15,565 research outputs found

    Defending the genome from the enemy within:mechanisms of retrotransposon suppression in the mouse germline

    Get PDF
    The viability of any species requires that the genome is kept stable as it is transmitted from generation to generation by the germ cells. One of the challenges to transgenerational genome stability is the potential mutagenic activity of transposable genetic elements, particularly retrotransposons. There are many different types of retrotransposon in mammalian genomes, and these target different points in germline development to amplify and integrate into new genomic locations. Germ cells, and their pluripotent developmental precursors, have evolved a variety of genome defence mechanisms that suppress retrotransposon activity and maintain genome stability across the generations. Here, we review recent advances in understanding how retrotransposon activity is suppressed in the mammalian germline, how genes involved in germline genome defence mechanisms are regulated, and the consequences of mutating these genome defence genes for the developing germline

    Isolation of a transcriptionally active element of high copy number retrotransposons in sweetpotato genome

    Get PDF
    Many plant retrotransposons have been characterized, but only three families (Tnt1, Tto1 and Tos17) have been demonstrated to be transpositionally competent. We followed a novel approach that enabled us to identify an active element of the Ty1-copia retrotransposon family with estimated 400 copies in the sweetpotato genome. DNA sequences of Ty1 -copia reverse transcriptase (RTase) from the sweetpotato genome were analyzed, and a group of retrotransposon copies probably formed by recent transposition events was further analyzed. 3’RACE on callus cDNA amplified transcripts containing long terminal repeats (LTR) of this group. The sequence -specific amplification polymorphism (S-SAP) patterns of the LTR sequence in the genomic DNA were compared between a normal plant and callus lines derived from it. A callus -specific S-SAP product was found into which the retrotransposon detected by the 3’RACE had been transposed apparently during cell culture. We conclude that our approach provides an effective way to identify active elements of retrotransposons with high copy numbers.</p

    CARE1, a TY3-gypsy long terminal repeat retrotransposon in the food legume chickpea (Cicer arietinum L)

    Get PDF
    We report a novel Ty3-gypsy long terminal repeat retrotransposon CARE1 (_Cicer arietinum_ retro-element 1) in chickpea. This 5920-bp AT-rich (63%) element carries 723-bp 5&#x27; and 897-bp 3&#x27; LTRs respectively flanking an internal region of 4300-bp. The LTRs of CARE1 show 93.9% nucleotide identity to each other and have 4-bp (ACTA) terminal inverted repeats. A 17-bp potential tRNAmet primer binding site downstream to 5&#x27; LTR and a 13-bp polypurine tract upstream to 3&#x27; LTR have been identified. The order of domains (Gag-proteinase-reverse transcriptase-RNaseH-integrase) in the deduced amino acid sequence and phylogenetic tree constructed using reverse transcriptase sequences places CARE1 in the gypsy group of retrotransposons. Homologues of a number of _cis_-elements including CCAAT, TATA and GT-1 have been detected in the regulatory region or the 5&#x27; LTR of CARE1. Transgenic tobacco plants containing 5&#x27; LTR:GUS construct show that its 5&#x27;-LTR is inactive in a heterologous system under normal as well as tissue culture conditions. Genomic Southern blot experiments using 5&#x2019;LTR of the element as a probe show that CARE1 or its related elements are present in the genomes of various chickpea accessions from various geographic regions

    Ingrowth by photoreceptor axons induces transcription of a retrotransposon in the developing Drosophila brain

    Get PDF
    The development of the lamina, the first optic ganglion of the fly visual system, depends on inductive cues from the innervating photoreceptor axons. lacZ expression from a P-element insertion, A72, occurs in the anlage of the lamina coincident with axon ingrowth from the eye imaginal disc. In eyeless mutants lacking photoreceptor axons, lacZ expression did not occur. The P-element was found to have inserted within the 3′ long terminal repeat (LTR) of a ‘17.6′ type retrotransposon. The expression pattern of 17.6 transcripts in the brain in wild-type and eyeless mutants paralleled the expression of the lacZ reporter. Analysis of 17.6 cis-regulatory sequences indicates that the lamina-specific expression is due to the combined action of an enhancer element in the LTR and a repressor element within the internal body of the retrotransposon. The regulation of the 17.6 retrotransposon provides a model for the study of innervation-dependent gene expression in postsynaptic cells during neurogenesis

    Heterogeneity in Ty1-copia group of retroelements in chickpea (Cicer arietinum) genome

    Get PDF
    Retrotransposons constitute a major fraction of plant genomes and these elements may have played a significant role in evolution and sequence organization of genomes. In order to access the diversity of Ty1-copia group of retroelements, reverse transcriptase (RT) sequences were amplified from chickpea genome, using the primers derived from two conserved domains of RT region. Thirty-six RT regions from independent amplicons were cloned and sequenced. On the basis of homology of deduced amino acids, the RT sequences could be grouped into three major families. The intra-family divergence at amino acid level ranges from 2 to 19%. Though intra-family RT sequences were conserved but no two sequences were identical. The results indicate a high degree of heterogeneity among the Ty1-copia group of retroelements from chickpea. It was possible to isolate RT specific sequences from RNA isolated from stressed seedlings, indicating that some of the retroelements may be functional under certain stress conditions

    Retrotransposon silencing by DNA methylation can drive mammalian genomic imprinting

    Get PDF
    Among mammals, only eutherians and marsupials are viviparous and have genomic imprinting that leads to parent-of-origin-specific differential gene expression. We used comparative analysis to investigate the origin of genomic imprinting in mammals. PEG10 (paternally expressed 10) is a retrotransposon-derived imprinted gene that has an essential role for the formation of the placenta of the mouse. Here, we show that an orthologue of PEG10 exists in another therian mammal, the marsupial tammar wallaby (Macropus eugenii), but not in a prototherian mammal, the egg-laying platypus (Ornithorhynchus anatinus), suggesting its close relationship to the origin of placentation in therian mammals. We have discovered a hitherto missing link of the imprinting mechanism between eutherians and marsupials because tammar PEG10 is the first example of a differentially methylated region (DMR) associated with genomic imprinting in marsupials. Surprisingly, the marsupial DMR was strictly limited to the 5′ region of PEG10, unlike the eutherian DMR, which covers the promoter regions of both PEG10 and the adjacent imprinted gene SGCE. These results not only demonstrate a common origin of the DMR-associated imprinting mechanism in therian mammals but provide the first demonstration that DMR-associated genomic imprinting in eutherians can originate from the repression of exogenous DNA sequences and/or retrotransposons by DNA methylation

    Computational methods reveal novel functionalities of PIWI-interacting RNAs in human papillomavirus-induced head and neck squamous cell carcinoma.

    Get PDF
    Human papillomavirus (HPV) infection is the fastest growing cause of head and neck squamous cell carcinoma (HNSCC) today, but its role in malignant transformation remains unclear. This study aimed to conduct a comprehensive investigation of PIWI-interacting RNA (piRNA) alterations and functionalities in HPV-induced HNSCC. Using 77 RNA-sequencing datasets from TCGA, we examined differential expression of piRNAs between HPV16(+) HNSCC and HPV(-) Normal samples, identifying a panel of 30 HPV-dysregulated piRNAs. We then computationally investigated the potential mechanistic significances of these transcripts in HPV-induced HNSCC, identifying our panel of piRNAs to associate with the protein PIWIL4 as well as the RTL family of retrotransposon-like genes, possibly through direct binding interactions. We also recognized several HPV-dysregulated transcripts for their correlations with well-documented mutations and copy number variations in HNSCC as well as HNSCC clinical variables, demonstrating the potential ability of our piRNAs to play important roles in large-scale modulation of HNSCC in addition to their direct, smaller-scale interactions in this malignancy. The differential expression of key piRNAs, including NONHSAT077364, NONHSAT102574, and NONHSAT128479, was verified in vitro by evaluating endogenous expression in HPV(+) cancer vs. HPV(-) normal cell lines. Overall, our novel study provides a rigorous investigation of piRNA dysregulation in HPV-related HNSCC, and lends critical insight into the idea that these small regulatory transcripts may play crucial and previously unidentified roles in tumor pathogenesis and progression
    corecore