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Controller Design for Robust Output Regulation of Regular Linear
Systems

L. Paunonen

We present three dynamic error feedback controllers for ro-
bust output regulation of regular linear systems. These controllers
are (i) a minimal order robust controller for exponentially stable
systems (ii) an observer-based robust controller and (iii) a new
internal model based robust controller structure. In addition,
we present two controllers that are by construction robust
with respect to predefined classes of perturbations. The results
are illustrated with an example where we study robust output
tracking of a sinusoidal reference signal for a two-dimensional
heat equation with boundary control and observation.

Index Terms—Robust output regulation, regular linear sys-
tems, controller design, feedback.

I. INTRODUCTION

The topic of this paper is the construction of controllers for
robust output regulation of linear infinite-dimensional systems.
The goal in this control problem is to design a control law for
a linear system

ẋ(t) = Ax(t) +Bu(t) + w(t), x(0) = x0 ∈ X (1a)
y(t) = Cx(t) +Du(t) (1b)

in such a way that the output y(t) converges asymptotically to
a given reference signal yref (t) despite the external disturbance
signal w(t). In addition, the controller must tolerate small
perturbations and uncertainties in the parameters (A,B,C,D)
of the plant (1). The robust output regulation problem was
first studied for finite-dimensional systems in the 1970’s most
notably by Francis and Wonham [6], [7], and Davison [4],
and since then the theory of output regulation has been been
actively developed for infinite-dimensional systems [2], [9],
[11], [21], [22], [24].

The most recent developments in the field are related to
the study of output regulation and robust output regulation for
infinite-dimensional systems with unbounded input and output
operators, and especially for regular linear systems [26], [29],
[30] which are often encountered in the study of partial differ-
ential equations with boundary control and observation [3]. In
particular, the characterization of the solvability of the output
regulation problem using the so-called regulator equations
was extended for systems with unbounded operators B and
C in [14], [17], and the internal model principle of robust
output regulation was generalized for regular linear systems
in [19].

In this paper we continue the work begun in [19]. The main
emphasis in the reference [19] was on studying the properties
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of robust controllers and on characterizing the solvability
of the robust output regulation problem. In this paper we
concentrate on designing actual controllers that achieve robust
output regulation for the regular linear system (1). As our
main results we present three different robust controllers. Two
of these controllers employ structures that are familiar from
the control of systems with bounded operators B and C, and
the third employs a completely new complementary controller
structure.

The reference signal yref (·) and the disturbance signal w(·)
are assumed to be generated by an exosystem

v̇(t) = Sv(t), v(0) = v0 ∈W (2a)
w(t) = Ev(t) (2b)

yref (t) = −Fv(t) (2c)

on a finite-dimensional space W = Cr. Here S is a matrix with
eigenvalues σ(S) = {iω1, . . . , iωq} ⊂ iR. The main objective
in this paper is to achieve robust output regulation for the
system (1) by choosing appropriate parameters (G1,G2,K) for
the dynamic error feedback controller

ż(t) = G1z(t) + G2e(t), z(0) = z0 ∈ Z (3a)
u(t) = Kz(t). (3b)

where e(t) = y(t)− yref (t) is the regulation error.
The main tool in constructing robust controllers is the

internal model principle, which provides a complete character-
ization of the controllers that achieve robust output regulation
for the system (1) and for the reference and disturbance signals
generated by the exosystem (2). In particular, this fundamental
result tells us that the control problem can be solved by
including a suitable internal model of the dynamics of the
exosystem into the controller (3), and by choosing the rest of
the parameters of the controller in such a way that the closed-
loop system consisting of the plant and the controller is stable.
The classical definition of the internal model (also referred to
as the p-copy internal model) requires that if p is the dimension
of the output space Y and if S has a Jordan block of dimension
nk associated to an eigenvalue iωk, then the operator G1 must
have at least p independent Jordan chains of length greater or
equal to nk associated to the same eigenvalue iωk [6], [16]. In
this paper we also use an alternative definition for an internal
model, called the G-conditions, which is applicable even if Y
is infinite-dimensional [10], [19].

The first controller in this paper presented in Section IV
is constructed by choosing G1 as the internal model of the
exosystem (2) and by stabilizing the closed-loop system with
suitable choices of G2 and K. It is well-known that if the
plant (1) is exponentially stable and S is diagonal, then
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this very simple structure is extremely effective. Indeed, this
controller structure has been successfully used on several
occasions for infinite-dimensional systems with bounded and
unbounded input and output operators [8], [9], [13], [22], [27].
The most important advantages of this controller structure is
that due to the internal model principle, this controller is of
minimal possible order, and if dimY <∞ then the resulting
controller is finite-dimensional. In [23] this type of structure
was used for regular linear systems on Hilbert spaces and with
U = Y . In this paper we present a minimal order controller
that solves the robust output regulation for a regular linear
system (1) on a Banach space X , without restrictions on the
input and output spaces, and with the most general choices for
the stabilizing operators G2 and K.

In Section IV we in addition present a separate version of
the minimal order controller for a situation where robustness is
only required with respect to a predefined classO0 of perturba-
tions. The design is motivated by the recent observation [15],
[18] that in such a situation the robust output regulation
problem may be solvable with a controller incorporating a
reduced order internal model that is strictly smaller than
the full p-copy internal model. In particular, in [15] such
a controller was successfully designed for a given class O0

of perturbations. In this paper we present a new controller
that solves the robust output regulation problem for a stable
regular linear system and for a given class O0. This new
controller has the advantage over the one presented in [15]
in that the controller is of minimal order, and it is finite-
dimensional whenever dimY < ∞. This controller is new
even for finite-dimensional linear systems and for infinite-
dimensional systems with bounded operators B and C.

The second robust controller of this paper presented in Sec-
tion V employs a novel structure that was introduced in [15]
for construction of controllers with reduced order internal
models. In particular, the system operator G1 of the controller
has a triangular structure that is naturally complementary to
the structure of observer-based robust controllers [4], [10].
The main advantages of this new controller are that it has
the natural structure for the inclusion of the p-copy internal
model into the dynamics of the controller, and that it can
robustly regulate plants that have a larger number of inputs
than outputs. The construction of this second controller is a
new result even for finite-dimensional linear systems and for
infinite-dimensional systems with bounded operators B and C.
In Section V we also use the same structure to generalize the
original reduced order internal model based controller in [15]
for regular linear systems.

Finally, the third robust controller presented in Section VI is
an observer-based controller that employs the triangular struc-
ture that was successfully used for robust output regulation
of systems with bounded B and C together with infinite-
dimensional diagonal exosystems in [10]. In this paper we
generalize the observer-based construction in [10] to regular
linear systems with nondiagonal exosystems.

As the first main result in this paper we present the internal
model principle. This result was first generalized for regular
linear systems in [19] in the more general setting of infinite-
dimensional exosystems and strong stability of the closed-loop

system. In this paper we introduce it for regular linear systems
with finite-dimensional exosystems and exponential closed-
loop stability. We demonstrate that the exponential closed-
loop stability allows simplifying general assumptions of the
theorem, and show that the regulation error has an exponential
rate of decay.

We illustrate the construction of controllers by considering
the robust output regulation problem for a two-dimensional
heat equation with boundary control and observation. We begin
by stabilizing the system with negative output feedback, and
we subsequently construct a minimal order controller that
achieves robust tracking of a sinusoidal reference signal.

The paper is organized as follows. The standing assumptions
on the plant, the exosystem and the controller are stated in
Section II. In Section III we formulate the robust output
regulation problem and present the internal model principle.
The minimal order controller for stable systems is presented
in Section IV. In Sections V we introduce the new controller
structure for robust output regulation. Finally, the observer-
based robust controller is constructed in VI. The robust output
tracking of the two-dimensional heat equation is considered
in VII.

II. THE PLANT, THE EXOSYSTEM AND THE CONTROLLER

If X and Z are Banach spaces and A : X → Z is
a linear operator, we denote by D(A), N (A) and R(A)
the domain, kernel and range of A, respectively. The space
of bounded linear operators from X to Z is denoted by
L(X,Z). If A : X → X , then σ(A), σp(A) and ρ(A) denote
the spectrum, the point spectrum and the resolvent set of A,
respectively. For λ ∈ ρ(A) the resolvent operator is given by
R(λ,A) = (λ−A)−1. The inner product on a Hilbert space
is denoted by 〈·, ·〉. For an operator A : D(A) ⊂ X →
Z1 × · · · × Zn we use the notation A = (Ak)nk=1, where
Ak : D(A) ⊂ X → Zk for all k ∈ {1, . . . , n}, to signify
that Ax = (Akx)nk=1 for x ∈ D(A). On the other hand, for
an operator A ∈ L(X1 × · · · × Xn, Z) we use the notation
A = (A1, . . . , An), meaning that Ax =

∑n
k=1Akxk for all

x = (xk)nk=1 ∈ X1 × · · · ×Xn.
We consider a linear system (1) on a Banach space X

with state x(t) ∈ X , output y(t) ∈ Y , and input u(t) ∈ U .
The spaces U and Y are Hilbert spaces. The operator A :
D(A) ⊂ X → X generates a strongly continuous semigroup
T (t) on X . For a fixed λ0 ∈ ρ(A) we define the scale spaces
X1 = (D(A), ‖(λ0−A)·‖) and X−1 = (X, ‖R(λ0, A)·‖) (the
completion of X with respect to the norm ‖R(λ0, A)·‖) [5,
Sec. II.5]. The extension of A to X−1 is denoted by A−1 :
X ⊂ X−1 → X−1.

Throughout the paper we assume that (1) is a regular linear
system [25], [26], [29], [30]. In particular, B ∈ L(U,X−1)
and C ∈ L(X1, Y ) are admissible with respect to A and
D ∈ L(U, Y ). The operator C in (1b) is replaced with its
Λ-extension

CΛx = lim
λ→∞

λCR(λ,A)x

with D(CΛ) consisting of those x ∈ X for which the limit
exists. If C ∈ L(X,Y ), then CΛ = C. For a regular linear
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system we have R(R(λ,A)B) ⊂ D(CΛ) for all λ ∈ ρ(A),
and the transfer function of (1) is [26, Sec. 4]

P (λ) = CΛR(λ,A)B +D ∀λ ∈ ρ(A).

Finally, we define XB = D(A)+R(R(λ0, A−1)B) ⊂ D(CΛ),
which is independent of the choice of λ0 ∈ ρ(A).

Assumption 1. The pair (A,B) is exponentially stabilizable
and there exists L ∈ L(Y,X) such that A + LCΛ generates
an exponentially stable semigroup.

The stabilizability of (A,B) means that there exists K ∈
L(X1, U) such that (A,B,KΛ) is a regular linear system for
which I is an admissible feedback operator, and (A+BKΛ)|X
generates an exponentially stable semigroup [28].

The exosystem (2) is a linear system on the finite-
dimensional space W = Cr for some r ∈ N, and S ∈
L(W ) = Cr×r, E ∈ L(W,X), and F ∈ L(W,Y ). We
assume the geometric multiplicity of each of the eigenvalues
σ(S) = {iωk}qk=1 ⊂ iR is equal to one. We denote by nk ∈ N
the size of the Jordan block associated to iωk ∈ σ(S). The
following standing assumption is crucial for the solvability of
the robust output regulation problem. An immediate conse-
quence of this assumption is that in order to achieve robust
output regulation it is necessary that dimU ≥ dimY .

Assumption 2. For every k ∈ {1, . . . , q} we have iωk ∈ ρ(A)
and P (iωk) ∈ L(U, Y ) is surjective.

The dynamic error feedback controller (3) is an abstract lin-
ear system on a Banach space Z. The operator G1 : D(G1) ⊂
Z → Z generates a semigroup on Z, and G2 ∈ L(Y, Z) and
K ∈ L(Z1, U) is admissible with respect to G1. The operator
K in (3) is replaced with its Λ-extension KΛ.

The closed-loop system consisting of the plant (1) and the
controller (3) on the Banach space Xe = X × Z with state
xe(t) = (x(t), z(t))T is of the form

ẋe(t) = Aexe(t) +Bev(t), xe(0) = xe0 ∈ Xe,

e(t) = CeΛxe(t) +Dev(t),

where e(t) = y(t) − yref (t) is the regulation error, xe0 =
(x0, z0)T , Ce = (CΛ, DKΛ), De = F ,

Ae =

(
A−1 BKΛ

G2CΛ G1 + G2DKΛ

)
, Be =

(
E
G2F

)
.

The operator Ae : D(Ae) ⊂ Xe → Xe has the domain

D(Ae) =
{

(x, z) ∈ XB ×D(G1)
∣∣ A−1x+BKΛz ∈ X

}
where XB = D(A) + R(R(λ0, A−1)B), and D(Ce) =
D(CΛ) × D(KΛ) ⊃ D(Ae), Be ∈ L(W,X × Z) and
De ∈ L(W,Y ). Here CeΛ is the Λ-extension of Ce.

Theorem 3. The closed-loop system (Ae, Be, Ce, De) is a
regular linear system.

Proof. See [19, Sec. 8].

III. THE ROBUST OUTPUT REGULATION PROBLEM AND
THE INTERNAL MODEL PRINCIPLE

We can now formulate the robust output regulation prob-
lem. We consider perturbations (Ã, B̃, C̃, D̃, Ẽ, F̃ ) ∈ O of
(A,B,C,D,E, F ) where the operators in the class O of
admissible perturbations are such that (i) the perturbed plant
(Ã, B̃, C̃, D̃) is a regular linear system and (ii) iωk ∈ ρ(Ã)
for all k ∈ {1, . . . , q}. These two conditions are in particular
satisfied for all bounded and sufficiently small perturbations to
(A,B,C,D), and for arbitrary bounded perturbations to the
operators E and F .

The Robust Output Regulation Problem. Choose the con-
troller (G1,G2,K) in such a way that the following are
satisfied:
(a) The closed-loop semigroup Te(t) is exponentially stable.
(b) For all initial states xe0 ∈ Xe and v0 ∈W the regulation

error satisfies eα·e(·) ∈ L2(0,∞;Y ) for some α > 0.
(c) If the operators (A,B,C,D,E, F ) are perturbed to

(Ã, B̃, C̃, D̃, Ẽ, F̃ ) ∈ O in such a way that the closed-
loop system remains exponentially stable, then for all
initial states xe0 ∈ Xe and v0 ∈ W the regulation error
satisfies eα̃·e(·) ∈ L2(0,∞;Y ) for some α̃ > 0.

We have from [19, Sec. 4] that for initial states xe0 ∈
D(Ae) the regulation error e(·) is a continuous function and
limt→∞ e(t) = 0 whenever the property (b) holds. Thus for
such initial states the condition eα·e(·) ∈ L2(0,∞;Y ) for an
α > 0 implies that the regulation error decays to zero at an
exponential rate.

In the following we present two definitions for an internal
model [16], [19]. In Definition 4 “independent Jordan chains”
refer to chains originating from linearly independent eigenvec-
tors of G1.

Definition 4. Assume dimY <∞. A controller (G1,G2,K) is
said to incorporate a p-copy internal model of the exosystem
S if for all k ∈ {1, . . . , q} we have

dimN (iωk − G1) ≥ dim Y

and G1 has at least dimY independent Jordan chains of length
greater than or equal to nk associated to the eigenvalue iωk.

Definition 5. A controller (G1,G2,K) is said to satisfy the
G-conditions if

R(iωk − G1) ∩R(G2) = {0} ∀k ∈ {1, . . . , q}, (4a)

N (G2) = {0}, (4b)

N (iωk − G1)nk−1 ⊂ R(iωk − G1) ∀k ∈ {1, . . . , q}. (4c)

The following lemma gives a sufficient condition for invari-
ance of the G-conditions in the situation where the matrix S
of the exosystem is diagonal.

Lemma 6. Let S be a diagonal matrix. If the operators
(G1,G2) satisfy the G-conditions, and if K : D(G1) ⊂ Z → Y
is such that N (iωk − G1) ⊂ N (K) for all k ∈ {1, . . . , q},
then also (G1 + G2K,G2) satisfy the G-conditions.

Proof. Since S is a diagonal matrix, we have nk = 1 for
all k ∈ {1, . . . , q} and the condition (4c) is trivially satisfied.
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Because the conditionN (G2) = {0} is identical for both (G1+
G2K,G2) and (G1,G2), it is sufficient to show that R(iωk −
G1 + G2K) ∩ R(G2) = {0} for all k. To this end, let w =
(iωk − G1 − G2K)z = G2y for some k ∈ {1, . . . , q}, z ∈
D(G1) and y ∈ Y . This implies (iωk−G1)z = G2(y+Kz) ∈
R(iωk − G1) ∩ R(G2), and we thus have z ∈ N (iωk − G1).
Due to our assumptions we then also have Kz = 0 and w =
(iωk−G1)z = G2y, which finally imply w = 0 due to (4a).

The following theorem presents the internal model principle
for regular linear systems with finite-dimensional exosystems
and exponential closed-loop stability.

Theorem 7. Assume that the controller stabilizes the closed-
loop system exponentially. Then the controller solves the robust
output regulation problem if and only if it satisfies the G-
conditions.

Moreover, if dimY < ∞, then the controller solves the
robust output regulation problem if and only if it incorporates
a p-copy internal model of the exosystem.

Proof. Since Ae generates an exponentially stable semigroup
and S is a matrix with spectrum on iR, the Sylvester equation
ΣS = AeΣ + Be has a unique solution Σ ∈ L(W,Xe)
satisfying R(Σ) ⊂ D(Ae) [20]. Because an exponentially
stable semigroup is also strongly stable, and since iR ⊂ ρ(Ae),
we have from [19, Thm. 7.2] that the controller satisfies the G-
conditions if and only if it solves the robust output regulation
problem as defined in the reference [19]. The definition of the
robust output regulation problem in [19] can be obtained from
our problem statement with the following modifications:
(i) The exponential closed-loop stability is replaced by

strong stability.
(ii) It is assumed that for all admissible perturbations the

Sylvester equation ΣS = ÃeΣ + B̃e has a solution.
(iii) The condition eα·e(·) ∈ L2(0,∞;Y ) for xe0 ∈ Xe is

replaced by limt→∞ e(·) = 0 for xe0 ∈ D(Ae).
We begin by showing that under the assumption of ex-

ponential closed-loop stability the two conditions in (iii)
are equivalent. We prove this only for the nominal closed-
loop system (Ae, Be, Ce, De). For perturbed parameters the
situation can be handled analogously. We have from [19, Lem.
4.3] that

xe(t) = Te(t)xe0 − Te(t)Σv0 + ΣTS(t)v0

for all xe0 ∈ Xe and v0 ∈ W , and since (Ae, Be, Ce, De) is
a regular linear system,

e(t) = CeΛTe(t)(xe0 − Σv0) + (CeΣ +De)TS(t)v0

is defined for almost all t ≥ 0. In addition, if xe0 ∈ D(Ae),
then e(t) is continuous and is given by the above formula for
all t ≥ 0. The error contains the two terms e(t) = e1(t)+e2(t).
The second term e2(·) = (CeΣ + De)TS(·)v0 is continuous
and it is either nonvanishing or identically zero [19, Lem.
A.1]. Since Te(t) is exponentially stable, for some α > 0 the
first term satisfies eα·e1(·) ∈ L2(0,∞;Y ) for all xe0 ∈ Xe

and v0 ∈W . These properties imply, under the assumption of
exponential stability of the closed-loop system, that the regula-
tion error satisfies eα·e(·) ∈ L2(0,∞;Y ) for all xe0 ∈ Xe and

v0 ∈ W if and only if limt→∞ e(t) = 0 for all xe0 ∈ D(Ae)
and v0 ∈W . Thus the conditions in (iii) are equivalent.

Assume now that the controller satisfies the G-conditions.
The class of admissible perturbations in this paper is strictly
smaller than the class of perturbations in [19] because expo-
nential stability is stronger than strong stability, and because
ΣS = ÃeΣ+B̃e has a solution for any perturbations for which
the closed-loop system is exponentially stable [20]. Because
of this, and because we assumed the exponential closed-loop
stability, we have from [19, Thm. 7.2] that the controller
satisfying the G-conditions solves the robust output regulation
problem as defined in this paper.

Conversely, we can now assume that the controller solves
the robust output regulation problem. It then follows from the
proof of [19, Thm. 7.2] that the controller must satisfy the G-
conditions provided that the class of admissible perturbations
contains Ẽ = 0 (corresponding to the zero disturbance signal)
and arbitrary bounded perturbations to the operator F of
the exosystem. Because these perturbations do not affect the
stability of the closed-loop system, they also belong to the
class O of perturbations in this paper. This concludes that the
controller indeed satisfies the G-conditions.

Finally, if dimY < ∞, we similarly have from [19, Thm.
6.2] that the controller solves the robust output regulation
problem if and only if it incorporates a p-copy internal model
of the exosystem.

IV. THE MINIMAL ROBUST CONTROLLER FOR STABLE
SYSTEMS

In this section we construct a minimal order robust con-
troller under the assumption that the system operator A of
the regular linear system (1) generates an exponentially stable
semigroup and the matrix S of the exosystem is diagonal, i.e.,

S = diag(iω1, iω2, . . . , iωq) ∈ Cq×q.

We begin by choosing the parameters of the controller. In this
controller structure the system operator G1 contains precisely
the internal model of the exosystem (2). This is achieved by
defining Z = Y q , and

G1 = diag
(
iω1IY , . . . , iωqIY

)
, K = εK0 = ε

(
K1

0 , . . . ,K
q
0

)
,

where ε > 0 and K0 ∈ L(Z,U). We choose the components
Kk

0 ∈ L(Y,U) of K0 in such a way that the operators
P (iωk)Kk

0 are invertible. This is possible due to the as-
sumption of surjectivity of P (iωk), and can be achieved, for
example, by choosing Kk

0 = P (iωk)† (the Moore–Penrose
pseudoinverse of P (iωk)) for all k ∈ {1, . . . , q}. Finally, we
choose

G2 = (Gk2 )qk=1 = (−(P (iωk)Kk
0 )∗)qk=1 ∈ L(Y,Z).

If we make the choice Kk
0 = P (iωk)†, then Gk2 = −IY for

all k ∈ {1, . . . , q}.

Theorem 8. Assume that the semigroup T (t) generated by A
is exponentially stable and S is a diagonal matrix. Then there
exists ε∗ > 0 such that for any 0 < ε ≤ ε∗ the controller
with the above choices of parameters solves the robust output
regulation problem.
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In particular, the operators (G1,G2) satisfy the G-conditions
and the closed-loop system is exponentially stable for all 0 <
ε ≤ ε∗.

Proof. We begin by showing that the controller satisfies the
G-conditions. Since Kk

0 were chosen in such a way that
P (iωk)Kk

0 are invertible for all k ∈ {1, . . . , q}, we have
that N (G2) = {0}. Let k ∈ {1, . . . , q}, z, z1 ∈ Z, and
y ∈ Y be such that z = (iωk − G1)z1 = G2y. The diagonal
structure of G1 implies that we then necessarily have 0 =
Gk2 y = −(P (iωk)Kk

0 )∗y, which is only possible if y = 0 since
P (iωk)Kk

0 is invertible. This further implies z = G2y = 0.
Since k ∈ {1, . . . , q} and z ∈ R(iωk − G1) ∩ N (G2) were
arbitrary, this concludes R(iωk−G1)∩R(G2) = {0}. Finally,
since nk = 1 for all k ∈ {1, . . . , q}, the condition (4c) is
trivially satisfied.

We define H = (H1, H2, . . . ,Hq) ∈ L(Z,X) by choosing

Hk = R(iωk, A−1)BKk
0

for all k ∈ {1, . . . , q}. Due to the diagonal structure of G1, it
is easy to see that this operator is the unique solution of the
Sylvester equation HG1 = A−1H + BK0. Clearly R(H) ⊂
XB and we can define C0 = CΛH + DK0 ∈ L(Z, Y ). The
operator C0 is of the form C0 = (C1

0 , . . . , C
q
0). A direct

computation shows that

Ck0 = CΛHk +DKk
0 = CΛR(iωk, A−1)BKk

0 +DKk
0

= P (iωk)Kk
0 ,

and thus C0 = −G∗2 .
It remains to show that there exists ε∗ > 0 such that the

closed-loop system is exponentially stable for all 0 < ε ≤ ε∗.
The closed-loop system operator is given by

Ae =

(
A−1 εBK0

G2CΛ G1 + εG2DK0

)
,

D(Ae) =
{

(x, z) ∈ XB × Z
∣∣ A−1x+ εBK0z ∈ X

}
.

If we choose a similarity transformation

Qe =

(
−I εH
0 I

)
= Q−1

e ∈ L(X × Z)

we can define Âe = QeAeQ
−1
e with domain D(Âe) =

{
xe ∈

Xe

∣∣ Q−1
e xe ∈ D(Ae)

}
. Using R(H) ⊂ XB and R(A−1H+

BK0) = R(HG1) ⊂ X the condition Q−1
e xe ∈ D(Ae) for

xe = (x, z) ∈ X × Z becomes

Q−1
e xe ∈ D(Ae) ⇔

{
−x+ εHz ∈ XB

−A−1x+ εA−1Hz + εBK0z ∈ X
⇔ xe ∈ D(A)× Z,

and thus D(Âe) = D(A) × Z. Now for any xe = (x, z) ∈
D(Âe) a direct computation using HG1 = A−1H +BK0 and
CΛH +DK0 = −G∗2 shows that

Âexe = QeAe

(
−x+ εHz

z

)
=

(
(A− εHG2CΛ)x− ε2HG2G∗2z
−G2CΛx+ (G1 − εG2G∗2 )z

)
=

[(
A− εHG2CΛ 0
−G2CΛ G1 − εG2G∗2

)
+ ε2

(
0 −HG2G∗2
0 0

)](
x
z

)

Since C is admissible with respect to A, we have from the
results in [5, Sec. III.3.c] that there exists ε1 > 0 such that
A + εHG2CΛ generates an exponentially stable semigroup
provided that 0 < ε ≤ ε1. Moreover, Lemma 17 shows that the
semigroup generated by G1−εG2G∗2 is exponentially stable for
all ε > 0, since

√
εGk2 = −

√
ε(P (iωk)Kk

0 )∗ are invertible for
all k ∈ {1, . . . , q}. Because CΛ is an admissible input operator
for A − εHG2CΛ, G2 ∈ L(Y, Z), and the diagonal operators
generate exponentially stable semigroups, the semigroup gen-
erated by the triangular operator is exponentially stable for
all 0 < ε ≤ ε1. Furthermore, because the second term is a
bounded operator, it follows from standard perturbation theory
of semigroups and similarity that there there exists ε∗ > 0 such
that Ae is exponentially stable for all 0 < ε ≤ ε∗.

Since the controller satisfies the G-conditions and the
closed-loop system is exponentially stable for all 0 < ε ≤ ε∗,
we have from Theorem 7 that for any 0 < ε ≤ ε∗ the controller
solves the robust output regulation problem.

Remark 9. The controller presented in this section can also
be used if the plant is initially unstable but can be stabilized
with output feedback, i.e., there exists an admissible feedback
element K1 ∈ L(Y,U) such that the semigroup generated by
(A+BK1(I−DK1)−1CΛ)|X is exponentially stable. Indeed,
in such a case the controller can be designed for the stabilized
system ((A+BK1(I−DK1)−1CΛ)|X , B(I−K1D)−1, (I−
DK1)−1CΛ, (I−DK1)−1D). This procedure is demonstrated
in Section VII.

Remark 10. If the plant is real in the sense that P (−iω) =
P (iω) for all ω ∈ R, if Y = Cp, U = Cm, and if the
exosystem is of the form

S = diag(iω1,−iω1, . . . , iωq,−iωq, 0) ∈ C(2q+1)×(2q+1),

then (G1,G2,K) can be chosen to be real matrices. Indeed, in
this case we can choose

G1 = diag
(
G1

1, . . . , G
q
1, 0p×p

)
where Gk1 =

(
0

−ωkIY

ωkIY
0

)
, K = ε(K1

0 , . . . ,K
q
0 ,K

q+1
0 )

where Kk
0 = (ReP (iωk)†, ImP (iωk)†) ∈ Rm×2p for k ∈

{1, . . . , q} and Kp+1
0 = P (0)† ∈ Rm×p, and finally G2 =(

Gk2
)p+1

k=1
where Gk2 =

(−IY
0

)
∈ R2p×p for k ∈ {1, . . . , q} and

Gp+1
2 = −IY ∈ Rp×p. The controller incorporates a p-copy

internal model of the exosystem, and if we apply a unitary
similarity transformation

Q = diag(Q0, . . . , Q0, IY ), Q0 =
1√
2

(
IY IY
iIY −iIY

)
,

then (Q∗G1Q,Q
∗G2,KQ) coincides with the controller con-

structed in the beginning of this section. From this it follows
that there exists ε∗ > 0 such that the closed-loop system is
exponentially stable and the real controller solves the robust
output regulation problem for all 0 < ε ≤ ε∗.

A. Controller With a Reduced Order Internal Model

In this section we construct a minimal order controller for
a version of the robust output regulation problem where the
controller is only required to tolerate uncertainties from a
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given class O0 of admissible perturbations [18], [19]. More
precisely, in part (c) of the robust output regulation problem we
only consider perturbations such that (Ã, B̃, C̃, D̃, Ẽ, F̃ ) ∈ O0

and for which the perturbed closed-loop system is exponen-
tially stable. We again assume that the plant is exponentially
stable, the matrix S is diagonal, and we in addition assume
that P (iωk) are boundedly invertible for all k ∈ {1, . . . , q}.

The class O0 in the control problem can be chosen freely,
but it is assumed that all perturbations (Ã, B̃, C̃, D̃, Ẽ, F̃ ) in
O0 are such that (i) the perturbed plant (Ã, B̃, C̃, D̃) is a
regular linear system and (ii) iωk ∈ ρ(Ã) and the transfer
function P̃ (iωk) = C̃ΛR(iωk, Ã)B̃ + D̃ is boundedly invert-
ible for all k ∈ {1, . . . , q}. Both of these requirements are in
particular satisfied for sufficiently small bounded perturbations
of A, B, C, and D. Being given such a class O0, we begin
the construction of the controller by defining

Sk = span
{
P̃ (iωk)−1(C̃R(iωk, Ã)Ẽek + F̃ ek)

∣∣
(Ã, B̃, C̃, D̃, Ẽ, F̃ ) ∈ O0

}
⊂ U

for k ∈ {1, . . . , q}, where (ek)qk=1 is the Euclidean basis of
W = Cq . We further define pk = dimSk. The controller that
we construct contains a reduced order internal model where
the number of copies of each of the frequencies iωk of the
exosystem is exactly pk. It should be noted that this controller
differs from the minimial order controller with a full internal
model only in the situation where pk < dimY for at least one
k ∈ {1, . . . , q}.

Define Z = Y1 × · · · × Yq where Yk = Cpk if pk < dimY
and Yk = Y if pk = dimY or pk =∞. We choose

G1 = diag
(
iωkIYk

)q
k=1

, K = εK0 = ε
(
K1

0 , . . . ,K
q
0

)
where ε > 0 and Kk

0 ∈ L(Yk, U) are such that

Kk
0 =

{
(u1
k, . . . , u

pk
k ) if pk < dimY

P (iωk)−1 if pk = dimY or pk =∞

where {ulk}
pk
l=1 ⊂ U is a basis of the subspace Sk. Finally, we

choose

G2 = (−(P (iωk)Kk
0 )∗)qk=1 ∈ L(Y,Z).

For those k ∈ {1, . . . , q} for which pk = dimY or pk = ∞
we then have Gk2 = −IY .

Theorem 11. Assume that the semigroup T (t) generated by A
is exponentially stable, S = diag(iω1, . . . , iωq), and P (iωk)
are boundedly invertible for all k ∈ {1, . . . , q}. Then there
exists ε∗ > 0 such that for any 0 < ε ≤ ε∗ the controller
with the above choices of parameters solves the robust output
regulation problem for the class O0 of perturbations.

Proof. Let ε > 0, (Ã, B̃, C̃, D̃, Ẽ, F̃ ) ∈ O0 and k ∈
{1, . . . , q} and denote yk = −C̃R(iωk, Ã)Ẽek − F̃ ek. We
begin by showing that there exists z ∈ N (iωk − G1) such
that P̃ (iωk)Kz = yk. If k is such that Yk = Y , we can
choose z = (z1, . . . , zq) ∈ Z such that zl = 0 for l 6= k and
zk = 1

εP (iωk)P̃ (iωk)−1yk. Then clearly z ∈ N (iωk−G1) and
P̃ (iωk)Kz = εP̃ (iωk)Kk

0 zk = P̃ (iωk)P̃ (iωk)−1yk = yk.
It remains to consider the situation pk < dimY . Since

P̃ (iωk)−1yk ∈ Sk by definition, and since {u1
k, . . . , u

pk
k } is a

basis of Sk, there exist {αl}pkl=1 ⊂ C such that

P̃ (iωk)−1yk =

pk∑
l=1

αlu
l
k.

Choose z = (z1, . . . , zq) such that zl = 0 for l 6= k and
zk = 1

ε (αl)
pk
l=1 ∈ Yk = Cpk . Then clearly z ∈ N (iωk − G1)

and

P̃ (iωk)Kz = εP̃ (iωk)Kk
0 zk = P̃ (iωk)

pk∑
l=1

αlu
l
k

= P̃ (iωk)P̃ (iωk)−1yk = yk.

Since k ∈ {1, . . . , q} and (Ã, B̃, C̃, D̃, Ẽ, F̃ ) ∈ O0 were
arbitrary, we have from [19, Thm. 5.1] that the controller
solves the robust output regulation problem for the class O0 of
perturbations if the closed-loop system is exponentially stable
(see the proof of Theorem 7).

It remains to show that there exists ε∗ > 0 such that for
every 0 < ε ≤ ε∗ the closed-loop system is exponentially
stable. However, if we define H = (H1, . . . ,Hq) ∈ L(Z,X)
by choosing Hk = R(iωk, A−1)BKk

0 , then H is the solution
of the Sylvester equation HG1 = A−1H + BK0, and the
stability closed-loop system can be established exactly as in
the proof of Theorem 8, since we again have CΛH +DK0 =
−G∗2 .

V. THE NEW ROBUST CONTROLLER STRUCTURE

In this section we introduce the new controller structure
for robust output regulation of linear systems. This controller
has the natural structure for the inclusion of a p-copy internal
model into the dynamics of the controller. The construction of
the controller is completed in steps. Some of the choices of
the parameters require certain properties from the associated
operators, and these properties are verified in Theorem 12.
We begin by assuming that dimY < ∞. The case of an
infinite-dimensional output space is considered separately for
a diagonal exosystem in Section V-A.

Step 1◦: We begin by choosing the state space of the controller
as Z = Z0 × X , and choosing the general structure of the
operators (G1,G2,K) as

G1 =

(
G1 G2(CΛ +DKΛ

2 )
0 A−1 +BKΛ

2 + L(CΛ +DKΛ
2 )

)
, G2 =

(
G2

L

)
,

and K = (K1, −KΛ
2 ). The operator G1 is the internal model

of the exosystem (2), and it is defined by choosing Z0 =
Y n1 × · · · × Y nq , and

G1 = diag
(
JY1 , . . . , J

Y
q

)
∈ L(Z0), K1 =

(
K1

1 , . . . ,K
q
1

)
.

Here for each k ∈ {1, . . . , q} we have

JYk =


iωkIY IY

iωkIY
. . .
. . . IY

iωkIY

 ∈ L(Y nk), (5)
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and Kk
1 =

(
Kk1

1 , . . . ,Kknk
1

)
∈ L(Y nk , U), where nk ∈ N

is the dimension of the Jordan block in S associated to the
eigenvalue iωk ∈ σ(S). We choose the components Kk1

1 ∈
L(Y, U) of each Kk

1 in such a way that P (iωk)Kk1
1 ∈ L(Y )

are boundedly invertible. This is possible since P (iωk) are
surjective by assumption, and can be achieved, for example,
by choosing Kk1

1 = P (iωk)† for all k ∈ {1, . . . , q}. For l ≥ 2
we can choose Kkl

1 freely, e.g., Kkl
1 = 0.

Step 2◦: By Assumption 1 we can choose K2 ∈ L(X1, U) and
L1 ∈ L(Y,X) in such a way that (A−1+BKΛ

2 )|X (here KΛ
2 is

the Λ-extension of K2) and A+L1CΛ generate exponentially
stable semigroups. For λ ∈ ρ(A+ L1CΛ) we define

PL(λ) = CΛR(λ,A−1 + L1CΛ)(B + L1D) +D.

The identity PL(iωk) = (I − CΛR(iωk, A)L1)−1P (iωk)
and the choice of K1 imply that PL(iωk)K1k

1 ∈ L(Y ) are
boundedly invertible for all k ∈ {1, . . . , q}. The domain of
the operator G1 is chosen as

D(G1) =
{

(z1, x1) ∈ Z0 ×XB

∣∣ A−1x1 +BKΛ
2 x1 ∈ X

}
.

Step 3◦: We define H = (H1, H2, . . . ,Hq) ∈ L(Z0, X)
where Hk = (H1

k , H
2
k , . . . ,H

nk

k ) ∈ L(Y nk , X) and

H l
k =

l∑
j=1

(−1)l−jR(iωk, A−1 + L1CΛ)l+1−j(B + L1D)Kkj
1 .

We have from [30, Sec. 7] that (A+L1CΛ, B+L1D,CΛ, D)
is a regular linear system, and the resolvent identity in [30,
Prop. 6.6] impliesR(H) ⊂ XB . We can therefore define C1 =
CΛH +DK1 ∈ L(Z0, Y ).

Step 4◦: We choose G2 ∈ L(Y,Z0) in such a way that the
semigroup generated by G1 +G2C1 ∈ L(Z0) is exponentially
stable (i.e., the matrix is Hurwitz). The detectability of the pair
(C1, G1) is proved in Theorem 12 below. Finally, we define
L = L1 +HG2 ∈ L(Y,Z).

Theorem 12. Assume dimY < ∞. The controller with
the above choices of parameters solves the robust output
regulation problem.

In particular, the controller (G1,G2,K) has the following
properties:
(i) The operator G1 generates a semigroup on Z and the

controller (G1,G2,K) incorporates a p-copy internal
model of the exosystem.

(ii) The operator H is the unique solution of the Sylvester
equation

HG1 = (A−1 + L1CΛ)H + (B + L1D)K1, (6)

and the pair (C1, G1) where C1 = CΛH + DK1 ∈
L(Z0, Y ) is exponentially detectable.

(iii) The semigroup generated by Ae is exponentially stable.

Proof. We begin by proving part (i). We have that

G1 =

(
G1 0
0 A−1

)
+

(
0 G2

B L

)(
I 0
D I

)(
0 KΛ

2

0 CΛ

)

where
(

0 G2

B L

)
and

(
0 KΛ

2

0 CΛ

)
are admissible with respect to(

G1 0
0 A

)
. It is now straightforward to use the results in [30,

Sec. 7] to verify that G1 with the proposed domain generates
a strongly continuous semigroup on Z = Z0 ×X . Moreover,
it is easy to show that KΛ = K = (K1, −KΛ

2 ). For every
k ∈ {1, . . . , q} the matrix G1 clearly satisfies dimN (iωk −
G1) = dimY = p and it has exactly p Jordan blocks of size
nk×nk associated to iωk. Due to the triangular structure of G1,
the controller therefore incorporates a p-copy internal model
of the exosystem.

We will now show that H is the solution of the Sylvester
equation (6). Denote AL = A−1 + L1CΛ and BL = B +
L1D for brevity. Due to the structure of the operator G1 it is
straigtforward to see that an operator H ∈ L(Z0, X) such that
R(H) ⊂ D(CΛ) is the solution of HG1 = ALH + BLK1 if
and only if for all k ∈ {1, . . . , q} we have

(iωk −AL)H1
k = BLK

k1
1

(iωk −AL)H2
k +H1

k = BLK
k2
1

...

(iωk −AL)Hnk

k +Hnk−1
k = BLK

knk
1 ,

where H = (H1, . . . ,Hq), and Hk = (H1
k , . . . ,H

nk

k ) ∈
L(Y nk , X). For each k ∈ {1, . . . , q} the above system of
equations has a unique solution

H l
k =

l∑
j=1

(−1)l−jR(iωk, AL)l+1−jBLK
kj
1 .

Thus H defined in Step 3◦ is the unique solution of (6).
We will now show that (C1, G1) is exponentially detectable.

We can do this by showing that for all k ∈ {1, . . . , q} and
z ∈ N (iωk − G1) with z 6= 0 we have C1z 6= 0 [12, Thm.
6.2-5]. To this end, let k ∈ {1, . . . , q} and z ∈ N (iωk −G1)
such that z 6= 0 be arbitrary. From the structure of G1 we
have that z = (z1, . . . , zq) where zl = 0 for l 6= k, and further
zk = (z1

k, 0, . . . , 0) ∈ Y nk . Using H1
k = R(iωk, AL)BLK

k1
1

we see that

C1z = CΛHz +DK1z = CΛHkzk +DKk
1 zk

= CΛH
1
kz

1
k +DKk1

1 z1
k = PL(iωk)Kk1

1 z1
k 6= 0

since z1
k 6= 0, and since we chose Kk1

1 in such a way that
P (iωk)Kk1

1 and PL(iωk)Kk1
1 are boundedly invertible.

It remains to show that the closed-loop system is expo-
nentially stable. With the chosen controller (G1,G2,K) the
operator Ae becomes

Ae =

 A−1 BK1 −BKΛ
2

G2CΛ G1 +G2DK1 G2CΛ

LCΛ LDK1 A−1 +BKΛ
2 + LCΛ


with domain D(Ae) equal to

D(Ae) =

{
(x, z1, x1) ∈ XB × Z0 ×XB

∣∣∣∣{ A−1x+BK1z1 −BKΛ
2 x1 ∈ X

A−1x1 +BKΛ
2 x1 ∈ X

}
.
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If we choose a similarity transform Qe ∈ L(X × Z0 ×X)

Qe =

 I 0 0
0 I 0
−I H −I

 = Q−1
e ,

we can define Âe = QeAeQ
−1
e on X ×Z0×X . If we denote

xe = (x, z1, x1) ∈ X × Z0 × X and use R(H) ⊂ XB , the
domain of the operator Âe satisfies

D(Âe) =
{
xe ∈ X × Z0 ×X

∣∣ Q−1
e xe ∈ D(Ae)

}
=
{
xe ∈ XB × Z0 ×XB

∣∣ Q−1
e xe ∈ D(Ae)

}
.

For xe = (x, z1, x1) ∈ XB × Z0 ×XB we thus have

Q−1
e xe ∈ D(Ae)

⇔
{
A−1x+BK1z1 −BKΛ

2 (−x+Hz1 − x1) ∈ X
(A−1 +BKΛ

2 )(−x+Hz1 − x1) ∈ X

⇔
{

(A−1 +BKΛ
2 )x+B(K1 −KΛ

2 H)z1 +BKΛ
2 x1 ∈ X

BK1z1 +A−1Hz1 −A−1x1 ∈ X

⇔
{

(A−1 +BKΛ
2 )x+B(K1 −KΛ

2 H)z1 +BKΛ
2 x1 ∈ X

x1 ∈ D(A)

since equation (6) implies A−1Hz1 + BK1z = HG1z1 −
L1(CΛH + DK1)z1 ∈ X . The above conditions also imply
x ∈ XB , and thus

D(Âe) =
{
xe ∈ X × Z0 ×D(A)

∣∣ (A−1 +BKΛ
2 )x+

B(K1 −KΛ
2 H)z1 +BKΛ

2 x1 ∈ X
}
.

For xe = (x, z1, x1) ∈ D(Âe) a direct computation using
L = L1 +G2H , C1 = CΛH +DK1, and HG1z1 = (A−1 +
L1CΛ)Hz1 + (B + L1D)K1z1 yields

Âexe = QeAe

 x
z1

−x+Hz1 − x1


=

(A−1 +BKΛ
2 )x+B(K1 −KΛ

2 H)z1 +BKΛ
2 x1

(G1 +G2(CΛH +DK1))z1 −G2CΛx1

(A−1 + L1CΛ)x1


=

A−1 +BKΛ
2 B(K1 −KΛ

2 H) BKΛ
2

0 G1 +G2C1 −G2CΛ

0 0 A+ L1CΛ

 x
z1

x1


The operator G2 ∈ L(Y,Z0) was chosen in such a way that
G1 +G2C1 ∈ L(Z0) is Hurwitz. Since (A−1 +BKΛ

2 )|X and
A+L1CΛ generate exponentially stable semigroups, since B
is an admissible input operator for (A+BKΛ

2 )|X , CΛ and KΛ
2

are admissible input operators for A+L1CΛ, and K1−KΛ
2 H

and G2 are bounded, we have that the semigroup generated
by Âe is exponentially stable, and due to similarity, the same
is true for Ae. We thus conclude that the closed-loop system
is exponentially stable.

Because the controller incorporates a p-copy internal model
of the exosystem and the closed-loop system is exponentially
stable, we have from Theorem 7 that the controller solves the
robust output regulation problem.

A. Controller for a Diagonal Exosystem

In this section we consider the situation where the output
space Y is allowed to be infinite-dimensional and the matrix
S in the exosystem is diagonal. We will show that in this
situation the robust output regulation problem can be solved
with particularly simple choice for the parameter G2 of the
controller. For a diagonal matrix S = diag(iω1, . . . , iωq) we
choose Z0 = Y q and the internal model (G1,K1) of the
exosystem is defined as

G1 = diag(iω1IY , . . . , iωqIY ), K1 = (K1
1 , . . . ,K

q
1)

where Kk
1 are chosen in such a way that P (iωk)Kk

1 are
boundedly invertible for all k ∈ {1, . . . , q}. The following
is the main result of this section.

Theorem 13. Assume S = diag(iω1, . . . , iωq). If the other
parameters of the controller are chosen as in the beginning of
Section V and if we choose

G2 = (Gk2)qk=1 = (−(PL(iωk)Kk
1 )∗)qk=1 ∈ L(Y,Z0),

then the controller solves the robust output regulation problem.
If we choose Kk

1 = PL(iωk)† = P (iωk)†(I −
CΛR(iωk, A)L1) for all k, then Gk2 = −IY for all k.

Proof. Since nk = 1 for all k ∈ {1, . . . , q}, we have
H = (H1, . . . ,Hq) ∈ L(Z0, X), where Hk = R(iωk, A−1 +
L1CΛ)(B + L1D)Kk

1 . Because of this, the operator C1 =
(C1

1 , . . . , C
q
1) satisfies

Ck1 = CΛHk +DKk
1 = PL(iωk)Kk

1

for all k ∈ {1, . . . , q}, which shows that G2 = −C∗1 . The last
claim of the theorem follows immediately from PL(iωk) =
(I − CΛR(iωk, A)L1)−1P (iωk). The same identity and the
fact that Kk

1 were chosen so that P (iωk)Kk
1 are boundedly

invertible imply that the components Gk2 of G2 are boundedly
invertible for all k ∈ {1, . . . , q}. We thus have from Lemma 17
that the semigroup generated by G1 +G2C1 = G1−G2G

∗
2 is

exponentially stable. The exponential stability of the closed-
loop system can now be shown exactly as in the proof of
Theorem 15.

Due to the fact that Y may be infinite-dimensional, we
cannot use the concept of p-copy internal model. Instead, we
will verify that the controller satisfies the G-conditions. For
this we will in particular use Lemma 6.

Since S is diagonal, the condition (4c) is trivially satisfied.
The components Gk2 = −(PL(iωk)Kk

1 )∗ of G2 = (Gk2)qk=1

are boundedly invertible for all k ∈ {1, . . . , q}. This implies
N (G2) = {0}, and also further shows that N (G2) = {0}.
Moreover, if for some k ∈ {1, . . . , q} the elements (z, x) ∈ Z,
(w, v) ∈ D(G1) with w = (wk)qk=1 ∈ Z0, and y ∈ Y are such
that(
z
x

)
=

(
iωk −G1 0

0 iωk − (A−1 +BKΛ
2 )

)(
w
v

)
=

(
G2

L

)
y,

then we in particular have z = (iωk − G1)w = G2y and
Gk2y = (iωk − iωk)wk = 0. The invertibility of Gk2 implies
y = 0 and (z, x) = G2y = 0. Since k ∈ {1, . . . , q} was
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arbitrary, this shows that the operators (
(
G1 0

0 A−1+BKΛ
2

)
,G2)

satisfy the G-conditions. Since

G1 =

(
G1 G2(CΛ +DKΛ

2 )
0 A−1 +BKΛ

2 + L(CΛ +DKΛ
2 )

)
=

(
G1 0
0 A−1 +BKΛ

2

)
+

(
G2

L

)(
0 CΛ +DKΛ

2

)
where for any k ∈ {1, . . . , q} we have N (iωk −(
G1 0

0 A−1+BKΛ
2

)
) ⊂ Z0 × {0} ⊂ N ((0, CΛ + DKΛ

2 )),
Lemma 6 shows that the operators (G1,G2) satisfy the G-
conditions as well.

Since the controller satisfies the G-conditions and the
closed-loop system is exponentially stable, we have from The-
orem 7 that the controller solves the robust output regulation
problem.

B. Controller with a Reduced Order Internal Model

It was shown in [15] that the triangular structure used in
this section is ideal for controllers with reduced order internal
models. Indeed, if the internal model (G1,K1) is replaced with
an appropriate reduced order internal model, the controller will
solve the robust output regulation problem for a given class O0

of perturbations. As the final result in this section we present
a generalization of the controller introduced in [15] for regular
linear systems with diagonal exosystems. For this purpose we
again assume that P (iωk) are invertible for all k ∈ {1, . . . , q}.

Let O0 be a class of admissible perturbations. Similarly as
in Section IV-A we define Z0 = Y1 × · · · × Yq , and

G1 = diag
(
iω1IY1 , . . . , iωqIYq

)
, K1 =

(
K1

1 , . . . ,K
q
1

)
,

where Kk
1 ∈ L(Yk, U) are such that

Kk
1 =

{
(u1
k, . . . , u

pk
k ) if pk < dimY

P (iωk)−1 if pk = dimY or pk =∞

in the notation of Section IV-A. Moreover, we define G2 =
(−(PL(iωk)Kk

1 )∗)qk=1 ∈ L(Y,Z). The rest of the parameters
of the controller (G1,G2,K) are chosen as in the beginning
of Section VI.

Theorem 14. Assume S = diag(iω1, . . . , iωq) and P (iωk)
are invertible for all k ∈ {1, . . . , q}. Then the controller
with the above choices of parameters solves the robust output
regulation problem for the class O0 of perturbations.

Proof. If (Ã, B̃, C̃, D̃, Ẽ, F̃ ) ∈ O0 and k ∈ {1, . . . , q}, and
if we choose z as in the proof of Theorem 11 (for ε = 1),
then it is easy to see that P̃ (iωk)K

(
z
0

)
= yk and

(
z
0

)
∈

N (iωk−G1). By [19, Thm. 5.1] the controller solves the robust
output regulation problem for the class O0 of perturbations
provided that the closed-loop system is exponentially stable.
The stability of the closed-loop system can be shown exactly
as in the proof of Theorem 13.

VI. THE OBSERVER-BASED ROBUST CONTROLLER

The observer-based robust controller structure presented
in this section is based on the controller Hämäläinen and
Pohjolainen [10] for systems with bounded input and output

operators. The construction of the controller is again com-
pleted in steps and its properties are given in Theorem 15.
For this controller structure it is necessary to assume that the
spaces U and Y are isomorphic. We begin by assuming that
the plant has the same finite number of inputs and outputs, that
is, U = Y = Cp. The case of an infinite-dimensional output
space is again considered separately for a diagonal exosystem
in Theorem 16.

Step 1◦: We begin by choosing the state space of the controller
as Z = Z0 ×X , and choosing

G1 =

(
G1 0

(B + LD)K1 A−1 +BK2 + L(CΛ +DK2)

)
,

G2 =
(
G2

−L

)
, and K = (K1, K

Λ
2 ). The operators (G1, G2)

make up the internal model of the exosystem (2), and they are
defined by choosing Z0 = Y n1 × · · · × Y nq , and

G1 = diag
(
JY1 , . . . , J

Y
q

)
∈ L(Z0), G2 = (Gk2)qk=1.

Here JYk are as in (5) and Gk2 = (Gkl2 )nk

l=1 ∈ L(Y, Y nk) for
all k ∈ {1, . . . , q}, where nk ∈ N is the dimension of the
Jordan block in S associated to the eigenvalue iωk ∈ σ(S).
We choose the components Gknk

2 ∈ L(Y ) of each Gk2 to be
boundedly invertible (e.g., it is possible to choose Gknk

2 = IY
for every k ∈ {1, . . . , q}).

Step 2◦: By Assumption 1 we can choose K21 ∈ L(X1, U)
and L ∈ L(Y,X) in such a way that (A−1 + BKΛ

21)|X
(here KΛ

21 is the Λ-extension of K21) and A+ LCΛ generate
exponentially stable semigroups. For λ ∈ ρ(A−1 +BKΛ

21) we
define

PK(λ) = (CΛ +DKΛ
21)R(λ,A−1 +BKΛ

21)B +D.

Since P (iωk) were assumed to be surjective for all k ∈
{1, . . . , q} and since U = Y = Cq , the identity PK(iωk) =
P (iωk)(I −KΛ

21R(iωk, A−1)B)−1 implies that PK(iωk) are
boundedly invertible for all k ∈ {1, . . . , q}.

Step 3◦: We define an operator H : D(H) ⊂ X−1 → Z0 in
such a way that H = (Hk)qk=1 and Hk = (H l

k)nk

l=1, where

H l
k =

nk∑
j=l

(−1)j−lGkj2 (CΛ +DKΛ
21)R(iωk, A−1 +BKΛ

21)j+1−l.

Since we have from [30, Sec. 7] that (A + BKΛ
21, B,CΛ +

DKΛ
21, D) is a regular linear system and XB ⊂ D(CΛ) ∩

D(KΛ
21), it is immediate that H ∈ L(X,Z0) and R(B) ⊂

D(H), and we can thus define B1 = HB+G2D ∈ L(U,Z0).

Step 4◦: We choose the operator K1 ∈ L(Z0, U) in such a
way that the semigroup generated by G1 + B1K1 ∈ L(Z0)
is exponentially stable (i.e., the matrix is Hurwitz). The
stabilizability of the pair (G1, B1) is shown in Theorem 15
below. Finally, we define KΛ

2 = KΛ
21 +K1H ∈ L(X,U) and

choose the domain of the operator G1 as

D(G1) =
{

(z1, x1) ∈ Z0 ×XB

∣∣
A−1x1 +B(K1z1 +KΛ

2 x1) ∈ X
}
.
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Theorem 15. Assume U = Y = Cp. The controller with
the above choices of parameters solves the robust output
regulation problem.

In particular, the controller (G1,G2,K) has the following
properties:
(i) The operator G1 generates a semigroup on Z and the

controller (G1,G2,K) satisfies the G-conditions in Defi-
nition 5.

(ii) The operator H is the unique solution of the Sylvester
equation

G1H = H(A−1 +BKΛ
21) +G2(CΛ +DKΛ

21) (7)

on D(CΛ) ∩ D(KΛ
21). Moreover, (G1, B1) where B1 =

HB +G2D ∈ L(U,Z0) is exponentially stabilizable.
(iii) The semigroup generated by Ae is exponentially stable.

Proof. The property that G1 with the given domain generates
a strongly continuous semigroup can be seen analogously as
in the proof of Theorem 12.

We will now show that H defined in Step 3◦ is the solution
of (7). Denote AK = A−1 + BKΛ

21 and CK = CΛ + DKΛ
21

for brevity. The structure of G1 implies that an operator H
is the solution of G1H = HAK + G2CK if and only if
H = (Hk)qk=1 with Hk = (H l

k)nk

l=1 for all k, and for all
k ∈ {1, . . . , q} we have

H1
k(iωk −AK) +H2

k = Gk1
2 CK

...

Hnk−1
k (iωk −AK) +Hnk

k = Gk,nk−1
2 CK

Hnk

k (iωk −AK) = Gknk
2 CK

on D(CΛ) ∩ D(KΛ
21). For every k ∈ {1, . . . , q} the above

system of equations has a unique solution which is exactly
Hk in step 3◦.

We will now show that the pair (G1, B1) with B1 = HB+
G2D is exponentially stabilizable. This is equivalent to the pair
(B∗1 , G

∗
1) being exponentially detectable. Let k ∈ {1, . . . , q}

and z = (z1, . . . , zq) ∈ N (−iωk − G∗1). Then zl = 0 for
l 6= k, and zk = (0, . . . , 0, znk

k ) with znk

k ∈ Y . For any u ∈ U
we have

〈u,B∗1z〉 = 〈B1u, z〉 = 〈(Hnk

k B +Gknk
2 D)u, znk

k 〉
= 〈Gknk

2 (CKR(iωk, AK)B +D)u, znk

k 〉
= 〈u, (Gknk

2 PK(iωk))∗znk

k 〉

which immediately implies that we can have B∗1z = 0 only if
znk

k = 0 due to the fact that Gknk
2 and PK(iωk) are invertible.

Since this also implies z = 0 and since k ∈ {1, . . . , q}
was arbitrary, we have that the pair (G1, B1) is exponentially
stabilizable [12, Thm. 6.2-5]. Because of this it is possible to
choose K1 in such a way that G1 +B1K1 is Hurwitz.

We will now show that the closed-loop system is expo-
nentially stable. When the controller (G1,G2,K) is chosen as
suggested, we have that

Ae =

 A−1 BK1 BKΛ
2

G2CΛ G1 +G2DK1 G2DK
Λ
2

−LCΛ BK1 A−1 +BKΛ
2 + LCΛ



with domain

D(Ae) =

{
(x, z1, x1) ∈ XB × Z0 ×XB

∣∣∣∣{ A−1x+BK1z1 +BKΛ
2 x1 ∈ X

BK1z1 + (A−1 +BKΛ
2 )x1 ∈ X

}
.

If we choose a similarity transform Qe ∈ L(X × Z0 ×X)

Qe =

−I 0 0
H I 0
−I 0 I

 = Q−1
e ,

we can define Âe = QeAeQ
−1
e on X ×Z0×X . If we denote

xe = (x, z1, x1) ∈ X × Z0 ×X , we have

D(Âe) =
{
xe ∈ X × Z0 ×X

∣∣ Q−1
e xe ∈ D(Ae)

}
=
{
xe ∈ XB × Z0 ×XB

∣∣ Q−1
e xe ∈ D(Ae)

}
and for xe = (x, z1, x1) ∈ XB × Z0 ×XB we have

Q−1
e xe ∈ D(Ae)

⇔
{
−A−1x+BK1(Hx+ z1) +BKΛ

2 (−x+ x1) ∈ X
BK1(Hx+ z1) + (A−1 +BKΛ

2 )(−x+ x1) ∈ X

⇔
{

(A−1 +BKΛ
21)x−BK1z1 −BKΛ

2 x1 ∈ X
x1 ∈ D(A)

where we have used KΛ
21 = KΛ

2 − K1H . Since the above
condition also implies x ∈ XB , the domain of Âe becomes

D(Âe) =
{
xe ∈ X × Z0 ×D(A)

∣∣
(A−1 +BKΛ

21)x−BK1z1 −BKΛ
2 x1 ∈ X

}
.

For any xe = (x, z1, x1) ∈ D(Âe) a direct computation using
KΛ

2 = KΛ
21 + K1H , B1 = HB + G2D, and G1Hx =

H(A−1 +BKΛ
21)x+G2(CΛ +DKΛ

21)x yields

Âexe = QeAe

 −x
Hx+ z1

−x+ x1


=

 (A−1 +BKΛ
21)x−BK1z1 −BKΛ

2 x1

(G1 + (HB +G2DK1))z1 + (HB +G2D)KΛ
2 x1

(A−1 + LCΛ)x1


=

A−1 +BKΛ
21 −BK1 −BKΛ

2

0 G1 +B1K1 B1K
Λ
2

0 0 A−1 + LCΛ

 x
z1

x1


The operator K1 ∈ L(Z0, U) was chosen in such a way that
G1 + B1K1 ∈ L(Z0) is Hurwitz. Since (A−1 + BKΛ

21)|X
and A+LCΛ generate exponentially stable semigroups, since
B and KΛ

2 are admissible with respect to (A + BKΛ
2 )|X

and (A−1 + LCΛ)|X , respectively, and since K1 and B1

are bounded, the semigroup generated by Âe is exponentially
stable, and because of similarity, the same is also true for Ae.
This concludes that the closed-loop system is exponentially
stable.

It remains to show that the controller satisfies the G-
conditions. We begin by showing that (G1, G2) satisfy the G-
conditions. We have N (G2) = {0} since Gknk

2 are boundedly
invertible for all k ∈ {1, . . . , q}. If z ∈ R(iωk−G1)∩R(G2)
for some k ∈ {1, . . . , q}, there exist z1 and y such that
z = (iωk − G1)z1 = G2y. Here z = (z1, . . . , zq) with
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zk = (z1
k, . . . , z

nk

k ) ∈ Y nk , and structure of G1 implies
that necessarily znk

k = 0. On the other hand, we have
0 = znk

k = Gknk
2 y, which implies y = 0 since Gknk

2 is
invertible, and thus z = G2y = 0. This concludes that
R(iωk−G1)∩R(G2) = {0}. Finally, a direct computation can
be used to verify that N (iωk−G1)nk−1 = { z = (z1, . . . , zq) |
znk

k = 0, zl = 0 for l 6= k } ⊂ R(iωk −G1). This concludes
that (G1, G2) satisfy the G-conditions. Moreover, the surjectiv-
ity of the operators Gknk

2 implies Z0 = R(iωk−G1)+R(G2),
and we thus have Z0 = R(iωk −G1)⊕R(G2).

We will now show that (G1,G2) satisfy the G-conditions.
The condition N (G2) = {0} follows immediately from
N (G2) = {0}. If (z, x) ∈ R(iωk − G1) ∩ R(G2), there exist
(z1, x1) ∈ D(G1) and y ∈ Y such that(
z
x

)
=

(
iωk −G1 0
BLK1 A−1 +BLK

Λ
2 + LCΛ

)(
z1

x1

)
=

(
G2

−L

)
y.

where we have denoted BL = B+LD. The first line implies
z ∈ N (iωk −G1) ∩ R(G2) = {0}, and since N (G2) = {0},
we have y = 0. Thus (z, x) = G2y = 0 and we conclude that
R(iωk − G1) ∩R(G2) = {0}.

Finally, let (z, x) ∈ N (iωk−G1)nk−1. Since the closed-loop
is exponentially stable, we have Z = R(iωk−G1)+R(G2) for
all k ∈ {1, . . . , q} [16, Lem. 5.7]. Thus there exist (z1, x1) ∈
D(G1) and y ∈ Y such that(
z
x

)
=

(
iωk −G1 0
BLK1 A−1 +BLK

Λ
2 + LCΛ

)(
z1

x1

)
+

(
G2

−L

)
y.

We will show that y = 0, which will conclude that (z, x) ∈
R(iωk−G1). From the above equation we see that z = (iωk−
G1)z1 + G2y. The property (z, x) ∈ N (iωk − G1)nk−1 and
the triangular structure of G1 imply z ∈ N (iωk −G1)nk−1 ⊂
R(iωk −G1). However, since Z0 = R(iωk −G1)⊕R(G2),
in the decomposition z = (iωk −G1)z1 +G2y we must then
necessarily have G2y = 0, which further implies y = 0 due to
N (G2) = {0}. Since (z, x) ∈ N (iωk−G1)nk−1 was arbitrary,
we have that (4c) is satisfied.

Since the controller satisfies the G-conditions and the
closed-loop system is exponentially stable, we have from The-
orem 7 that the controller solves the robust output regulation
problem.

Finally, we consider the situation where Y is infinite-
dimensional and the matrix S in the exosystem is diagonal.
We choose Z0 = Y q and the internal model in the controller
is of the form

G1 = diag(iω1IY , . . . , iωqIY ), G2 = (Gk2)qk=1 ∈ L(Y,Z0)

where the components Gk2 are chosen to be boundedly invert-
ible for all k ∈ {1, . . . , q}.

Theorem 16. Assume S = diag(iω1, . . . , iωq) and P (iωk) ∈
L(U, Y ) are boundedly invertible for all k ∈ {1, . . . , q}. If
the other parameters of the controller are chosen as in the
beginning of Section VI and if we choose

K1 = (−(G1
2PK(iω1))∗, . . . ,−(Gq2PK(iωq))

∗) ∈ L(Z0, U),

then the controller solves the robust output regulation problem.

If G2 = ((I − KΛ
21R(iωk, A−1)B)P (iωk)−1)qk=1, then

K1 = (−IY , . . . ,−IY ).

Proof. To show that the controller solves the robust output
regulation problem, it is sufficient to show that the closed-loop
system is exponentially stable, because the property that the
controller satisfies the G-conditions and all the other properties
considered in the proof of Theorem 15 remain valid for a
general Hilbert space Y .

Since G1 = diag(iωkIY )qk=1, the operator B1 is of the form
B1 = (Bk1 )qk=1 ∈ L(U, Y q), where for all k ∈ {1, . . . , q} we
have

Bk1 = HkB +Gk2D = Gk2PK(iωk).

since Hk = Gk2(CΛ + DKΛ
21)R(iωk, A−1 + BKΛ

21). This
shows that K1 = −B∗1 . The last claim of the theorem follows
from PK(iωk) = P (iωk)(I −KΛ

21R(iωk, A−1)B)−1, and the
invertibility of Gk2 and P (iωk) imply that Bk1 are boundedly
invertible for all k ∈ {1, . . . , q}. We thus have from Lemma 17
that the operator G1 + B1K1 = G1 − B1B

∗
1 generates an

exponentially stable semigroup. The exponential stability of
the closed-loop system can now be shown as in the proof of
Theorem 15.

VII. ROBUST CONTROL OF A 2D HEAT EQUATION

In this section we consider robust output regulation for
a two-dimensional heat equation with boundary control and
observation. Set-point regulation without the robustness re-
quirement was considered for the same system in [14, Ex.
VI.2].

We study the heat equation

xt(ξ, t) = ∆x(ξ, t), x(ξ, 0) = x0(ξ)

on the unit square ξ = (ξ1, ξ2) ∈ Ω = [0, 1] × [0, 1]. The
control and observation are located on the parts Γ1 and Γ2

of the boundary ∂Ω, where Γ1 = { ξ = (ξ1, 0) | 0 ≤ ξ1 ≤
1/2 } and Γ2 = { ξ = (ξ1, 1) | 1/2 ≤ ξ1 ≤ 1 }. We denote
Γ0 = ∂Ω\ (Γ1∪Γ2). The boundary control and the additional
boundary conditions are defined as

∂x

∂n
(ξ, t)|Γ1

= u1(t),
∂x

∂n
(ξ, t)|Γ2

= u2(t),
∂x

∂n
(ξ, t)|Γ0

= 0

for u(t) = (u1(t), u2(t)) ∈ U = C2. The outputs y(t) =
(y1(t), y2(t)) ∈ Y = C2 of the system are defined as averages
of the value of x(ξ, t) over the parts Γ1 and Γ2 of the boundary,
i.e.,

y1(t) = 2

∫ 1/2

0

x(ξ1, 0; t)dξ1, y2(t) = 2

∫ 1

1/2

x(ξ1, 1; t)dξ1.

We define A0 = ∆ with domain D(A0) = {x ∈ H2(Ω) |
∂x
∂n = 0 on ∂Ω }. We have from [3, Cor. 1] that with
the above control and observation, the heat equation is a
regular linear system (A0, B, C,D) with D = 0. The system
becomes exponentially stable with negative output feedback,
u = −κCx+ ũ where κ > 0 (cf. [14, Ex. VI.2]). We choose
κ = 1, and define A = ((A0)−1 −BC)|X .

Our aim is to design a minimal order controller for the sta-
bilized system (A,B,C, 0) to achieve robust output tracking
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of the reference signal yref (t) = (−1, cos(πt)). To this end,
we choose the exosystem as W = C3, S = diag(−iπ, 0, iπ),
E = 0, and F = −

(
0

1/2
−1
0

0
1/2

)
. The reference signal yref (t)

is then generated with the choice v0 = (1, 1, 1) of the initial
state of the exosystem.

Since p = dimY = 2, the internal model and the
parameters of the minimal order controller are given by

G1 = diag(−iπ,−iπ, 0, 0, iπ, iπ) ∈ C6×6,

K = εK0 = ε
(
K1

0 ,K
2
0 ,K

3
0

)
∈ C2×6,

where ε > 0 and Kk
0 are to be chosen in such a way

that the matrices P (−iπ)K1
0 , P (0)K2

0 and P (iπ)K3
0 are

nonsingular. We choose K1
0 = P (−iπ)−1, K2

0 = P (0)−1, and
K3

0 = P (iπ)−1. Finally, G2 = (Gk2 )3
k=1 where Gk2 = −I2×2

for k ∈ {1, . . . , 3}. We have from Theorem 8 that for small
values of ε > 0 the controller achieves asymptotic tracking of
the reference signal yref (·), and the control structure is robust
with respect to perturbations in (A,B,C, 0) that preserve the
property {0,±iπ} ⊂ ρ(Ã)) and the exponential stability of the
closed-loop system. In particular, this includes small bounded
perturbations to the operators A, B, C, and D = 0.

The robust controller also tolerates small perturbations and
inaccuracies in the parameters K and G2 of the controller
(although robustness with respect to these operators is not
required in the statement of the robust output regulation
problem). Because of this property, we can use approxima-
tions for the values P (±iπ)−1 and P (0)−1 in K0. In this
example we use a truncated eigenfunction expansion of A0

in approximating the matrices P (0) and P (±iπ). Finally, the
parameter ε > 0 needs to be chosen in such a way that the
closed-loop is stable.

The solution of the controlled heat equation can be approx-
imated numerically using the truncated eigenfunction expan-
sion of the operator A0. For the simulation, the parameter
ε is chosen to be ε = 1/4. Figure 1 depicts the simulated
behaviour of the two outputs of the plant. The solution of the
controlled partial differential equation at time t = 16 is plotted
in Figure 2.

–1

0

1

0 5 10 15

– 0.5

0

0.5

0 5 10 15

Fig. 1. Outputs y1(·) and y2(·) of the controlled system.
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ξ2

0

1

ξ1

–1

0

1

Fig. 2. State of the controlled system at time t = 16.

APPENDIX

Lemma 17. Let G1 = diag(iω1IY , . . . , iωqIY ) ∈ L(Y q) and
G2 = (Gk2)qk=1 ∈ L(U, Y q) where U and Y are Hilbert
spaces. If the components Gk2 of G2 are boundedly invertible
for all k ∈ {1, . . . , q}, then the semigroup generated by
G1 −G2G

∗
2 is exponentially stable.

Proof. Since G1−G2G
∗
2 is a bounded operator, it is sufficient

to show that σ(G1 − G2G
∗
2) ⊂ C−. Since G1 generates a

contraction semigroup, the same is true for G1 −G2G
∗
2, and

thus σ(G1 −G2G
∗
2) ⊂ C−. It therefore remains to show that

iR ⊂ ρ(G1 −G2G
∗
2).

Let iω ∈ iR be such that ω 6= ωk for all k ∈ {1, . . . , q}.
We then have iω ∈ ρ(G1). If I + G∗2R(iω,G1)G2 is
boundedly invertible, then the Woodbury formula implies
that iω − G1 + G2G

∗
2 has a bounded inverse. However,

since G∗2R(iω,G1)G2 is bounded and skew-adjoint, we have
1 ∈ ρ(−G∗2R(iω,G1)G2). This finally implies iω ∈ ρ(G1 −
G2G

∗
2).

It remains to consider the case where iω = iωn for some
n ∈ {1, . . . , q}. We will show ‖(iωn−G1 +G2G

∗
2)z‖ ≥ c‖z‖

for some constant c > 0 and for all z ∈ Z. If this is not true,
there exists a sequence (zk)k∈N ⊂ Z such that ‖zk‖ = 1 for
all k ∈ N and ‖(iωn −G1 +G2G

∗
2)zk‖ → 0 as k →∞. For

every k ∈ N denote zk = z1
k + z2

k where z1
k ∈ R(iωn −G1),

z2
k = N (iωn −G1), and 1 = ‖zk‖2 = ‖z1

k‖2 + ‖z2
k‖2. There

exists c1 > 0 such that |〈(iωn−G1)z1
k, z

1
k〉| ≥ c1‖z1

k‖2 for all
k ∈ N. A direct computation yields

‖(iωn −G1 +G2G
∗
2)zk‖2 ≥ |〈(iωn −G1 +G2G

∗
2)zk, zk〉|2

= ‖G∗2zk‖4 + (〈(iωn −G1)zk, zk〉)2

≥ (‖G∗2z2
k‖ − ‖G∗2z1

k‖)4 + c21‖z1
k‖2.

Since G2 is bounded and ‖G∗2z2
k‖ ≥ ‖(Gn2 )−1‖−1‖z2

k‖, it is
easy to see that this contradicts the assumption that (iωn −
G1 +G2G

∗
2)zk → 0, and thus shows that iωn −G1 +G2G

∗
2

is lower bounded. In particular iωn /∈ σp(G1 + G2G
∗
2) and

the range of iωn − G1 + G2G
∗
2 is closed. Finally, the Mean

Ergodic Theorem [1, Sec. 4.3] implies that the range of iωn−
G1 +G2G

∗
2 is dense, and thus iωn ∈ ρ(G1 +G2G

∗
2).
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