297,442 research outputs found

    Disturbance Observer-based Robust Control and Its Applications: 35th Anniversary Overview

    Full text link
    Disturbance Observer has been one of the most widely used robust control tools since it was proposed in 1983. This paper introduces the origins of Disturbance Observer and presents a survey of the major results on Disturbance Observer-based robust control in the last thirty-five years. Furthermore, it explains the analysis and synthesis techniques of Disturbance Observer-based robust control for linear and nonlinear systems by using a unified framework. In the last section, this paper presents concluding remarks on Disturbance Observer-based robust control and its engineering applications.Comment: 12 pages, 4 figure

    Adaptive sliding mode observers in uncertain chaotic cryptosystems with a relaxed matching condition

    Get PDF
    We study the performance of adaptive sliding mode observers in chaotic synchronization and communication in the presence of uncertainties. The proposed robust adaptive observer-based synchronization is used for cryptography based on chaotic masking modulation (CM). Uncertainties are intentionally injected into the chaotic dynamical system to achieve higher security and we use robust sliding mode observer design methods for the uncertain nonlinear dynamics. In addition, a relaxed matching condition is introduced to realize the robust observer design. Finally, a Lorenz system is employed as an illustrative example to demonstrate the effectiveness and feasibility of the proposed cryptosyste

    Robust position control of a tilt-wing quadrotor

    Get PDF
    This paper presents a robust position controller for a tilt-wing quadrotor to track desired trajectories under external wind and aerodynamic disturbances. Wind effects are modeled using Dryden model and are included in the dynamic model of the vehicle. Robust position control is achieved by introducing a disturbance observer which estimates the total disturbance acting on the system. In the design of the disturbance observer, the nonlinear terms which appear in the dynamics of the aerial vehicle are also treated as disturbances and included in the total disturbance. Utilization of the disturbance observer implies a linear model with nominal parameters. Since the resulting dynamics are linear, only PID type simple controllers are designed for position and attitude control. Simulations and experimental results show that the performance of the observer based position control system is quite satisfactory

    Robust observer design under measurement noise

    Get PDF
    We prove new results on robust observer design for systems with noisy measurement and bounded trajectories. A state observer is designed by dominating the incrementally homogeneous nonlinearities of the observation error system with its linear approximation, while gain adaptation and incremental observability guarantee an asymptotic upper bound for the estimation error depending on the limsup of the norm of the measuremen noise. The gain adaptation is implemented as the output of a stable filter using the squared norm of the measured output estimation error and the mismatch between each estimate and its saturated value

    Two Globally Convergent Adaptive Speed Observers for Mechanical Systems

    Full text link
    A globally exponentially stable speed observer for mechanical systems was recently reported in the literature, under the assumptions of known (or no) Coulomb friction and no disturbances. In this note we propose and adaptive version of this observer, which is robust vis--a--vis constant disturbances. Moreover, we propose a new globally convergent speed observer that, besides rejecting the disturbances, estimates some unknown friction coefficients for a class of mechanical systems that contains several practical examples

    Controller Design for Robust Output Regulation of Regular Linear Systems

    Get PDF
    We present three dynamic error feedback controllers for robust output regulation of regular linear systems. These controllers are (i) a minimal order robust controller for exponentially stable systems (ii) an observer-based robust controller and (iii) a new internal model based robust controller structure. In addition, we present two controllers that are by construction robust with respect to predefined classes of perturbations. The results are illustrated with an example where we study robust output tracking of a sinusoidal reference signal for a two-dimensional heat equation with boundary control and observation.Comment: 26 pages, 2 figures, to appear in IEEE Transactions on Automatic Contro

    Robust observer design under measurement noise with gain adaptation and saturated estimates

    Get PDF
    We use incremental homogeneity, gain adaptation and incremental observability for proving new results on robust observer design for systems with noisy measurement and bounded trajectories. A state observer is designed by dominating the incrementally homogeneous nonlinearities of the observation error system with its linear approximation, while gain adaptation and incremental observability guarantee an asymptotic upper bound for the estimation error depending on the limsup of the norm of the measurement noise. A characteristic and innovative feature of this observer is the mixed low/high-gain structure in combination with saturated state estimates and dynamically tuned gains and saturation levels. The gain adaptation is implemented as the output of a stable filter using the squared norm of the measured output estimation error and the mismatch between each estimate and its saturated value

    Robust position control of ultrasonic motor using VSS observer

    Get PDF
    Intrinsic properties of ultrasonic motor (high torque for low speed, high static torque, compact in size, etc.) offer great advantages for industrial applications. However, when load torque is applied, dead-zone occurs in control input. Therefore, sliding mode controller, which is a nonlinear controller, is adopted for ultrasonic motor. The state quantities, such as acceleration, speed, and position are needed to apply the sliding mode controller for position control. However, rotary encoder causes quantization errors in the speed information. This paper presents a robust position control method for ultrasonic motor by using Variable Structure System(VSS) observer. The state variables for sliding mode controller are estimated by the VSS observer. Besides, a small, low cost, and good response sliding mode controller is designed in this paper by using a micro computer that is essential in embedded system for the developments of industrial equipments. The effectiveness of the proposed method is verified by experimental results

    Robust observer for uncertain linear quantum systems

    Get PDF
    In the theory of quantum dynamical filtering, one of the biggest issues is that the underlying system dynamics represented by a quantum stochastic differential equation must be known exactly in order that the corresponding filter provides an optimal performance; however, this assumption is generally unrealistic. Therefore, in this paper, we consider a class of linear quantum systems subjected to time-varying norm-bounded parametric uncertainties and then propose a robust observer such that the variance of the estimation error is guaranteed to be within a certain bound. Although in the linear case much of classical control theory can be applied to quantum systems, the quantum robust observer obtained in this paper does not have a classical analogue due to the system's specific structure with respect to the uncertainties. Moreover, by considering a typical quantum control problem, we show that the proposed robust observer is fairly robust against a parametric uncertainty of the system even when the other estimators--the optimal Kalman filter and risk-sensitive observer--fail in the estimation.Comment: 11 pages, 1 figur
    corecore