482 research outputs found

    The use of multibeam sonar mapping techniques to refine population estimates of the endangered white abalone (Haliotis sorenseni)

    Get PDF
    Multibeam sonar mapping techniques provide detailed benthic habitat information that can be combined with the data on species-specific habitat preferences to provide highly accurate calculations of populations in a particular area. The amount of suitable habitat available for the endangered white abalone (Haliotis sorenseni) was quantified to aid in obtaining an accurate estimate of the number of remaining individuals at two offshore banks and one island site off the coast of southern California. Habitat was mapped by using multibeam sonar survey techniques and categorized by using rugosity and topographic position analysis. Abalone densities were evaluated by using a remotely operated vehicle and video transect methods. The total amount of suitable habitat at these three sites was far greater than that previously estimated. Therefore, although present estimates of white abalone densities are several orders of magnitude lower than historic estimates, the total population is likely larger than previously reported because of the additional amount of habitat surveyed in this study

    ESTIMATION OF MEASUREMENT UNCERTAINTY OF SEAFLOOR ACOUSTIC BACKSCATTER

    Get PDF
    In the last three decades, Multibeam echo sounders (MBES) have become the tool of choice to study the seafloor. MBES collects two distinct types of data: bathymetry that provides topographic details of the seafloor and backscatter that has the potential to characterize the seafloor. While the uncertainty associated with MBE bathymetry has been well studied, the uncertainty in MBES backscatter measurement has received relatively little attention, hindering the improvements in quantitative analysis of backscatter data. Both acquisition and processing stages can introduce uncertainty in the final seafloor backscatter products. Application of well-established uncertainty quantification principles to seafloor backscatter data is challenging for several reasons: the uncertainty sources are not well known, they vary on a case-by-case basis, and standards do not exist for acquisition and processing. This dissertation focuses on assessing uncertainty in backscatter measurements and is comprised of four separate but related studies that identify and address the challenges of uncertainty quantification of backscatter measurements. The first study (Lucieer et al., 2018) which is presented as background, describes an end users’ survey identifying key uses and challenges of backscatter data acquisition and processing. The study identified that consistency and repeatability of backscatter measurements is a major constraint in the use and re-use of backscatter. The second study (Malik et al., 2018), identified the sources of uncertainty and categorized them as significant or insignificant based on various use cases. The most significant sources of uncertainty were found to be inherent statistical fluctuations in the backscatter measurement, calibration uncertainty, seafloor slope and water column absorption estimation. While calibration uncertainty remains the main issue in advancing the quantitative use of the backscatter, the other sources were also shown to cause large uncertainties. These include non-standardized methods used to account for seafloor slope and absorption, and data interpretation errors due to missing background information about the processing procedures. With a comprehensive list of uncertainty sources established, two uncertainty sources, seafloor slope and processing errors, were examined further in the third (Malik, 2019) and the fourth (Malik et al., submitted) study respectively. Seafloor slope corrections are important to correct for both the area insonified and the incidence angle. Both of these corrections are adversely affected if seafloor slope corrections are not applied. Even in cases where the seafloor slope is used, further uncertainty can occur if the highest resolution bathymetry is not used. The results from this study showed that for the purpose of accurate slope corrections, the spatial scale of backscatter data should be selected based on the best available bathymetry. The majority of end users depend on third-party software solutions to process the backscatter data. The fourth study evaluated the output of three commonly used software packages after inputting the same data set and found that there were significant differences in the outputs. This issue was addressed by working closely with software developers to explore options to make the processing chain more transparent. Two intermediate processing stages were proposed and implemented in three commonly used software tools. However, due to proprietary restrictions, it was not possible to know the full details of the software processing packages. Differing outputs likely result, in part, from the different approaches used by the various software packages to read the raw data. Quality assessment and uncertainty quantification of MBES backscatter measurements is still at an early stage and further work is required to develop data acquisition and processing standards to improve consistency in the backscatter acquisition and processing. Publications: Lucieer, V.; Roche, M.; Degrendele, K.; Malik, M.; Dolan, M.; Lamarche, G. User expectations for multibeam echo sounders backscatter strength data-looking back into the future. Mar. Geophys. Res. 2018, 39, 23–40. doi:10.1007/s11001-017-9316-5. Malik, M.; Lurton, X.; Mayer, L. A framework to quantify uncertainties of seafloor backscatter from swath mapping echosounders. Mar. Geophys. Res. 2018, 39, 151–168. doi.org/10.1007/s11001-018-9346-7. Malik, M. Sources and Impacts of Bottom Slope Uncertainty on Estimation of Seafloor Backscatter from Swath Sonars. Geosciences 2019, 9, 183. doi: 10.3390/geosciences9040183. Malik, M.; Schimel, A.; Masetti, G.; Roche, M.; Deunf, J.L.; Dolan, M.; Beaudoin, J.; Augustin, J.M.; Hamilton, T.; Parnum, I. Results from the first phase of the Backscatter Software Inter-comparison Project. Geosciences. Submitted

    The Impact of Acoustic Imaging Geometry on the Fidelity of Seabed Bathymetric Models

    Get PDF
    Attributes derived from digital bathymetric models (DBM) are a powerful means of analyzing seabed characteristics. Those models however are inherently constrained by the method of seabed sampling. Most bathymetric models are derived by collating a number of discrete corridors of multibeam sonar data. Within each corridor the data are collected over a wide range of distances, azimuths and elevation angles and thus the quality varies significantly. That variability therefore becomes imprinted into the DBM. Subsequent users of the DBM, unfamiliar with the original acquisition geometry, may potentially misinterpret such variability as attributes of the seabed. This paper examines the impact on accuracy and resolution of the resultant derived model as a function of the imaging geometry. This can be broken down into the range, angle, azimuth, density and overlap attributes. These attributes in turn are impacted by the sonar configuration including beam widths, beam spacing, bottom detection algorithms, stabilization strategies, platform speed and stability. Superimposed over the imaging geometry are residual effects due to imperfect integration of ancillary sensors. As the platform (normally a surface vessel), is moving with characteristic motions resulting from the ocean wave spectrum, periodic residuals in the seafloor can become imprinted that may again be misinterpreted as geomorphological information

    THE RELATIONSHIP OF SEAFLOOR SURFACIAL SEDIMENT WITH SEABOTTOM MORPHOLOGY OF LEMKUTAN ISLAND WATER, WEST KALIMANTAN

    Get PDF
    Sea floor sediment surrounding Lemukutan Island, West Kalimantan is distributed on rather steep sea bottom morphology. The steep bottom seems a continuation of rugged morphology of the island, especially at the northeast and southeast parts. This paper discusses the relation between sediment grain sizes and the steepness of sea bottom morphology. Grain size analyses of sediment shows various sediment types such as slightly gravelly muddy sand, gravel mostly composed of coral and lithic, and gravelly sand. Results show that steepness of sea bottom slope control deposited sediment types, coarse fraction sediments tend to settle on the area of high slope angle as at the northeastern and southeastern of the island. On the other hand, high energy marine environment, such as at the sea in front of north headland of Lemukutan Island, tends to accumulate coarse sediments. High percentages of organism shells in marine sediments obviously are deposited at those two domains. Keywords: sea bottom morphology, sediment, Lemukutan Island, West Kalimantan. Sedimen dasar laut sekitar Pulau Lemukutan, Kalimantan Barat tersebar pada morfologi yang agak curam. Permukaan dasar laut yang curam tampaknya merupakan kelanjutan morfologi kasar pulau tersebut, terutama pada bagian timur laut dan tenggara. Makalah ini membahas hubungan antara besar butir sedimen dan kecuraman morfologi dasar laut. Analisis besar butir sedimen memperlihatkan jenis sedimen yang bervariasi, seperti pasir lumpuran sedikit krikilan, kerikil umumnya terdiri koral dan fragmen batuan, dan pasir krikilan. Hasil kajian menunjukkan bahwa kecuraman lereng dasar laut mengontrol tipe sedimen yang diendapkan, sedimen fraksi kasar cenderung mengendap pada daerah dengan sudut lereng tinggi seperti di bagian timur laut dan tenggara Pulau Lemukutan. Di samping itu, lingkungan laut enerji tinggi, seperti di bagian utara pulau, cenderung mengakumulasikan sedimen kasar. Prosentase tinggi dari cangkang organisma dalam sedimen laut tampak nyata diendapkan pada kedua lingkungan tersebut. Kata kunci: morfologi dasar laut, sedimen, Pulau Lemukutan, Kalimantan Barat

    Uniting Deep-Sea Coral with Geomorphology

    Get PDF
    The Deep Sea Coral Research and Technology Program manages an online database containing deep-sea coral records. However, their data lacks standardized information about which seafloor feature each coral is located on, a factor which greatly influences their distribution. The goals of the project were to (a) enrich the Program’s deep-sea coral data with coincident geomorphic features, and (b) classify slope position zones for the Eastern U.S. Exclusive Economic Zone (EEZ). A standardized and authoritative seafloor geomorphic feature set of 24 feature classes was spatially joined to the coral data and can be used in the Program’s online database. Then, five slope position maps of the Eastern U.S. EEZ were produced using five different neighborhood sizes of topographic position index. Areas of gradual elevation change were not adequately classified while areas of stark elevation change were accurately classified. The standardized global geomorphic features, along with slope position zones, can be used in deep-sea coral habitat models to better elucidate the spatial distribution of coral to develop more effective conservation strategies

    Comparison of a self-processed EM3000 multibeam echosounder dataset with a QTC view habitat mapping and a sidescan sonar imagery, Tamaki Strait, New Zealand

    Full text link
    A methodology for automatically processing the data files from an EM3000 multibeam echosounder (Kongsberg Maritime, 300 kHz) is presented. Written in MatLab, it includes data extraction, bathymetry processing, computation of seafloor local slope, and a simple correction of the backscatter along-track banding effect. The success of the latter is dependent on operational restrictions, which are also detailed. This processing is applied to a dataset acquired in 2007 in the Tamaki Strait, New Zealand. The resulting maps are compared with a habitat classification obtained with the acoustic ground-discrimination software QTC View linked to a 200-kHz single-beam echosounder and to the imagery from a 100-kHz sidescan sonar survey, both performed in 2002. The multibeam backscatter map was found to be very similar to the sidescan imagery, quite correlated to the QTC View map on one site but mainly uncorrelated on another site. Hypotheses to explain these results are formulated and discussed. The maps and the comparison to prior surveys are used to draw conclusions on the quality of the code for further research on multibeam benthic habitat mapping

    Active faulting controls bedform development on a deep-water fan

    Get PDF
    Tectonically controlled topography influences deep-water sedimentary systems. Using 3-D seismic reflection data from the Levant Basin, eastern Mediterranean Sea, we investigate the spatial and temporal evolution of bedforms on a deep-water fan cut by an active normal fault. In the footwall, the fan comprises cyclic steps and antidunes along its axial and external portions, respectively, which we interpret to result from the spatial variation in flow velocity due to the loss of confinement at the canyon mouth. Conversely, in the hanging wall, the seafloor is nearly featureless at seismic scale. Numerical modeling of turbidity currents shows that the fault triggers a hydraulic jump that suppresses the flow velocity downstream, which thus explains the lack of visible bedforms basinward. This study shows that the topography generated by active normal faulting controls the downslope evolution of turbidity currents and the associated bedforms and that seafloor geomorphology can be used to evince syn-tectonic deposition

    Occurrence, Distribution and Behaviour of Beluga (Delphinapterus leucas) and Bowhead (Balaena mysticetus) Whales at the Franklin Bay Ice Edge in June 2008

    Get PDF
    Ice edges and polynyas have long been noted for their high biological productivity within the Arctic environment. In June 2008, an aggregation of belugas and bowheads was identified at the Franklin Bay ice edge in the eastern Beaufort Sea, adjacent to the Cape Bathurst polynya. We conducted five ice-edge surveys by helicopter to study the distribution and behaviour of the whales. Bowheads were sighted in significantly shallower water than belugas. In addition, we used the helicopter platform to observe behaviour. Belugas and bowheads were engaged in directed travel and diving near and under the ice. Five beluga dives were timed and found to have an average duration of 106 ± 61 s (± SD) and a range of 30 – 197 s. One bowhead under-ice dive was timed and had a duration of 417 s. The under-ice dives are consistent with feeding behaviour observed for belugas and bowheads in other ice-edge locations. We hypothesize that higher prey densities along the Franklin Bay ice edge than in the adjacent open water may attract belugas and bowheads to the ice edge in June. Further research is needed to identify the abundance and type of prey species consumed and to assess the relative energetic importance of spring ice-edge feeding to the eastern Beaufort Sea beluga and bowhead populations.Depuis longtemps, les lisières de glace et les polynies sont connues pour leur grande productivité biologique au sein de l’environnement arctique. En juin 2008, un groupement de bélugas et de baleines boréales a été repéré à la lisière de glace de la baie Franklin, dans l’est de la mer de Beaufort, lisière adjacente à la polynie du cap Bathurst. Au moyen d’hélicoptères, nous avons effectué cinq études de lisières de glace afin d’examiner la répartition des baleines de même que leur comportement. Les baleines boréales évoluaient dans des eaux beaucoup moins profondes que les bélugas. De plus, nous avons étudié le comportement des baleines à partir de la plateforme destinée aux hélicoptères. Les bélugas et les baleines boréales se déplaçaient de manière dirigée et plongeaient près de la glace et sous celle-ci. Les plongeons de bélugas ont été chronométrés, et leur durée moyenne s’établissait à 106 ± 61 s (± SD), avec une étendue de 30 – 197 s. Le plongeon sous glace d’une baleine boréale a duré 417 s. Les plongeons sous glace vont de pair avec le comportement alimentaire observé chez les bélugas et les baleines boréales d’autres emplacements en lisières de glace. Nous avançons l’hypothèse que la plus grande densité de proies le long de la lisière de glace de la baie Franklin comparativement aux eaux libres adjacentes peut attirer les bélugas et les baleines boréales à la lisière de glace en juin. Il faut pousser les recherches plus loin pour déterminer l’abondance et le type d’espècesproies consommées et pour évaluer l’importance énergétique relative de l’alimentation à la lisière de glace au printemps pour les populations de bélugas et de baleines boréales de l’est de la mer de Beaufort
    corecore