566,307 research outputs found

    What should an index of school segregation measure?

    Get PDF
    The article aims to make a methodological contribution to the education segregation literature, providing a critique of previous measures of segregation used in the literature, as well as suggesting an alternative approach to measuring segregation. Specifically, the paper examines Gorard, Fitz and Taylor's finding that social segregation between schools, as measured by free school meals (FSM) entitlement, fell significantly in the years following the 1988 Education Reform Act. Using Annual Schools Census data from 1989 to 2004, the paper challenges the magnitude of their findings, suggesting that the method used by Gorard et al. seriously overstates the size of the fall in segregation. We make the case for a segregation curve approach to measuring segregation, where comparisons of the level of segregation are possible regardless of the percentage FSM eligibility. Using this approach, we develop a new method for describing both the level and the location of school segregation

    Segregation by thermal diffusion in granular shear flows

    Full text link
    Segregation by thermal diffusion of an intruder immersed in a sheared granular gas is analyzed from the (inelastic) Boltzmann equation. Segregation is induced by the presence of a temperature gradient orthogonal to the shear flow plane and parallel to gravity. We show that, like in analogous systems without shear, the segregation criterion yields a transition between upwards segregation and downwards segregation. The form of the phase diagrams is illustrated in detail showing that they depend sensitively on the value of gravity relative to the thermal gradient. Two specific situations are considered: i) absence of gravity, and ii) homogeneous temperature. We find that both mechanisms (upwards and downwards segregation) are stronger and more clearly separated when compared with segregation criteria in systems without shear.Comment: 8 figures. To appear in J. Stat. Mec

    Shear-driven size segregation of granular materials: modeling and experiment

    Full text link
    Granular materials segregate by size under shear, and the ability to quantitatively predict the time required to achieve complete segregation is a key test of our understanding of the segregation process. In this paper, we apply the Gray-Thornton model of segregation (developed for linear shear profiles) to a granular flow with an exponential profile, and evaluate its ability to describe the observed segregation dynamics. Our experiment is conducted in an annular Couette cell with a moving lower boundary. The granular material is initially prepared in an unstable configuration with a layer of small particles above a layer of large particles. Under shear, the sample mixes and then re-segregates so that the large particles are located in the top half of the system in the final state. During this segregation process, we measure the velocity profile and use the resulting exponential fit as input parameters to the model. To make a direct comparison between the continuum model and the observed segregation dynamics, we locally map the measured height of the experimental sample (which indicates the degree of segregation) to the local packing density. We observe that the model successfully captures the presence of a fast mixing process and relatively slower re-segregation process, but the model predicts a finite re-segregation time, while in the experiment re-segregation occurs only exponentially in time

    Female participation increases and gender segregation. ESRI WP564, May 2017

    Get PDF
    This article examines the impact of a large increase in female participation on occupational segregation. Increases in female participation may decrease occupational segregation if women enter male dominated sectors but may increase segregation if they enter already female dominated sectors. Using Ireland as a test case due to the recent large increase in female participation rates, we firstly carry out a decomposition analysis between 1991 and 2006 and find that the rise in female employment was driven predominantly by increased demand while between one tenth and one fifth of the rise was due to women increasing their share of occupational employment. Formal measures of segregation show that occupational segregation fell over this time period. The formal measures of segregation show that the level of occupational grouping is important with stagnation or smaller falls in segregation using a broad occupational grouping and sharper falls using a more detailed occupational grouping. Our findings support previous U.S. research that found a rise in female participation resulted in a decline in occupational segregation

    Sex Segregation

    Get PDF

    Quantifying the Energetics and Length Scales of Carbon Segregation to Fe Symmetric Tilt Grain Boundaries Using Atomistic Simulations

    Full text link
    Segregation of impurities to grain boundaries plays an important role in both the stability and macroscopic behavior of polycrystalline materials. The research objective in this work is to better characterize the energetics and length scales involved with the process of solute and impurity segregation to grain boundaries. Molecular dynamics simulations are used to calculate the segregation energies for carbon within multiple grain boundary sites over a database of 125 symmetric tilt grain boundaries in Fe. The simulation results show that the majority of atomic sites near the grain boundary have segregation energies lower than in the bulk. Moreover, depending on the boundary, the segregation energies approach the bulk value approximately 5-12 \AA\ away from the center of the grain boundary, providing an energetic length scale for carbon segregation. A subsequent data reduction and statistical representation of this dataset provides critical information such as about the mean segregation energy and the associated energy distributions for carbon atoms as a function of distance from the grain boundary, which quantitatively informs higher scale models with energetics and length scales necessary for capturing the segregation behavior of impurities in Fe. The significance of this research is the development of a methodology capable of ascertaining segregation energies over a wide range of grain boundary character (typical of that observed in polycrystalline materials), which herein has been applied to carbon segregation in a specific class of grain boundaries in iron

    Mass segregation trends in SDSS galaxy groups

    Full text link
    It has been shown that galaxy properties depend strongly on their host environment. In order to understand the relevant physical processes driving galaxy evolution it is important to study the observed properties of galaxies in different environments. Mass segregation in bound galaxy structures is an important indicator of evolutionary history and dynamical friction timescales. Using group catalogues derived from the Sloan Digital Sky Survey Data Release 7 (SDSS DR7) we investigate mass segregation trends in galaxy groups at low redshift. We investigate average galaxy stellar mass as a function of group-centric radius and find evidence for weak mass segregation in SDSS groups. The magnitude of the mass segregation depends on both galaxy stellar mass limits and group halo mass. We show that the inclusion of low mass galaxies tends to strengthen mass segregation trends, and that the strength of mass segregation tends to decrease with increasing group halo mass. We find the same trends if we use the fraction of massive galaxies as a function of group-centric radius as an alternative probe of mass segregation. The magnitude of mass segregation that we measure, particularly in high-mass haloes, indicates that dynamical friction is not acting efficiently.Comment: 6 pages, 2 figures, accepted for publication in MNRAS Letter
    corecore