the period, 

that are lower than the dips at the actual period. To prevent the algorithm from choosing this incorrect 
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period, an absolute thresholding scheme is employed as the next step in the algorithm. A threshold is 

set in the program (or by the user/programmer) and the smallest 𝜏 value that gives a minimum of 𝑑’(𝜏) 

that is below the threshold is chosen. If no value is found that satisfies the threshold, the global 

minimum of the difference function should be returned instead. However, in testing this proved to be 

problematic. The algorithm will always report a pitch, even in the presence of un-pitched sounds, such 

as white noise. A popular solution to this problem is to compute the probability of the estimated pitch, 

and return this value with the pitch. The program must then perform some post-processing to 

determine if the pitch reading is valid, based on the probability, the past readings, etc.  It would be 

preferable for the algorithm to report the pitch when a pitched sound is present, and no pitch 

otherwise. The algorithm was modified slightly to accomplish this. Rather than returning the global 

minimum if the threshold is not satisfied, YIN returns -1, indicating that no pitch was found. Because 

speech is composed of both pitched (voiced) and un-pitched (unvoiced) sounds, YIN can be used as a 

voiced/unvoiced speech detector, as well as a pitch estimator, simultaneously.  

 The final steps of the Yin pitch detection algorithm are about refining the period estimate 

obtained from previous steps. The first is called the “best local estimate” and in it, the value of the 

normalized difference function at the current 𝜏 estimate at time 𝑡 is compared to values of the 

difference function in the temporal vicinity 𝑡 − , 𝑡 +  to find a minimum. The Yin paper 

describes a file based pitch detection, in which the difference function of the entire audio clip is 

computed at once, allowing the algorithm to look forward into time. Because Tactile Waves implements 

real-time audio processing, this is impossible to achieve. Instead, YIN examines the current audio buffer 

and searches for a minimum value of the difference function in the range [𝜏 − 𝜏/5, 𝜏 + 𝜏/5].  

 The final step of the algorithm uses parabolic interpretation to refine the estimated period to a 

more precise value. Because the lag 𝜏 is measured in samples, it is restricted to whole integer numbers. 
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This limits the maximum accuracy of the reported pitch, as the actual pitch period could fall on a 

fractional number of samples. For example, the pitch of the note C3 is 261.6 Hz, corresponding to a 

period of 168.578 samples at a sampling rate of 44100 Hz. Without parabolic interpolation, the 

algorithm would be report a period of 168 or 169 samples, corresponding to a pitch of 262.5 or 260.947 

Hz, respectively.  The dip in the normalized difference function corresponding to the estimated 𝜏 is 

modeled as a quadratic function, and the curve is fitted with a parabola and the interpolated minimum 

is retuned as the final estimated pitch period. The sampling rate of the signal is divided by this value to 

yield the final pitch estimate. 

 YIN provides two static methods to estimate the pitch of a signal using the Yin PDA: 

estimatePitch() and estimatePitchFast(). The former computes 𝑑(𝜏) directly from the 

signal 𝑥, as described above, which requires 𝑂(𝑛 ) flops. The latter method uses the FFT class to 

compute the autocorrelation of 𝑥, then computes 𝑑(𝜏) from the autocorrelation, resulting in only 

𝑂(𝑛 log 𝑛) flops, and roughly a 90% speed increase over estimatePitch(). Other than the 

differences in computing the difference function, these two methods are completely identical.   

ZCR  

The ZCR class computes the zero-crossing rate of a signal. ZCR implements a single static 

function called getZCR(). This method returns the rate that the input signal crosses zero, in units of 

crossings per sample. This reading can be converted to Hz by multiplying by the signals sample rate. For 

example, the signal [1.0, 0.5, -0.5, -1.0] contains 1 zero-crossing at a zero-crossing rate of 1/4 

crossings/sample. If this signal was sampled at 100 Hz, this would result in a zero-crossing frequency of 

25 Hz.  

The method getZCR() accepts a single argument that contains the signal to analyze. The input 

signal can be stored in an array of single or double precision floating point numbers, or contained within 
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a WaveFrame object. This method traverses the entire input signal sample-by-sample, and keeps a 

count of the number of times the signal value changes sign (resulting in 𝑂(𝑛) computational 

complexity). This counter is then divided by the total number of samples in the input signal, and the 

result is returned.  

The ZCR class is useful for performing a quick estimate of the noisiness of a signal, or checking 

the voiced/unvoiced state of a speech signal. A signal with a large amount of high frequency 

information, or a signal that has been corrupted with wide-band noise will have a higher zero-crossing 

rate than a signal dominated by low frequency content. For example, voiced speech sounds are pitched, 

and pitched sounds contain a dominant low frequency component corresponding to the fundamental 

frequency, whereas unvoiced speech sounds are unpitched and do not have a dominant frequency. 

Therefore, regions of voiced speech will exhibit lower zero-crossing rates than regions of unvoiced 

speech. In this way, ZCR can be used to distinguish between voiced and unvoiced speech segments in 

real-time.   

3.7. Utilities 
 

The dsp subpackage features a subpackage called utilities that contains some useful classes and 

supporting data structures for the library. The classes within the utilities subpackage are summarized in 

Table 13. 

Table 13: Class summary of utilities package 

Object Name Responsibility Requires 
Instantiation? 

Complex Class to represent complex 
number objects 

Yes 

Matrix Class to represent Matrix objects Yes 

RootSolver Find the roots of polynomials No 

SolverNotConvergedException Custom exception for RootSolver Yes 
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Sort Array sorting and peak finders No 

StopWatch Stop watch to time events Yes 

Utilities Collection of utility methods  No 
 

 

Complex 

The Complex class represents complex numbers of the form 𝑧 =  𝑥 +  𝑦𝑖, where z is the 

complex number, 𝑥 is its real part, 𝑦 is its imaginary part, and 𝑖 is √−1. One instance of Complex 

represents a single complex number, and is constructed from 2 floating point numbers representing the 

real and imaginary components of the complex number.  A collection of mathematical operations 

supported by the Complex class are summarized in Table 14.  

Table 14: Summary of Complex class methods 

Method Name Description 
isReal() Is this complex number real (𝑦 = 0)? 

real() Returns the real part of this complex number (𝑥) 

imag() Returns the imaginary part of this complex number (𝑦) 

mag() Returns the magnitude of this complex number ( 𝑥 + 𝑦 ) 

power() Returns the power of this complex number (𝑥 + 𝑦 ) 

arg() Returns the argument of this complex number (𝑡𝑎𝑛(𝑦/𝑥)) 

conj() Returns the conjugate of this complex number (𝑥 –  𝑦𝑖) 

reciprocate() Returns the reciprocal of this complex number (1/𝑧) 

exp() returns the complex exponential of this complex number (𝑒 ) 

plus() Add a (complex) number to this complex number and return result 

minus() Subtract a (complex) number from this complex number and return result 
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times() Multiply this complex number by another (complex) number and return result 

divide() Divide this complex number by another (complex) number and return result 

pow() Raise this complex number to a power and return result 

 

Matrix  

The Matrix class represents 2-dimensional matrices of floating-point numbers. An 𝑁 × 𝑁 

matrix is stored in column major order in a single array of length 𝑁 . For example, the matrix 1 2
3 4

 is 

stored as [1, 3, 2, 4]. This is done for both simplicity and performance, as accessing elements from a 1-

dimensinal array is significantly faster than access from a 2-dimensional array.  

A collection of mathematical operations are supported by the Matrix class, and are 

summarized in Table 15.  

Table 15: Summary of Matrix class methods 

Method Name Description 
identity() Returns an identity matrix 

getRows() Returns the number of rows in this matrix 

getCols() Returns the number of columns in this matrix 

getData() Returns an array containing all the data in this matrix in column major order 

get() Returns the value at a specific location in the matrix 

set() Sets the value at a specific location in the matrix 

add() Adds a number to the value at a specific location in the matrix 

transpose() transpose this matrix, overwriting the original 

inverse() Returns the inverse of this matrix 
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swap() swap 2 specified rows in this matrix 

times() Multiply this matrix by another matrix or vector 

solve() Solves the system of linear equations 𝐴 ∗ 𝑥 = 𝐵, where 𝐴 is this matrix, and 𝐵 is 
another matrix or vector  

 

RootSolver  

The RootSolver class implements a root-finding algorithm to solve for the roots of 

polynomials using the Durand-Kerner Method. The Durand-Kerner method works as follows: if the array 

[𝑎, 𝑏, 𝑐, 𝑑] represents the polynomial 𝑓(𝑥) = 𝑥 + 𝑎𝑥 + 𝑏𝑥 + 𝑐𝑥 + 𝑑, and the complex numbers 

[𝑃, 𝑄, 𝑅, 𝑆] are the roots of this polynomial then it follows that: 

𝑓(𝑥) = (𝑥 − 𝑃)(𝑥 − 𝑄)(𝑥 − 𝑅)(𝑥 − 𝑆) 

Which can be rearranged as: 

𝑃 = 𝑥 −
𝑓(𝑥)

(𝑥 − 𝑄)(𝑥 − 𝑅)(𝑥 − 𝑆)
 

And because f(P) = 0: 

𝑃 = 𝑃 −
𝑓(𝑃)

(𝑃 − 𝑄)(𝑃 − 𝑅)(𝑃 − 𝑆)
= 𝑃 − 0 = 𝑃 

Which implies that P is a fixed point of the above equation and can therefore be found using a fixed-

point iterator: 

𝑝 = 𝑝 −
𝑓(𝑝 )

(𝑝 − 𝑞 )(𝑝 − 𝑟 )(𝑝 − 𝑠 )
 

The above process is repeated for Q, R, and S to yield:  
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𝑞 = 𝑞 −
𝑓(𝑞 )

(𝑞 − 𝑝 )(𝑞 − 𝑟 )(𝑞 − 𝑠 )
 

𝑟 = 𝑟 −
𝑓(𝑟 )

(𝑟 − 𝑝 )(𝑟 − 𝑟 )(𝑟 − 𝑠 )
 

𝑠 = 𝑠 −
𝑓(𝑠 )

(𝑠 − 𝑝 )(𝑠 − 𝑞 )(𝑠 − 𝑟 )
 

With these 4 equations, the complex roots [𝑃, 𝑄, 𝑅, 𝑆] can now be found by selecting initial 

guesses [𝑝 , 𝑞 , 𝑟 , 𝑠 ], and iterating until the complex values [𝑝, 𝑞, 𝑟, 𝑠] stop changing between 

iterations, or if the change between successive iterations is below a specified threshold.  

RootSolver provides the method roots() to return the complex roots of a polynomial 

represented by a floating-point array of polynomial coefficients. There are two flavors of the roots() 

method. The first accepts the array of polynomial coefficients, a stop threshold, and a max iteration 

limit. This method will return the roots of the polynomial if the maximum change between successive 

iterations drops below the stop threshold or throw a SolverNotConvergedException if the max number 

of iterations is reached before the stop threshold is satisfied. The second accepts the same array of 

polynomial coefficients, and a single boolean variable that indicates whether the method should 

proceed with maximum accuracy. If true, the method will find the roots as accurately as possible, at a 

greater computational cost. If false, the method will operate with a balance of accuracy and 

performance. This allows the programmer to effortlessly select the proper method for their use, without 

having to worry about optimizing the stop threshold and iteration limit.  

SolverNotConvergedException  

The SolverNotConvergedException class extends Java’s built in Exception class 

which is a form of Throwable used to “throw” errors or conditions that an application may want to 

“catch” and attempt to correct, rather than immediately crashing. 
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SolverNotConvergedException provides a custom Exception object that RootSolver can 

throw if the root solver cannot converge to a solution, rather than getting stuck in an infinite loop 

attempting to solve a diverging iteration.  

Sort 

The Sort class provides a specialized sorting functionality that is highly useful in spectral 

analysis applications. Typical sorting methods, like those used by Java’s own Arrays.sort(), take a 

list of unsorted numbers and rearrange them into ascending numerical order. The list gets sorted, but 

the original ordering of the numbers has been lost. But what if a program needs to sort a list of numbers 

while maintaining a link to their original positions? For example, to find the N highest spectral peak in a 

signal, its spectrum could be sorted. The sorted spectrum would now contain the amplitudes of the 

highest points in the spectrum, but it is impossible to find the corresponding frequency of each 

amplitude without knowing its original position in the spectrum. The Sort class addresses this use case 

with a customized merge sort algorithm. The method sort() takes an array of integers to be sorted, 

and an array of floating point numbers to sort with. The integer array is then sorted using an 𝑂(𝑛 log 𝑛) 

merge sort algorithm based on the contents of the floating-point array.  

StopWatch 

The StopWatch class implements a simple stop watch object for the library. One instantiated, 

a StopWatch object can be started and stopped with the methods start() and stop(). At any 

point, the stop watch timer can be queried using the getElapsedTime() or 

getElapsedTimeSecs() method to get the elapsed time in units of nanoseconds or seconds, 

respectively. If either of these methods are called while the stop watch is running, the elapsed time 
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since the last call to start() is returned, otherwise the time between the last calls to start() and 

stop() is returned.  

This class is used heavily in the testing package to time library methods to verify real-time 

operation, or compare the execution speed of different algorithms/implementations. During 

development, the latter was performed extensively to ensure every class was designed with optimal 

performance on both PC and Android. See the Testing section for more details.  

Utilities 

The Utilities class is a collection of useful methods that are included with the library, but 

do not have a dedicated class. These methods will most likely be refactored into specific classes in the 

future. A summary of all methods provided by the Utilities class is shown in Table 16. 

Table 16: Summary of Utilities class methods 

Method Name Description 
ansiBands() Returns center frequencies of ANSI Octave-bands and Fractional-

Octave-Bands [ANSI Spec] 
ansiBandLimits() Returns band-limit frequencies of ANSI Octave-bands and Fractional-

Octave-Bands [ANSI Spec] 
max() Returns the maximum value in an array 

maxLoc() Returns the location of the maximum value in an array 

arrayAvg() Returns the average of all the values in an array 

findHighestPeaks() Finds the 𝑁 highest peaks in a data series 

findLowestPeaks() Finds the 𝑁 lowest peaks in a data series 

findOrderedPeaks() Finds the first 𝑁 peaks in a data series, in the order they appear 

isAndroid() Returns true if application is running on Android, false otherwise 
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3.8. COM 
 

The com subpackage contains classes for data transmission over Bluetooth. The classes within 

the com subpackage are summarized below in Table 17 & 18. 

Table 17: Class summary of com package 

Object Name Responsibility Requires Instantiation? 
Bluetooth Abstract Bluetooth class  Abstract 

android/BluetoothAndroid Concrete Bluetooth class for Android Yes 

BluetoothJava Concrete Bluetooth class for Java Yes 

PacketPacker Packs data into any number of bits No 

 

Table 18: Interface summary of com package 

Interface Name Description 
BluetoothEventListener Defines listener functionality to create objects that listen for 

important Bluetooth events 
 

Bluetooth 

The abstract Bluetooth class defines the cross-platform functionality required to send data 

over a Bluetooth communication socket. The class’s pubic methods are summarized in Table 19. 

Table 19: Summary of Bluetooth class methods 

Method Name Description 
setListener() Attaches a BluetoothEventListener object to this Bluetooth 

object 
getState() Gets the current state of this Bluetooth object 

getPairedDevices() Gets the list of paired devices from the Bluetooth hardware 

connect() Connects to a specified paired device 
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send() Sends bytes over Bluetooth to the connected device 

terminateConnection() Terminate the connection to the remote device, if connected 

 

 The classes BluetoothAndroid and BluetoothJava extend the abstract Bluetooth class 

and implement the required platform specific Bluetooth code for both Android and Java. 

BluetoothAndroid uses Android’s own Bluetooth framework from the android.bluetooth package, 

while BluetoothJava uses the JSR-82 Java API’s for Bluetooth implementation [26], from the Java 

library BlueCove [27].  Because both classes extend Bluetooth, they can be used interchangeably as 

Bluetooth objects, without needing to deal with the different platform code. To eliminate UI 

blocking, both BluetoothAndroid and BluetoothJava utilize separate threads for connecting 

devices and managing successful connections.  

 A Bluetooth connection can be made by first calling getPairedDevices() to get a list of 

previously paired devices. The index of the device to connect to is then passed to the connect() 

method to attempt to initiate a connection to the selected paired device. If a successful connection is 

established, the send() method can be used to send data to the remote device until the connection is 

terminated with the terminateConnection() method, or the connection is lost. Throughout this 

process, important events are communicated through the BluetoothEventListener object 

associated with the Bluetooth object.  

BluetoothEventListener 

The BluetoothEventListener interface is used in tandem with the getState() 

method from Bluetooth to allow the application to manage and react to Bluetooth communication 

events. The interface defines three methods that listen for important events from a Bluetooth instance. 



 
 

73 
 

The method bluetoothNotAvailable() is called if Bluetooth could not find any Bluetooth 

hardware, of if the hardware is currently unavailable. If Bluetooth is not available, this method will be 

called shortly after instantiation of the Bluetooth object. The application can then respond to this 

condition and disable any Bluetooth dependent functionally or instruct the user to turn on/allow 

Bluetooth on their device. Additionally, this condition causes a state change to either STATE_NONE, 

indicating that Bluetooth hardware was not found, or STATE_OK, indicating that Bluetooth hardware 

was found, but it is not currently enabled.  

The listener method bluetoothStateChanged() is called anytime a Bluetooth object 

undergoes a change in state. A list of all possible states is shown in Table 20.  If hardware was found and 

is enabled/ready to use, the object state will change to STATE_READY indicating that it is ready to 

begin connecting to a remote device. When attempting to establish a connection, the object will be in 

the state STATE_CONNECTING. Once a successful connection is obtained, the state is changed to 

STATE_CONNECTED. Upon disconnection from the remote device, the Bluetooth object will return 

to STATE_READY. If the device happens to be in discovery mode (used when pairing to a new device) 

the state is changed to STATE_DISCOVERY and the object must wait until the device is taken out of 

discovery mode (either by the user or by timeout). 

Table 20: State summary of Bluetooth object 

State Name Description 
STATE_NONE Bluetooth is not available or not supported 

STATE_OK Bluetooth is supported, but not ready/available 

STATE_READY Bluetooth is available and ready for use 

STATE_DISCOVERY Bluetooth is currently in discovery mode 

STATE_CONNECTING Bluetooth is currently attempting to connect to a device 
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STATE_CONNECTED Bluetooth is currently connected and ready to send/receive data 

 

Finally, the method bluetoothDataAvailable() is called whenever data is received from 

a connected device. The received data (array of bytes) is passed as an argument to this method.  

PacketPacker 

PacketPacker is a class that packs any amount of data into a specified number of bits. It is 

intended to be used with Bluetooth to compress large data packets for wireless transmission. The 

static method pack() takes an array of normalized floating-point numbers to pack (the data packet), 

and an integer specifying the bit depth to use.  Each normalized datum is converted to the specified 

number of bits using the following equation:  

𝑝𝑎𝑐𝑘𝑒𝑑 = 𝑣𝑎𝑙𝑢𝑒 ∗ (2  − 1) 

The packed bits are then strung together to form an array of bytes. If the case of bit depths greater than 

8, the bits are placed in little-endian order in the array. The returned byte array will have a length of: 

𝑐𝑒𝑖𝑙𝑖𝑛𝑔
# 𝑜𝑓 𝑑𝑎𝑡𝑎 𝑝𝑜𝑖𝑛𝑡𝑠 ∗ 𝑏𝑖𝑡 𝑑𝑒𝑝𝑡ℎ

8
 

This byte array can then be sent over Bluetooth and the receiving device can perform the reverse of 

these operations to obtain the original data, with some quantization error from the bit reduction.  

 To pack unnormalized data, PacketPacker must be instantiated. It is initialized with the bit 

depth, and a minimum and maximum value for the incoming data. Data packets can then be passed to 

the non-static version of pack(), and each point is normalized with the following equation: 

𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 =
𝑣𝑎𝑙𝑢𝑒 − 𝑚𝑖𝑛𝑖𝑚𝑢𝑚

𝑚𝑎𝑥𝑖𝑚𝑢𝑚 − 𝑚𝑖𝑛𝑖𝑚𝑢𝑚
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After normalization, each value is packed into a byte array exactly as described above.  
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4. Testing & Validation  
 
 
 

Tactile Waves was built using a Test-Driven Development (TTD) methodology. In this approach, 

specific test cases are generated for each required feature or function, and then tested to ensure they 

function and fail as expected. The actual implementation is then written to pass these specific tests after 

the tests have been defined. The tests are run against this new code to verify its correctness, and the 

process is repeated, expanding or adding new functionality. The main idea behind this process is that it 

forces the programmer to focus on interaction rather than implementation. That is, the programmer 

must first define how the code will be used, rather than how it will be written. This is a favored 

development strategy as it focuses on only what is needed to produce the required functionality.  

4.1. Unit Testing 
 

Unit testing is the process of testing a single unit of code (referred to as the Unit-Under-Test or 

UUT) in a self-contained and isolated scope. In OOP, a unit is a single class or method whose behavior is 

being examined. The purpose of unit testing is to ensure that each unit performs exactly as it should, 

assuming that everything else in the system is working properly. To make this assumption valid, a unit 

test must have no dependence on external objects or state. If a unit requires data or state from another 

object or external source (such as a microphone) for proper execution, those data should be mocked 

within the testing scope. The steps of a unit test are as follows: 

1. Setup the UUT and any mocked data/dependencies 

2. Execute the test by passing the mock data and triggering the target behavior 

3. Collect all output from the UUT and compare it to the correct output defined by the 

test 
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4. Cleanup the testing environment for the next test by freeing memory, resetting 

objects/data, etc.  

In TDD, every object should have a set of unit tests before the actual object is implemented. 

Additional unit tests may be added during development, but the core functionality should be pre-

defined by unit tests. Additionally, all unit tests should be executed whenever the code is changed to 

ensure the new changes do not break the defined functionality.  

Before Tactile Waves was even conceived, research was performed using MatLab to investigate 

various speech processing techniques and obtain a better understanding of audio processing as a whole. 

Nearly every analysis procedure available in Tactile Waves was first prototyped in MatLab to flesh out 

the required steps, and gain insight into how these processes work.  The development of Tactile Waves 

then became a process of redesigning these MatLab experiments for real-time usage and object-

oriented design. As a result, much of the toolbox package was made to mimic certain Matlab 

functions. For example, the static filter() method from the Filter class was designed to mimic 

MatLab’s own filter() function [28]. First, several MatLab scripts were created that (1) perform 

some useful filtering on a generated data set, and (2) output the filtered result. These generated data 

sets became the mocked data in step 1 of filter()’s unit test, and the output from the MatLab 

scripts was used as the correct output in step 3. This process was repeated until every requirement 

defined by the MatLab experiments had a corresponding unit test in Java. The library was then designed 

to satisfy these tests.  

Unit testing in Tactile Waves was structed as follows. For each class in the library, a 

corresponding unit testing class was created. For example, the FFT class is tested by the 

FFTUnitTest class, LPC by LPCUnitTest, etc. Within each testing class, there is a unit test for 

each method in the class being tested.  
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FFT 

The FFT class is tested using various methods to ensure that proper discrete Fourier 

transformation is performed. The first group of unit tests uses the test output from the FFT.java code 

provided in the textbook Algorithms, 4th Edition by Robert Sedgewick and Kevin Wayne [29]. Fourier 

transformation, inverse Fourier transformation, and convolution are all tested for correct output when 

given a 4-sample input signal. All supported data types are tested (float, double, and Complex). 

The next group of tests were written to verify known properties of the DFT. A unity amplitude signal is a 

signal in which every sample is equal to positive one. By definition, this signal has no frequency 

components and its spectrum should therefore contain all of the signals energy in the first bin (zero 

frequency, or DC) with all other frequency bins equal to zero. Additionally, the inverse DFT should revert 

a complex spectrum back to the original signal from which it was generated. Therefore, the inverse FFT 

of the FFT of a signal should result in the original signal (plus some numerical noise). Finally, a known 

property of the complex DFT is its left/right symmetry, so the complex FFT of any signal should always 

be symmetric about the middle of the spectrum. Each FFT subroutine in the class is tested to meet these 

conditions. 

Window 

The Window class is tested to ensure that each window function produced exactly the same 

output as MatLab’s window functions. In MatLab, a 100-point window of each type was generated and 

output to the console. These outputs were written into the WindowUnitTest class and used to check 

the correctness of each window function in the library.  
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DCT 

The Type-I and Type-II DCT algorithms implemented in the DCT class are tested against MatLab’s 

dct() function. Each DCT is tested with both 8-point and 9-point input signals (to test both even and odd 

length), and the 9-point input is tested with and without orthogonal normalization for a total of 6 

distinct unit tests.   

Filter 

The filter() method from the Filter class is tested against MatLab’s filter() function using 

a 64-point impulse signal for various filter coefficients.  Additionally, the coefficients of the 2-pole 

Butterworth filter generated with the allPole() filter design method are checked against the coefficients 

output by MatLab’s butter() function, which designs a digital Butterworth filter. Because a Chebyshev 

filter with 0% passband ripple is a Butterworth filter, chebyshev() was also compared against these 

coefficients for 2-poles and 0% ripple. Unfortunately, MatLab does not have functions for creating 

Bessel or Critically Damped digital filters, and its cheby() function is incapable of designing a filter with 

no passband ripple. Therefore, these filters could not be directly tested against MatLab. Instead, the 

filter frequency responses were generated in MatLab and compared against known responses for each 

filter type. Once the frequency responses were verified, the coefficients were saved into the 

FilterUnitTest class and are used for testing the Bessel, Critically Damped, and Chebyshev filters. A 

similar procedure was used to check the coefficients of the biquad filters, except Ableton Live was used 

to verify the responses. A .wav file was created containing an impulse signal, and this file was imported 

into a new Live set. Live’s native EQ Eight and Auto Filter devices were used to filter the impulse signal 

with various bi-quadratic filters, and the filtered audio from each filter was recorded into a blank audio 

track. These recorded impulse responses are included in the testing class for testing the biquad() 

method. 
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Cepstrum 

The various cepstral transforms implemented in the Cepstrum class are tested against 

corresponding functions in MatLab. The output of the real cepstrum is compared against the MatLab 

function rceps(), while the complex cepstrum and inverse complex cepstrum are compared against the 

MatLab functions cceps() and iceps(), respectively. Each is tested with a 128-sample input signal 

containing a 45 Hz sine wave with an echo, sampled at 100 Hz. MatLab does not have a function for 

computing the power cepstrum, so the real cepstrum is used to verify the power cepstrum. The power 

cepstrum is equal to the square of two times the real cepstrum. This definition is used to compute the 

power cepstrum from the real cepstrum, the result of which is compared against the output of the 

power cepstrum.  

MFCC 

MatLab does not provide any functions for directly computing the MFCC’s of an audio signal. 

There are a variety of MFCC subroutines available online for various programming environments, but 

each seems to use its own variant of the algorithm. For example, the Hidden Markov Model Toolkit 

(HTK) uses a slightly different Mel scale, and a Type-III DCT instead of a Type-II, while the CMU Sphinx 

package uses the standard Mel scale with a Type-II DCT, but normalizes the output by its length. This 

makes it difficult to develop an effective unit test for the MFCC class, as the output cannot be directly 

compared to a known correct output. Instead, certain numerical properties defined by the MFCC are 

tested. Because the Mel filter banks are designed to be constant energy, a signal with a flat spectrum 

should produce a flat MFC. An impulse signal is used as the test input as it contains all frequencies and 

therefore has a flat spectrum. The output is then compared to the output of the DCT of a flat spectrum 

normalized to the same total energy as the impulse. This test is repeated for both a low and high energy 
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impulse. Additionally, the filter bank frequencies are tested separately to ensure the correct Mel-scaled 

filter frequencies are used by the algorithm.  

LPC 

The LPC class is compared directly to MatLab’s own lpc() function, as it was designed to 

emulate this implementation exactly. A 4-sample input signal is used (the same signal used in 

FFTUnitTest), and the output of a 4th order predictor from lpc() is compared to the output 

produced by MatLab’s lpc(). The formant/bandwidth pairs produced by the estimateFormants() 

method are also compared to those produced by MatLab, using the procedure outlined in [].  

YIN 

The sole responsibility of the YIN class is to report the pitch of an audio signal, or -1 if no pitch 

exists. This functionality is tested with various signals and sample rates to ensure reliable operation over 

a wide range of input signals. For all tests, both estimatePitch() and estimatePitchFast() 

are tested in the same way. The first unit test in the YINUnitTest class uses a simple sine wave as 

input. The methods are tested with both a 0.0 dBFS 120 Hz sine wave sampled at 16000 Hz and a 0.0 

dBFS 1000 Hz sine wave sampled at 44100 Hz. The output of each method should be equal to the 

frequency of the input sine wave. This test is repeated with the same sine waves, except the first and 

second harmonics are added to each with 60% and 40% of the fundamental’s amplitude, respectively. 

This test is repeated, but random noise is added instead of the additional harmonics. The same 120 and 

1000 Hz sine waves are generated, and then mixed with randomly generated noise at a ratio of 5:1 

signal to noise. In all cases, the methods should report the fundamental frequency of either 120 or 1000 

+/- 0.1 Hz.  

 



 
 

82 
 

ZCR 

The ZCR class is tested by ensuring that it reports the correct number of zero crossings for a 

known signal. The correct number of zero crossings can be calculated for a pure sine wave by 

multiplying the frequency of the wave by two and dividing by the sampling rate. Using this relation, the 

output of the getZCR() method is checked using the same 120 and 1000 Hz clean sine waves from the 

YinUnitTest class.  

4.2. Performance Testing 
 

At the time of this writing, Tactile Waves is the only published software library for real-time 

sensory substitution. Each algorithm and subroutine in the library must be tested to ensure it can be 

used in real-time on both personal computers and Android phones. As discussed in Chapter 2, a 

continuous audio signal must be sampled at discrete points in time for digital representation. These 

samples are then processed in groups called frames, or buffers of audio. Much like how a video rapidly 

displays single stationary images to create the illusion of continuous motion, audio can be generated by 

rapidly processing frames of audio samples. Processed samples are sent to a digital-to-analog converter 

(DAC) which converts the discrete samples to a pressure wave. If a new audio frame is not sent to the 

DAC by the time it finishes playing the last, there will be a dropout in the audio stream. In the case of 

sensory substitution, the audio may not actually be played aloud, but the principal remains. New audio 

data must be available to be sent to the sensory interface at a rate equal to or faster than it takes to 

represent that audio in the time domain, or there will be data loss. Based on this criterion, “real-time 

operation/processing” is defined in this thesis as the ability to process an audio task/analysis/effect on a 

frame in less than the time it takes to play that frame as actual audio.  

As stated in Chapter 2, the length in seconds of each of an audio frame, 𝑡, can be calculated with 

the following equation: 
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𝑡 =
𝑁

𝑓
 

Where 𝑁 is the number of samples in the frame, and 𝑓  is the sampling rate. This relation was used to 

develop the scoring system used herein. Scoring is based on a ratio of computation time and audio 

frame length, defined by the following equation: 

𝑆𝑐𝑜𝑟𝑒 =
𝑁 𝑓⁄

𝑡𝑖𝑚𝑒 𝑡𝑜 𝑐𝑜𝑚𝑝𝑢𝑡𝑒
 

Which states that the score is equal to the number of times an operation can be performed on one 

audio frame without exceeding the playback latency of that frame. For example, if a processing 

operation takes 20 ms to compute for a 20 ms frame of audio, it would receive score of 1. Similarly, 

another operation that takes 10 ms to compute 20 ms of audio would receive a score of 2. A score less 

than 1 would indicate that the processing requires more time than there is audio, indicating a failure to 

satisfy real-time operation. A score of 1 may not be suitable for real-time operation, because of 

additional processing overhead needed to prepare a frame of audio, and convert it back to an analog 

signal after processing. Additionally, it is rarely useful to perform only one processing operation on a 

frame of audio. A real-world application will require a sequence of audio processing steps to achieve its 

goal. For example, a sensory substitution software may need to window and filter a frame with Window 

and Filter before estimating its pitch using YIN, and then finally extracting its formant frequencies 

with the LPC class. For these reasons, a score of 1 for a single computational process is not satisfactory. 

A conservative lower limit of 4 was chosen for real-time validation testing of Tactile Waves, with 10 or 

above being an ideal score. That is to say, real-time operation is validated if the processing can be 

completed in less than or equal to one quarter of the frame time, with one tenth (or less) of the frame 

time being ideal, which would allow 4-10 processes to be performed without imparting dropouts or 

artifacts due to buffer underruns.  
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 As discussed in Chapter 3, computational requirements change based on the length of an audio 

frame. Each test is performed on 4 different audio frame lengths, to ensure real-time validation over a 

range of commonly used buffer sizes. The sizes used for each test are 1024, 2048, 4096, and 8192. 

Because Tactile Waves is intended for use on both mobile phones and desktop/laptop computers, all 

performance testing has been performed on a Windows laptop, and an Android smartphone.  

The Android smartphone used was a Samsung Galaxy S8. An Android application called CPU-Z 

was used to view the properties of the phones SOC. The Samsung uses a Qualcomm Snapdragon 835 

CPU which features eight cores in a big.LITTLE configuration. This means that the chip is setup with two 

sets of four cores with one set being comprised of low-power cores with a maximum speed of 1.8 GHz, 

and the other of high-performance cores with a higher maximum clock of 2.36 GHz. The system can 

rapidly switch between each set depending on the workload to provide a balance between performance 

and battery life. Each test was ran independently while hooked up to a Windows laptop via the Android 

Debug Bridge (ADB) to view testing results.  

The Windows machine used was an ASUS UX430UNR equipped with an Intel Core i7-8550U CPU 

and 16 GB of 2133 MHz DDR3L RAM. The 8550U is a quad-core, eight-thread, ultra-low voltage (ULV) 

CPU with a base clock of 1.8 GHz and a maximum boost clock of 4 GHz. ULV processors are designed 

specifically for small, thin and lite devices such as ultrabooks, tablets, and 2-in-1’s. As a result, the 

performance of these types of processors is nearly completely dependent on the available power and 

thermal headroom, and they are optimized for short bursts of power for everyday productivity tasks 

rather than long sustained workloads. The performance of these chips will therefore degrade as the 

temperature of the die increases. When the CPU is cold, it will easily run all four of its cores at its 

maximum rated speed. As a sustained load continues, the power draw and temperature of the CPU 

package will increase. To prevent the CPU from overheating or drawing too much current, the maximum 
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speed of each core is reduced. This is highly detrimental for performance testing, as the maximum 

processor speed might be reduced the longer a test is run, skewing the results.  

To mitigate these issues, a standard test configuration was created and used for all Windows 

testing. ThrottleStop 850 was used to reduce the maximum processor speed to 3.6 GHz (two cores max) 

and 3.2 GHz (all four cores), as well as disable core-parking. Limiting the maximum processor speed 

ensures that the processors thermal limit is never reached, eliminating thermal throttling. Disabling core 

parking ensures that Window’s will not shut down cores, which can regularly cause massive and sudden 

drops in performance during a varying workload.  Intel’s Extreme Tuning Utility (XTU) was used to 

increase the maximum boost power to 36 watts to prevent power limit throttling.  XTU was also used to 

undervolt the CPU by -85 mV to decrease the operating temperature, thereby increasing the available 

thermal headroom. These settings were found after several weeks of testing to provide optimal and 

consistent performance in various sustained workloads such as audio/video processing and synthesis.  

A standard benchmarking routine was developed to provide consistent and accurate micro-

benchmarking, which is the process of estimating the real-world execution time of a piece of code. 

Micro-benchmarking in a compiled language such as C++ is more straightforward and reliable than in 

Java because a statically compiled language cannot be changed or modified during runtime.  Java is not 

a statically compiled language, and the run-time compilation effects must be considered for accurate 

benchmarking. The first time a code path is executed by the JVM, it is executed in “interpreted mode”, 

which allows the Java code to be executed directly without compilation, greatly improving the startup 

time of applications. Only after a certain amount of execution will the JVM obtain enough profiling data 

to compile the code. This can severely skew the results of a microbenchmark that includes these 

operations while timing execution as the test will measure the execution of both the optimized machine 

code and interpreted byte code, as well as the time the compiler spent analyzing and compiling the code 

path. To eliminate this effect on the timing phase, a so called “warm-up” phase must be performed 
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before any code is timed. The warm-up phase executes the test code a certain number of times to allow 

the JVM to compile and replace the interpreted code. With modern VM’s, it is difficult to determine how 

much execution is needed for proper warm up. All benchmark tests were ran with the -

XX:+PrintCompilation option, which tells the compiler to print a message every time it runs. The 

test will print messages before and after each warming and timing phase. If the compiler is run during 

any stage, it will print a message between these statements. The tests were run several times, and if any 

compilation occurred during a timing phase, the benchmark was modified to attempt to move this 

compilation to the warming phase. It was found that the best way to warm-up the VM for benchmarking 

was to run the entire benchmark, including timing phases, multiple times. By the second pass through 

the benchmark, only compiled code is being used (verified by the fact that the compiler does not print 

any messages during timing phases of the second pass).  

 Modern compilers are adept at making optimization decisions to improve performance based 

on assumptions and observation made about the code being compiled. One of the most common 

optimizations is code elimination. If a section of code does nothing to alter the program’s correctness, a 

compiler can detect that without this code, the program will still function properly. This code is flagged 

as “dead code” and removed (or replaced) by the compiler. This is quite useful for deployed code, but 

presents a problem for benchmarking. Benchmarking code often is dead code. That is, a benchmark will 

run some code while timing executing, then simply throw away the result of the code being timed, as 

only the timing results are needed. A compiler may spot this condition, and declare the code being 

tested as dead because the result is never used, resulting in an empty benchmark. To trick the compiler, 

dummy methods are used. After a benchmark is completed, the testing data is passed to a dummy 

method that performs some calculations with the data, and stores it. This prevents the compiler from 

removing the code being tested from the benchmark. 
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To eliminate noise in timing measurements, all applications on the testing device were closed. 

Additionally, “Airplane Mode” was used during all testing to prevent the operating system or any 

application/service from doing any background work such as downloading updates. For each test, the 

timing phase is repeated 10 times, and the best results taken. Each test was repeated 3 times to ensure 

consistent results were obtained. Greatly varying results between testing iterations would indicate some 

kind of error or unexpected behavior, so the results of each timing phase were inspected. Testing results 

from the Windows laptop are shown in Table 21, and results from the Android device is shown in Table 

22.  

Table 21: Real-time validation benchmark results - Windows PC 

FFT 

Method Data Type 1024 2048 4096 8192 

fft() float 2161.041 2067.158 1977.769 1834.573 
double 2048.158 1990.327 1877.253 1519.227 

 
complexFFT() 

float 1519.384 1440.501 1307.739 1098.522 
double 1534.664 1411.419 1141.985 673.675 

Complex 275.0202 243.2565 209.3636 170.8312 
DCT 

Method Data Type 1024 2048 4096 8192 
dct() double 219.2690 218.6997 216.9899 193.4675 
idct() double 253.0035 249.4492 233.7784 201.4546 

Cepstrum 

Method Data Type 1024 2048 4096 8192 
rCepstrum() float 158.4087 157.4957 156.8208 154.2499 
pCepstrum() float 162.6465 161.2002 160.5518 157.7844 
cCepstrum() float 139.3341 138.3441 137.6939 135.9715 

MFCC 

Method Data Type 1024 2048 4096 8192 
getMFCCs() float 760.8566 760.8567 1035.832 718.8310 

YIN 

Method Data Type 1024 2048 4096 8192 
estimatePitch() float 77.89865 38.58343 19.17504 9.56549 

estimatePitchFast() float 375.7629 351.7741 215.9140 156.7994 
LPC 

Method Data Type 1024 2048 4096 8192 
estimateFormants() float 300.4420 191.7079 146.1327 124.6823 
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Table 22: Real-time validation benchmark results - Samsung Galaxy S8 

FFT 

Method Data Type 1024 2048 4096 8192 

fft() float 460.7644 477.8499 441.9865 453.1677 
double 446.4366 353.7387 367.7968 373.2101 

 
complexFFT() 

float 402.2071 378.2906 353.5991 330.1951 
double 413.3348 392.4741 365.8644 257.6025 

Complex 18.24707 16.84501 14.49016 12.16456 
DCT 

Method Data Type 1024 2048 4096 8192 
dct() double 223.4289 184.6639 200.8741 174.1264 
idct() double 207.6733 198.1290 182.7861 145.1691 

Cepstrum 

Method Data Type 1024 2048 4096 8192 
rCepstrum() float 210.2004 205.7225 196.4484 184.0477 
pCepstrum() float 188.9545 201.2172 192.9628 182.8314 
cCepstrum() float 196.8173 190.2010 169.6471 172.4575 

MFCC 

Method Data Type 1024 2048 4096 8192 
getMFCCs() float 171.9872 186.2942 188.8579 202.4266 

YIN 

Method Data Type 1024 2048 4096 8192 
estimatePitch() float 15.92646 7.981991 3.994365 1.997635 

estimatePitchFast() float 82.31873 81.91017 77.58937 65.88227 
LPC 

Method Data Type 1024 2048 4096 8192 
estimateFormants() float 63.88614 71.63753 57.87448 53.78447 

 

 These results show that all but one of the audio analysis and processing methods included in the 

library can be used in real-time on modern mobile hardware. One method, the 𝑂(𝑛 ) Yin pitch 

estimator, was not able to satisfy the real-time criteria at higher buffer sizes. A faster version was 

developed using the FFT to reduce its complexity to 𝑂(𝑛 log 𝑛), and both methods are available for use 

in the library. Additionally, many of the methods achieved scores that greatly exceeded the ideal score 

of 10. This indicated that the library should still function in real-time when used in an environment 
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where less processing power is available, such as an older smartphone or laptop or wearable device. 

However, is it impossible to estimate the minimum amount of processing power required without 

performing additional performance testing on a wider range of mobile devices.    
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5. Conclusion 
 
 
 

The goal of this thesis was to design and develop a speech analysis library and audio processing 

framework for a sound-to-touch sensory substitution API. A toolbox of static methods was created to 

mimic a subset of common speech processing functions available in scientific computing environments 

such as MATLAB. A flexible, portable audio engine was then designed to allow users of the API to 

manage an audio stream from source to sensory hardware. The engine is highly extensible, allowing 

users to build custom objects that can be freely inserted into an audio processing chain.  

Because any sensory substitution or augmentation device requires real-time operation, the core 

toolbox methods were micro benchmarked to ensure the required computation can be completed in 

real-time. One method, the 𝑂(𝑛 ) Yin pitch estimator, was not able to satisfy the real-time criteria at 

higher buffer sizes. A faster version was developed using the FFT to reduce its complexity to 𝑂(𝑛 log 𝑛), 

and both methods are available for use in the library.  

The toolbox and audio engine were packaged into an Android Java Library called Tactile Waves. 

The library is licensed under the GNU General Public License Version 3.0, and its source code is available 

on GitHub [22]. Downloads are available through a public repository on jFrog Bintray [30], and remote 

linking for build dependencies is available through jCenter. Finally, a website was created with an 

installation and setup/usage guide, as well as links to GitHub, Bintray, and the API documentation. It is 

available here: https://funkatronics.github.io/TactileWaves/.  

A demonstrative Android application has been created that shows how Tactile Waves can be 

used to build sensory substitution systems. The application sets up an instance of the audio processing 

engine with the phones microphone used as an input stream. Two processor objects are used in the 

processing chain: a pitch detector (YIN) and formant estimator (LPC). These extracted features are then 
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used to update a graph on the device screen and are sent over Bluetooth. Code for a receiving hardware 

is not included. This application is meant to provide a demonstration on the usage of Tactile Waves 

audio engine, processing toolbox, and Bluetooth functionalities. The code for this app is included with 

the main source code on GitHub [22].  

5.1. Future Work 
 

Tactile Waves was developed alongside an ongoing research project aimed at developing a 

sound-to-touch hearing aid/augmentation system that uses the surface of the tongue as a sensory input 

[31]. Currently, a primary goal of this research is to determine how to optimally encode speech signals 

for tactile representation on the tongue. Preliminary human testing has been performed to investigate 

and compare several encoding methods proposed by JJ Moritz in his thesis [32]. Previously, there was 

no software capable of extracting the necessary data from speech signals in real-time. As a result, these 

tests have used a small set of prerecorded audio files from one speaker so that audio features could be 

extracted and transcribed manually with the help of the popular speech analysis software, Praat [33]. 

With the completion of Tactile Waves, these experiments can be expanded to use real-time audio 

processing. This will allow the research team to continue human studies with a broader vocabulary and 

more diverse range of speakers. The use of smartphones will reduce the size and cost of the necessary 

hardware, allowing for more subjects to be included. Additionally, the portability of these devices could 

allow this research to expand into larger scale studies that include real-world listening environments.  

The development of the library will certainly not end with the completion of this thesis, and it is 

expected that the aforementioned research will motivate changes and additions to Tactile Waves. 

Existing features may be modified or expanded, and new functionality could be added to meet the 

evolving needs of this research. The current version (Version 1.0.1) of the library will continue to be 
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updated and improved while still conforming to its primary goal of providing an open sourced, and 

openly available sound-to-touch sensory substitution API.  

Version 1 of Tactile Waves has been designed specifically for speech processing and is therefore 

not equipped for music applications. There is a rapidly growing market for touch based audio monitoring 

and feedback devices for audio consumption and creation. Devices like the Woojer [34] provide 

vibrotactile feedback to video gamers, movie watchers, and audiophiles to enhance perception and 

immersion of low frequency content such as explosions. These devices aim to provide an “IMAX 

experience at home”, without the need for large speaker systems, and are typically referred to as bass 

augmentation devices. Using this principal, devices like the SUBPAC and Basslet allow music producers 

and live performers to monitor the low frequency content of their mixes without the expense and 

hearing damage associated with typical low-frequency acoustic monitoring systems such as floor 

wedges. The SUBPAC is also is favored by deaf musicians and concert goers as they are no longer left out 

of these activities due to their hearing impairment. These users never want to feel as though they are 

deaf persons who like music, but as music lovers who also happen to be deaf. SUBPAC’s close 

interaction with the deaf community and countless success stories with deaf musicians and music lovers 

shows how effectively music can be experienced through vibrotactile devices [35]. In the realm of music, 

video games, and movies, bass augmentation devices have exploded in popularity. Both music 

production and deaf communities are highly accustomed to DIY, ad-hoc approaches to create new tools 

to achieve desired functionality.  As a result, these circles could benefit greatly from a music-to-touch 

software API.  

Version 2 of the library will feature an overhauled design to give creative entrepreneurs a 

flexible framework to design touch based audio monitoring devices for live performers, producers, and 

deaf musicians and listeners. The toolbox package will be expanded to include a real-time beat 

detection engine. Max externals will be created for every object in the library, allowing Tactile Waves to 
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be used in the Max/MSP visual programming environment. Finally, a real-time audio warping engine will 

be developed. With these tools, Tactile Waves could be used to build custom bass augmentation 

devices, tactile hearing aids, and even real-time visual generation programs for musical performances.  

5.2. Final Thoughts 
 

It is my intention to continue developing and supporting both versions of the library indefinitely. 

Being released under an open source license, the library is open for contribution. Any contributions that 

are be made to the library must first be checked and approved by myself, or any other individuals that I 

decide to entrust with this responsibility. I both hope and intend for Tactile Waves to motivate and 

enable further research in the fields of sensory substitution and haptic feedback. 
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