1,164 research outputs found

    Exploring Robot Teleoperation in Virtual Reality

    Get PDF
    This thesis presents research on VR-based robot teleoperation with a focus on remote environment visualisation in virtual reality, the effects of remote environment reconstruction scale in virtual reality on the human-operator's ability to control the robot and human-operator's visual attention patterns when teleoperating a robot from virtual reality. A VR-based robot teleoperation framework was developed, it is compatible with various robotic systems and cameras, allowing for teleoperation and supervised control with any ROS-compatible robot and visualisation of the environment through any ROS-compatible RGB and RGBD cameras. The framework includes mapping, segmentation, tactile exploration, and non-physically demanding VR interface navigation and controls through any Unity-compatible VR headset and controllers or haptic devices. Point clouds are a common way to visualise remote environments in 3D, but they often have distortions and occlusions, making it difficult to accurately represent objects' textures. This can lead to poor decision-making during teleoperation if objects are inaccurately represented in the VR reconstruction. A study using an end-effector-mounted RGBD camera with OctoMap mapping of the remote environment was conducted to explore the remote environment with fewer point cloud distortions and occlusions while using a relatively small bandwidth. Additionally, a tactile exploration study proposed a novel method for visually presenting information about objects' materials in the VR interface, to improve the operator's decision-making and address the challenges of point cloud visualisation. Two studies have been conducted to understand the effect of virtual world dynamic scaling on teleoperation flow. The first study investigated the use of rate mode control with constant and variable mapping of the operator's joystick position to the speed (rate) of the robot's end-effector, depending on the virtual world scale. The results showed that variable mapping allowed participants to teleoperate the robot more effectively but at the cost of increased perceived workload. The second study compared how operators used a virtual world scale in supervised control, comparing the virtual world scale of participants at the beginning and end of a 3-day experiment. The results showed that as operators got better at the task they as a group used a different virtual world scale, and participants' prior video gaming experience also affected the virtual world scale chosen by operators. Similarly, the human-operator's visual attention study has investigated how their visual attention changes as they become better at teleoperating a robot using the framework. The results revealed the most important objects in the VR reconstructed remote environment as indicated by operators' visual attention patterns as well as their visual priorities shifts as they got better at teleoperating the robot. The study also demonstrated that operators’ prior video gaming experience affects their ability to teleoperate the robot and their visual attention behaviours

    Intuitive Robot Teleoperation through Multi-Sensor Informed Mixed Reality Visual Aids

    Get PDF
    © 2021 The Author(s). This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.Mobile robotic systems have evolved to include sensors capable of truthfully describing robot status and operating environment as accurately and reliably as never before. This possibility is challenged by effective sensor data exploitation, because of the cognitive load an operator is exposed to, due to the large amount of data and time-dependency constraints. This paper addresses this challenge in remote-vehicle teleoperation by proposing an intuitive way to present sensor data to users by means of using mixed reality and visual aids within the user interface. We propose a method for organizing information presentation and a set of visual aids to facilitate visual communication of data in teleoperation control panels. The resulting sensor-information presentation appears coherent and intuitive, making it easier for an operator to catch and comprehend information meaning. This increases situational awareness and speeds up decision-making. Our method is implemented on a real mobile robotic system operating outdoor equipped with on-board internal and external sensors, GPS, and a reconstructed 3D graphical model provided by an assistant drone. Experimentation verified feasibility while intuitive and comprehensive visual communication was confirmed through a qualitative assessment, which encourages further developments.Peer reviewe

    Physiologically attentive user interface for robot teleoperation: real time emotional state estimation and interface modification using physiology, facial expressions and eye movements

    Get PDF
    We developed a framework for Physiologically Attentive User Interfaces, to reduce the interaction gap between humans and machines in life critical robot teleoperations. Our system utilizes emotional state awareness capabilities of psychophysiology and classifies three emotional states (Resting, Stress, and Workload) by analysing physiological data along with facial expression and eye movement analysis. This emotional state estimation is then used to create a dynamic interface that updates in real time with respect to user’s emotional state. The results of a preliminary evaluation of the developed emotional state classifier for robot teleoperation are presented, along with its future possibilities are discussed.info:eu-repo/semantics/acceptedVersio

    Toward safe and stable time-delayed mobile robot teleoperation through sampling-based path planning

    Get PDF
    This work proposes a teleoperation architecture for mobile robots in partially unknown environments under the presence of variable time delay. The system is provided with artificial intelligence represented by a probabilistic path planner that, in combination with a prediction module, assists the operator while guaranteeing a collision-free motion. For this purpose, a certain level of autonomy is given to the system. The structure was tested in indoor environments for different kinds of operators. A maximum time delay of 2s was successfully coped with. © 2011 Cambridge University Press

    Sensory Manipulation as a Countermeasure to Robot Teleoperation Delays: System and Evidence

    Full text link
    In the field of robotics, robot teleoperation for remote or hazardous environments has become increasingly vital. A major challenge is the lag between command and action, negatively affecting operator awareness, performance, and mental strain. Even with advanced technology, mitigating these delays, especially in long-distance operations, remains challenging. Current solutions largely focus on machine-based adjustments. Yet, there's a gap in using human perceptions to improve the teleoperation experience. This paper presents a unique method of sensory manipulation to help humans adapt to such delays. Drawing from motor learning principles, it suggests that modifying sensory stimuli can lessen the perception of these delays. Instead of introducing new skills, the approach uses existing motor coordination knowledge. The aim is to minimize the need for extensive training or complex automation. A study with 41 participants explored the effects of altered haptic cues in delayed teleoperations. These cues were sourced from advanced physics engines and robot sensors. Results highlighted benefits like reduced task time and improved perceptions of visual delays. Real-time haptic feedback significantly contributed to reduced mental strain and increased confidence. This research emphasizes human adaptation as a key element in robot teleoperation, advocating for improved teleoperation efficiency via swift human adaptation, rather than solely optimizing robots for delay adjustment.Comment: Submitted to Scientific Report

    Cloud-based robots and intelligent space teleoperation tools

    Get PDF
    Despite an idea of robotic system teleoperation is a relatively old concept, here we present its enhancements heading to an interconnection of teleoperation and collecting relevant information from the environment where robots act. This environment should be an intelligent space featured with various devices and sensors, which allows to obtain, preprocess and stores data in the cloud. Those data should provide relevant information for teleoperator or directly for robots, which act autonomously. For this purpose, we developed cloud-based tools, named Telescope v2. It is a platform-independent system for remote monitoring and controlling various systems. In this paper, we introduce this system, its abilities, and compare it with its network-based ancestor, Telescope v1. We analyze measurements of latency and response time when our new system is used for teleoperation in different places equipped with various Internet bandwidths

    Physiologically attentive user interface for improved robot teleoperation

    Get PDF
    User interfaces (UI) are shifting from being attention-hungry to being attentive to users’ needs upon interaction. Interfaces developed for robot teleoperation can be particularly complex, often displaying large amounts of information, which can increase the cognitive overload that prejudices the performance of the operator. This paper presents the development of a Physiologically Attentive User Interface (PAUI) prototype preliminary evaluated with six participants. A case study on Urban Search and Rescue (USAR) operations that teleoperate a robot was used although the proposed approach aims to be generic. The robot considered provides an overly complex Graphical User Interface (GUI) which does not allow access to its source code. This represents a recurring and challenging scenario when robots are still in use, but technical updates are no longer offered that usually mean their abandon. A major contribution of the approach is the possibility of recycling old systems while improving the UI made available to end users and considering as input their physiological data. The proposed PAUI analyses physiological data, facial expressions, and eye movements to classify three mental states (rest, workload, and stress). An Attentive User Interface (AUI) is then assembled by recycling a pre-existing GUI, which is dynamically modified according to the predicted mental state to improve the user's focus during mentally demanding situations. In addition to the novelty of the proposed PAUIs that take advantage of pre-existing GUIs, this work also contributes with the design of a user experiment comprising mental state induction tasks that successfully trigger high and low cognitive overload states. Results from the preliminary user evaluation revealed a tendency for improvement in the usefulness and ease of usage of the PAUI, although without statistical significance, due to the reduced number of subjects.info:eu-repo/semantics/acceptedVersio
    • …
    corecore