2,032,337 research outputs found

    Varieties of \u3cem\u3eP\u3c/em\u3e-Restriction Semigroups

    Get PDF
    The restriction semigroups, in both their one-sided and two-sided versions, have arisen in various fashions, meriting study for their own sake. From one historical perspective, as “weakly E-ample” semigroups, the definition revolves around a “designated set” of commuting idempotents, better thought of as projections. This class includes the inverse semigroups in a natural fashion. In a recent paper, the author introduced P-restriction semigroups in order to broaden the notion of “projection” (thereby encompassing the regular *-semigroups). That study is continued here from the varietal perspective introduced for restriction semigroups by V. Gould. The relationship between varieties of regular *-semigroups and varieties of P-restriction semigroups is studied. In particular, a tight relationship exists between varieties of orthodox *-semigroups and varieties of “orthodox” P-restriction semigroups, leading to concrete descriptions of the free orthodox P-restriction semigroups and related structures. Specializing further, new, elementary paths are found for descriptions of the free restriction semigroups, in both the two-sided and one-sided cases

    A variational restriction theorem

    Get PDF
    We establish variational estimates related to the problem of restricting the Fourier transform of a three-dimensional function to the two-dimensional Euclidean sphere. At the same time, we give a short survey of the recent field of maximal Fourier restriction theory.Comment: 10 pages, v2: bibliography is updated, a short survey of the maximal Fourier restriction is include

    Restriction and decay for flat hypersurfaces

    Get PDF
    In the first part we consider restriction theorems for hypersurfaces [Gamma] in Rn, with the affine curvature [fòrmula] introduced as a mitigating factor. Sjolin, [19], showed that there is a universal restriction theorem for all convex curves in R2. We show that in dimensions greater than two there is no analogous universal restriction theorem for hypersurfaces with non-negative curvature. In the second part we discuss decay estimates for the Fourier transform of the density [fòrmula] supported on the surface and investigate the relationship between restriction and decay in this setting. It is well-known that restriction theorems follow from appropriate decay estimates; one would like to know whether restriction and decay are, in fact, equivalent. We show that this is not the case in two dimensions. We also go some way towards a classification of those curves/surfaces for which decay holds by giving some sufficient conditions and some necessary conditions for decay

    On the problem of mass-dependence of the two-point function of the real scalar free massive field on the light cone

    Full text link
    We investigate the generally assumed inconsistency in light cone quantum field theory that the restriction of a massive, real, scalar, free field to the nullplane Σ={x0+x3=0}\Sigma=\{x^0+x^3=0\} is independent of mass \cite{LKS}, but the restriction of the two-point function depends on it (see, e.g., \cite{NakYam77, Yam97}). We resolve this inconsistency by showing that the two-point function has no canonical restriction to Σ\Sigma in the sense of distribution theory. Only the so-called tame restriction of the two-point function exists which we have introduced in \cite{Ull04sub}. Furthermore, we show that this tame restriction is indeed independent of mass. Hence the inconsistency appears only by the erroneous assumption that the two-point function would have a (canonical) restriction to Σ\Sigma.Comment: 10 pages, 2 figure

    A restriction of Euclid

    Full text link
    Euclid is a well known two-player impartial combinatorial game. A position in Euclid is a pair of positive integers and the players move alternately by subtracting a positive integer multiple of one of the integers from the other integer without making the result negative. The player who makes the last move wins. There is a variation of Euclid due to Grossman in which the game stops when the two entrees are equal. We examine a further variation that we called M-Euclid in which the game stops when one of the entrees is a positive integer multiple of the other. We solve the Sprague-Grundy function for M-Euclid and compare the Sprague-Grundy functions of the three games
    corecore