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Abstract. Despite an idea of robotic systems teleoperation, is a relatively old 

concept, here we present its enhancements heading to an interconnection of 

teleoperation and collecting relevant information from the environment where 

robots act. This environment should be an intelligent space featured with 

various devices and sensors, which allows to obtain, preprocess and stores data 

in the cloud. Those data should provide relevant information for teleoperator or 

directly for robots, which act autonomously. For this purpose, we developed 

cloud-based tools, named Telescope v2. It is a platform-independent system for 

remote monitoring and controlling various systems. In this paper, we introduce 

this system, its abilities, and compare it with its network-based ancestor, 

Telescope v1. We analyze measurements of latency and response time when our 

new system is used for teleoperation in different places equipped with various 

internet bandwidth.  

1 Introduction 

 

Teleoperation is an important factor of today’s service and social robots. The basic 

aim of teleoperation is being able to operate a robot in remote or non-approachable 

environment. The human person operating a remote robot is using all the information 

to be able to control the robot by all the means of technology. The latest results in 

Cloud Computing are giving more and more conditions to fulfil the idea of remote 

brain concept [1]. The practical aim is the during teleoperating a robotic system 

“would be nice to learn” and offload the human which is teleoperating a robot from 

more routine work and this possible by creating intelligent agent on the Cloud envi-

ronment which is doing gradual replacement of human which is operating a robot 
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towards anonomous robots. The figure 1 shows the concept of the U.S. IROBOT 

Company of creating an intelligent machine using tele-operation and engaging learn-

ing procedure into the process. The application potential of this approach is rather 

large, since a number of autonomous machines are expected to appear on the market 

in the near future.  

 

 

Fig. 1. The approach of Tele-operation toward Mission Autonomy operation [2] 

One of the major problems related to Intelligent Machines are the difficulties in 

measuring the autonomy of the system. There is no universal approach to this problem. 

We can state that it is a task or mission oriented approach and therefore we write it as:  

 

    

GTI = HTI + MTI (1) 

where  

 

GTI (Global Task Intelligence) is always value 1, is a sum of Human Intelligence 

„HTI (Human Task Intelligence) from interval <0,1> and Machine Intelligence  MTI 

(Machine Task Intelligence) from interval <0,1>. Also, we can define a Machine Task 

Intelligence Autonomity“(MTIA) as follows:  

 

      MTIA = MTI / HTI                                                                                  (2) 



 

 

So, when MTIA is 0, we are describing a manual, fully human-made process, since 

HTI is 1 and MTI is 0. If MTIA is a very large number, HTI is very small close to 

„0“ and MTI is close to „1“. This can be considered as an autonomous mission where 

a human is the only observer. The further consideration of MIQ Machine Intelligent 

Quotients related to machines have been studied in the past [3]. The MIQ should be 

domain-oriented and could be used in future for commercial advantage by selling 

various machines to humans.   

 

The goal of teleoperation is to allow a human to control a robot in a situation where 

it is inconvenient or unsafe to place a human and difficult to program a robot to 

perform autonomously complex operations [4]. Nowadays, teleoperation tasks variate 

from very basic like a toy car teleoperation by remote controller, teleoperation of 

firefighter drones equipped with cameras, up to high-tech teleoperation task in the 

field of medicine, army or space exploration. Many of those tasks demand the robot to 

perform more complex and difficult works [4]. 

With the development of high-speed Internet networks, it has formed a network-

based robot teleoperation with a combination of the advantages of network technology 

and robot technology [5]. We used just this technology to build the Telescope v1 

system. 

Along with the development of high-speed Internet networks, the cloud services 

have become popular. Cloud technology have brought a whole new concept of 

software programming, operation, and maintenance. Cloud providers guarantee a 

worldwide 24/7 availability, offer autoscaling of deployed services in the case that 

demand exceeds limits of service and the last but not least on-demand computational 

and storage sources [6][7]. On the other hand, it requires to such applications be 

deployed somewhere on the Internet, more precisely in cloud providers data centers. 

The cloud computing has become popular also in research. An evidence of that is the 

emergence of a new approach, named cloud robotics, which James Kuffner defined in 

2010 in the paper [8]. 

This new approach inspired us to the development of a cloud-base system for robot 

teleoperation. Moreover, we enhanced typical teleoperation systems with the 

possibility of operation different robotic systems and also with a possibility of 

acquiring relevant information not only from robots but also from the environment, 

where the robot acts. As was mentioned; this environment should be an intelligent 

space. By intelligent space, we mean a room equipped with many cameras and sensors, 

which enable the space to perceive and understand what is happening in them [8]. 

Such space also can provide additional information for the operator and also directly 

for robots. 

The paper structure is as follows. Chapter 2 briefly describes Telescope v1 system, 

as an ancestor of cloud-based Telescope v2 system. Then the attention is focusing on 

Telescope v2 description, which consists of robot teleoperation module and intelligent 

space devices control module. We compare old and new system and highlight the 

advantages of each solution. In Chapter 4 we focus on experiments and their 

evaluations. 



2 Server-based teleoperation tool – Telescope v1 

Telescope v1 was developed as a server-based modular system, which allows operat-

ing connected devices through the Internet all over the world. Simply, it allows tele-

operation of connected devices. In our understanding, we consider a device as any 

electronic appliance that has an ability to communicate over the network and can be 

accessed programmatically (using API). 

We designed the system for various independent operators, who can teleoperate 

their connected devices at the same time. We made a special effort to implement Tele-

scope v1 to be platform independent and so solve a problem how to connect and oper-

ate devices with heterogeneous environments. By heterogeneous environment, we 

mean devices with different interfaces for programmers (API), programmable with 

various inconsistent programming languages and feature with diverse user’s interfaces. 

We solved that using a wrapper program (similar to a device driver), which translates 

Telescope’s commands into the commands understandable for the appropriate device. 

Such wrappers were implemented for each type of connected device.  

In the Fig. 2 is an architecture of Telescope v1 system. It consists of two integrated 

modules – Teleoperation module and Telediagnostics module, which provides a full 

set of information about the state of the operated device and its possible faults or er-

rors for the operator. It is necessary for successful completion of the task remotely. 

 

 

 

Fig. 2 The basic architecture of the Telescope v1 system. 

 

The essential part of the system is Event server. This server interconnects messages 

coming from the appropriate operator and device(s), which the operator teleoperates. 

Web server hosts Telescope and Telediagnostics web portals, and provides controls 

and overview of connected devices for operators [10]. Each device can connect and 

communicate with Event server only in the case, that there is installed wrapper pro-

gram.  Simultaneously, we implemented Telediagnostics server, which provides a 

service for acquiring and storing data of healthy state, faults, and errors of connected 

devices. By comparing up to date data and stored historical trends, we can identify 

arisen problem of the device. For all ongoing communication, the web socket [10] 

technology is used. 

The test bed for the Telescope v1 was a Nao robot, which is a complex robotic sys-

tem, consists of various sensors and actuators. The Telescope v1 allows to operate 

almost all functions of Nao robot, including single joints movements, stiffness settings, 

text to speech, launching pre-programmed behaviors, like sitting, walking, etc. More-



over, the system allows adding, removing and sharing devices with others users, what 

makes possible to operate one robot by various operators, or operate several robots by 

one operator. 

3 Toward to cloud-based teleoperation – Telescope v2 

Here, we describe more deeply a cloud-based solution for teleoperation, named 

Telescope v2. This system evolved from Telescope v1 and enhanced its functionality 

by gathering relevant information from devices installed in the intelligent space. It 

allows to gain supporting information for robot teleoperation. Since the Telescope v2 

consists of robot teleoperation module and a module for data acquiring from 

intelligent space, this section is divided into two subsections, which describe each 

module separately. 

3.1 Robot teleoperation module 

Telescope v2 is a platform for multiple robot types teleoperation, which is based on 

the Microsoft Azure cloud platform. This system has a big advantage according to his 

predecessor, which used only a server architecture. The advantage when using the 

cloud is you do not need to care about the physical machine. Also, the scalability can 

serve for the processing of many requests of the users. If many users want to connect 

to the system, we can simply increase the computational capabilities of the machine. 
The system consists of two main parts. One is for the interaction with the user, and 

the second one is for the whole communication and calculation logic. This architecture 

is shown in the Fig. 3 

 

 

Fig. 3 The basic structure of the cloud-based Telescope v2 system. 

 

The front end is a simple web page that can be used by the user for teleoperation. 

The user can use the web page for adding a new type of robot, or adding a movement 

for the robot. For this frontend was the MVC.ASP.Net used [11] which can be simply 

explain as a combination of the C# programming language and HTML.  

The worker role serves for starting and controlling the WEBAPI [10]. Because 

WEBAPI usually runs on the frontend size of the cloud service, we needed to find a 



way how to start it on the worker role. The result was the Owin self-host library which 

serves exactly for our purpose. The WEBAPI is used for the communication between 

the robots and the service. It is a technology, which allows sending and receiving 

messages via http protocol. That means that you can use an Http client to call the 

specific function in our WEBAPI controller using a simple url. In this system is the 

WEBAPI controller used for sending a request when a user clicks on the specific 

movement and for sending movements when a robot requests for a movement. 

The last part of the system is the databases. At the beginning, only two of them are 

created. The first one is the table with the list of added robots, and the second one is 

the blob container (for storing raw data) for the files with the description of an added 

movement. When the user adds a new robot new table and blob container is created. 

This table is then used for storing the movements of the robots.  
The movement is represented by a python script. This python script is specific for 

each robot. For instance, the movement for the NAO robot has code using naoqi and 

the robots based on the robotic operating system are using subprocess module for 

calling the rostopic commands. 
When we need to connect a robot to a cloud service, we cannot do it directly. It is 

possible with using VPN but we wanted to solve this without it. So we created a 

wrapper which is universal for all Linux based robots. This wrapper is able to com-

municate with the WEBAPI service and can also save the time response between the 

robot and the cloud service. 
The paring mechanism in this system is very simple. The user adds a unique string 

on the website and when he chooses the movement, the combination between the type 

of the robot with the unique number and the selected movement is saved to a diction-

ary. And when the wrapper sends a request to the cloud service, it also sends the type 

of the robot and the unique number of this robot. If the dictionary contains a move-

ment for this concrete robot, it is send to it. 
There are three possible scenarios how to use this cloud service. First one is that 

one user can control one robot. The second one is that multiple users can control one 

robot. At one time the robot can do only one action, but we can change it in the future. 

The last way how the system can be used is that one user can control multiple robots 

which can move at the same time. 
WEBAPI was also chosen because it is easy to create another interface which is us-

ing the cloud service. The application can simply use http calls to the WEBAPI via 

URL. So the developer can create an application which uses for instance some sensors 

for controlling the robots. 

 

3.2 Module for acquiring data from the intelligent space 

While the teleoperation schemes of Telescope v1 and Telescope v2 can handle the 

user robot communication and control it can collect data only acquired by the robot 

itself. In case of an indoor environment the robot would have to rescan the given 

environment each time it makes an action. This approach is time and also resource 

consuming. Hence, we have used an approach gathering pre-processed data from 



intelligent space with the ability of storing the relevant data directly in the cloud envi-

ronment.  

 

 Fig. 4 The basic architecture of the teleoperation in intelligent space. 

 

The proposed solution relies on the ability of Microsoft AZURE Cloud Storage to 

store multiple types of data, which can be accessed efficiently in real-time. Further-

more, the Microsoft AZURE Cloud is used as the main platform for the user device 

communication, ensures the commands routing, keeps track of processes and to some 

extent ensures data gathering.  

The system consist of three main parts (see Fig. 4). The first part serves as the 

frontend for the interaction with the users, the second part is the main cloud-client 

communication module and the third part is the client application in the desired local 

environment, where the devices are placed. 

For the front-end the ASP.NET MVC 5 [11] was used, which offers the user con-

trol capabilities in form of graphical interface, where all the clients and devices are 

shown. This front-end was placed on AZURE Web Role and is interconnected with 

the back-end by WEBAPI technology, which offers making simple method-like calls 

from one Role to another in real-time.  

The second part is the back-end which is represented by AZURE Worker Role, 

which holds the WEBAPI controller for front-end to back-end communication and the 

SignalR Hub, which further communicates with the client application. The SignalR 

technology [10] is based on Web socket communication where the server-side logic 

(Hub) is responsible for connection registration and in/out connection management, 

whereas the client-side logic is only able to receive incoming connection and call 

methods from the Hub. For more complex mechanism for returning messages from the 

client a number of modifications had to be made. These modifications mainly influ-

enced the Hub, where several methods were created for the client, which can this way 

notify the Hub about any relevant information or even send data back.  

Together, five buffers were created: Client buffer, Device buffer, Process buffer, 

Data buffer and Device-related data buffer. The Client and the Device buffer are in the 

form of simple dictionary, which hold the data about the connected client applications 

and about the devices connected to them. The Process buffer is the most crucial part 

of the system, while it holds the information about all the running processes i.e. run-



ning data gathering. It ensures that only one type of action is performed on a single 

device, while there can be multiple accesses to the given client. The last two buffers 

were created especially for data upload, which can by mainly used for sending data to 

other Roles for further processing. The reason behind why there are two buffers is to 

ensure simplicity and flexibility within the Hub, while multiple types of devices could 

be feeding data to the Hub and this buffer stores them in a joined queue and then 

distributes them to their appropriate containers within the Device-related data buffer, 

where the exact types can be stored. 

The third and the last part is the client application, which runs on Windows ma-

chine to which the devices in the environment are connected. It is a simple console 

application where the SignalR client is running. The client is able to communicate 

with devices and forward the user input from the cloud to the device the way it would 

be controlled locally using device controllers. For each type of device there is a 

unique controller native for the communication with the devices firmware. Moreover, 

this client is also responsible for its registration and also the registration of the devices 

connected to it by uploading information about itself and the devices to the AZURE 

Cloud Table, which serves as a simple database. In some cases it is important to up-

load only raw data to the cloud with no pre-processing needed and in this case the 

client application is also able to upload the gathered data directly to the AZURE 

Cloud Storage. 

For being able to control the devices from the cloud at least one client with a con-

trollable device have to be connected to it and running. The user can then easily select 

the desired client with the device and perform action with this device. The input from 

the user is then forwarded to the process buffer, where it is noted that a certain process 

started after the device has started performing the given action and only after then the 

user is notified by the system about the action success. Usage of the Web socket tech-

nology and the request sizes ensure that this whole action is only matter of millisec-

onds.  

4 Experiments 

We have done preliminary experiments focused on latency and response time 

measurements. Specifically, we measured reaction time in the teleoperation module 

and latency in the module for acquiring data from the intelligent space. 

We focused on the experiments that show whether the used technologies (WEBAPI 

and SignalR) are a good choice for this purpose. In the first case, we tested the 

WEBAPI service that is the main component in the robot teleoperation module. The 

object of those experiments was to measure the time between the movement when the 

operator entered the request on the teleoperation website and the moment when the 

robot started to act. The times were saved in local log files in the robot and then they 

were sent to the cloud storage. 

Till now, we measured a reaction time during the teleoperation of the Nao, Qbo and 

Hanson robots. The operator and the robots were located in Košice, Slovakia, but the 



teleoperation was done through the cloud service. The results of the experiments are 

shown in Fig. 5. 

The experiments show that the fastest connection was with using the Qbo robot. 

The most unstable connection was using the Nao robot. When we do not count the 

measurements that are untraditional, the average was between 86 and 259 milliseconds. 

The most stable connection was on the Qbo robot. For now we do not know whether 

the connection deviations are because the WEBAPI technology or the device. More 

measurements need to be done to analyze this. 

In the case of experiments of teleoperation in intelligent space the measurements 

were based on the time that took to send the request to the cloud and receive the re-

sponse. This measurement is the key to be able to tell if this system is usable in real-

time applications. The experiment was carried out as follows:  

 

1. The SignalR client created a request, which consisted of simple binary da-

ta containing a simple string message notificating the SignalR Hub about 

the available information, i.e. the name of the client, client’s connection 

ID and the connected devices information. 

2. The SingalR Hub receives the information, checks wheather it is in a right 

format and if there are no duplicate requests, it proceeds to respond back 

to the user. 

3. The SignalR client receives the boolean information and if the connection 

was succcesful (true value of the received boolean variable) it stores the 

final time measurement. 

 



 

Fig. 5 The graph shows the results of Robot-Cloud response times from the 

latency measurements. 

 

During our experiments there was no failure in sending data in the proper format 

and while there was also no conflict, we managed to get the time measurement of 

every request made by the SignalR client. The results of the experiment are shown in 

Fig. 6. We can see that our system managed to get the response from the cloud on 

average 63 milliseconds, which is a very good result, if we consider that the basic 

latency measurements of our network were around 15 milliseconds. The best latency 

measurement was 36 milliseconds and the worst measurement was 103 milliseconds. 

These data leave sufficient time window for further processing of the gathered data 

and also for data larger in size to be uploaded by this system. 



 

Fig. 6 The graph shows the results of Client-Cloud response times from the la-

tency measurements. 

5 Conclusion 

Taking into consideration that all experiments were performed locally, where the 

operator and also the robot were in the same place, although the control was done via 

the cloud service. We cannot claim, that the used methods are the right ones for tele-

operation purpose. The results of our experiments were good enough, but we need to 

approve our hypothesis based on much more measurements. This way, we would like 

to ask volunteers to perform tests for us with our system, which is available on [14]. 

We need to collect teleoperation data generated during the robot teleoperation from 

different places all around the world, connected to the Internet using various band-

width and by several Internet providers. Then, we will able to analyze acquired data, 

upgrade our system and conclude the results. If someone is interested to participate on 

this, please contact us using the email address peter.takac.3@tuke.sk. 
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