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Varieties of P -restriction semigroups

Peter R. Jones

November 6, 2012

Abstract

The restriction semigroups, in both their one-sided and two-sided versions, have arisen
in various fashions, meriting study for their own sake. From one historical perspective, as
‘weakly E-ample’ semigroups, the definition revolves around a ‘designated set’ of commuting
idempotents, better thought of as projections. This class includes the inverse semigroups in
a natural fashion. In a recent paper, the author introduced P -restriction semigroups in order
to broaden the notion of ‘projection’ (thereby encompassing the regular ∗-semigroups). That
study is continued here from the varietal perspective introduced for restriction semigroups
by V. Gould. The relationship between varieties of regular ∗-semigroups and varieties of P -
restriction semigroups is studied. In particular, a tight relationship exists between varieties
of orthodox ∗-semigroups and varieties of ‘orthodox’ P -restriction semigroups, leading to
concrete descriptions of the free orthodox P -restriction semigroups and related structures.
Specializing further, new, elementary paths are found for descriptions of the free restriction
semigroups, in both the two-sided and one-sided cases.

In [13], the author introduced P -restriction semigroups as a common generalization of the
restriction semigroups (or ‘weakly E-ample’ semigroups) and the regular ∗-semigroups, defining
them as bi-unary semigroups – semigroups with two additional unary operations, + and ∗ –
satisfying a set of simple identities. The projections in such a semigroup are the elements
of the form x+ (or, equivalently, x∗). If (S, ·,−1 ) is a regular ∗-semigroup and + and ∗ are
defined respectively by x+ = xx−1 and x∗ = x−1x, then its bi-unary reduct is a P -restriction
semigroup. In view of the tight connections exhibited between the two classes in [13] and
in Proposition 2.1 herein, it is natural to conjecture that the (bi-unary) variety generated by
(the reducts of) regular ∗-semigroups is precisely the variety of P -restriction semigroups. By
analogy, the variety of restriction semigroups is indeed generated by the inverse semigroups
in this fashion. We place this conjecture and the cited example in the following more general
context.

For any variety V of regular ∗-semigroups, let CV [resp. PCV] denote the variety of
regular ∗-semigroups [P -restriction semigroups] whose projections generate a member of V.
For instance, if SL is the variety of (∗-) semilattices, CSL and PCSL are the varieties of
inverse semigroups and of restriction semigroups, respectively.

The general question is then: for which varieties V of regular ∗-semigroups is it true that
the variety of P -restriction semigroups generated by CV is precisely PCV? It is shown that
for a given variety V, a positive answer to this question is equivalent to the following: for each
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nonempty set X, the free P -restriction semigroup in PCV, on X, is isomorphic to the bi-unary
subsemigroup of the free regular ∗-semigroup in CV, on X, that is generated by X. The latter
is in fact the subsemigroup, in the usual sense, generated by the union of X and the set of
projections.

As noted above, this question has a positive answer for V = SL, as a consequence of the
description in [8] of the free restriction semigroups. We provide an alternative proof that is
elementary, within the context of our general results. We can then deduce that the question has
a positive answer for any variety V of ∗-bands. The associated varieties of regular ∗-semigroups
consist of orthodox ∗-semigroups, where orthodoxy in the context of P -restriction semigroups
means that the projections generate a subband. As a consequence, for any variety V of ∗-bands
the free semigroups in PCV are embedded naturally in the corresponding free semigroups in V.
In the case of most interest, where V contains SL, the structure of the latter was determined
in general in [28, 16] and the embedding may be described quite explicitly in terms of that
structure.

The results in the orthodox case rely on connections established herein between orthodox
P -restriction semigroups and restriction semigroups. These connections suggest that the former
class is worthy of continued study.

In a future work, we show that the question above also has a positive answer in the case
where V is the variety of completely simple ∗-semigroups (in which case CV = V). There the
question will be considered in a somewhat broader context. Whether the original conjecture
holds remains open. See Proposition 4.9 for a summary and discussion.

In the penultimate section of the paper, we briefly consider the one-sided analogues of some
of our results, including a similarly elementary (but not entirely analogous) alternative path to
a description of free left restriction semigroups.

Varieties of restriction semigroups per se do not play a direct role in this paper. Study of
these varieties has recently been initiated by Cornock [6] and by the author [14, 15].

For background on restriction semigroups, we recommend the excellent survey by Hollings
[10]. There, and until recently elsewhere in the literature of the ‘York school’, the term ‘weakly
left E-ample’ was used. Both Gould’s notes [9] and [8] cite other manifestations – and alternative
names – of [left] restriction semigroups, going back to work on ‘function systems’ in the 1960’s.
The term ‘restriction semigroup’ was motivated by the use of the term ‘restriction category’
by Cockett and Lack [4]. Gould’s approach provided motivation for this study and its prequel
[13], and further inspiration came from reflection on the beautiful descriptions of the free one-
and two-sided restriction semigroups in [8].

For general semigroup theory, we refer the reader to [11]. For regular ∗-semigroups (which
are frequently termed ∗-regular semigroups and in [18] are termed special ∗-semigroups), see
the various papers cited in the sequel, in particular the foundational work by Nordahl and
Scheiblich [19].
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1 Preliminaries

A P -restriction semigroup [13] is a bi-unary semigroup (S, ·,+ ,∗ ) that satisfies the following
identities and their ‘duals’, which are obtained by writing each statement from right to left,
replacing + by ∗, and vice versa. (For instance, the dual of (1) is xx∗ = x and that of (6) is
x(yx)∗ = x+y∗x.)

(1) x+x = x; (2) (xy)+ = (xy+)+; (3) (x+y+)+ = x+y+x+; (4) x+x+ = x+;

(5) (x+)∗ = x+; (6) (xy)+x = xy+x∗.

The set PS = {a+ : a ∈ S} is the set of projections of S; ES denotes the set of idempotents
of S; ES is partially ordered in the usual way by e ≤ f if e = ef = fe. By (4), PS ⊆ ES , by
(5), PS = {a∗ : a ∈ S}, and by (9) below, PS = {a ∈ S : a = a+} = {a ∈ S : a = a∗}.

For the purposes of this paper, the relevant generalized Green’s relations may be defined as
R̃P = {(a, b) : a+ = b+}, L̃P = {(a, b) : a∗ = b∗} and H̃P = L̃P∩R̃P . A P -restriction semigroup
is P -combinatorial if H̃P = ι, the identical relation. Section 6 of [13] connects these definitions
with the historical ‘York-school’ development of ample semigroups and their generalizations.

A regular ∗-semigroup is a unary semigroup (S, ·,−1 ) for which the unary operation is a
‘regular’ involution, that is, (ab)−1 = b−1a−1, (a−1)−1 = a and aa−1a = a. Setting a+ = aa−1

and a∗ = a−1a, the induced semigroup (S, ·,+ ,∗ ) becomes a P -restriction semigroup. The
regular ∗-semigroups with commuting projections are just the inverse semigroups.

RESULT 1.1 [13, Lemma 1.3, Result 1.1, Lemma 1.5] Let S be a regular ∗-semigroup. Then
the bi-unary semigroup (S, ·,+ ,∗ ) is a P -restriction semigroup that, in addition, satisfies ES =
P 2
S . The generalized Green’s relations then coincide with the usual ones.

For P -restriction semigroups in general, the property ES = P 2
S is equivalent to the implica-

tion e = e2 ⇒ e = e+e∗.

The term P -full will be used for P -restriction semigroups that satisfy ES = P 2
S . Following

standard usage, the adjective ‘full’ will be reserved for subsemigroups that contain all the
idempotents of the larger one. By (11) below, if PS = ES it follows that PS must be a
subsemigroup of S. But it was shown in [13, Section 6] that that property is equivalent to PS
being a subsemilattice.

For the purposes of this paper, a restriction semigroup may be defined to be a P -restriction
semigroup S for which PS is a subsemilattice of S. The identities (6) then reduce to what have
been termed the ‘ample’ conditions. That this definition coincides with the definition of ‘weakly
E-ample’ semigroup was shown in [13, Section 6]. Its equivalence with other formulations of the
same concept may be found in [9] and [10]. The regular ∗-semigroups whose bi-unary reducts
are restriction semigroups are simply the inverse semigroups.

We shall at times consider the larger classes of left, right, and two-sided P -Ehresmann
semigroups, which were studied in some depth in [13]. A left P -Ehresmann semigroup is a
semigroup (S, ·,+ ) that satisfies (1) through (4); a right P -Ehresmann semigroup is a semigroup
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(S, ·,∗ ) that satisfies their duals; and a P -Ehresmann semigroup is then a semigroup (S, ·,+ ,∗ )
that is a left P -Ehresmann semigroup under +, a right P -Ehresmann semigroup under ∗, and
in addition satisfies (5). (The sections of [13] devoted to one-sided representations were more
naturally treated in terms of the operation ∗. Focusing on +, as we do here, follows recent
treatments such as [9].) Thus a P -restriction semigroup is a P -Ehresmann semigroup that, in
addition, satisfies the ‘generalized ample identity’ (6) and its dual.

We shall refer to the conclusions of the following result by reference to its itemizations (8)
– (12), following the numbering in [13]. Implicitly, such reference will include the statements
of their duals.

RESULT 1.2 [13, Lemma 1.4] A left P -Ehresmann semigroup (S, ·,+ ) satisfies:

(8) (e1 · · · en)+ = e1 · · · en · · · e1, for all e1, . . . , en ∈ PS, n ≥ 2;

(9) (x+)+ = x+;

(10) x+(xy)+ = (xy)+;

(11) (ef)2 = ef , for all e, f ∈ PS;

(12) if e, f ∈ PS, then f ≤ e if and only if fe = f ; in particular, (xy)+ ≤ x+.

In general, the terms ‘homomorphism’ and ‘congruence’ will be used appropriate to context.
So for regular ∗-semigroups, they should be ‘unary’, that is, respect the inversion operation, and
for P -restriction semigroups they should be ‘bi-unary’, that is, respect both unary operations,
and so on. However, we will frequently make the preservation properties explicit, for clarity’s
sake. Note that any congruence on a regular ∗-semigroup that respects both of the induced
unary operations also respects inversion, since if ρ is such a congruence and aρb, then a−1ρ and
b−1ρ are H-related inverses of aρ = bρ in S/ρ and therefore [11, Theorem 2.3.4] are equal.

Let (S, ·,+ ,∗ ) be a P -restriction semigroup. The congruence µ is the greatest (bi-unary)
congruence on S that is contained in H̃P ; S is called P -fundamental if µ = ι. As noted in [13],
S/µ is P -fundamental. According to [13, Corollary 5.3], if a, b ∈ S, then a µ b if and only if
a+ = b+ and (ea)∗ = (eb)∗ for all e ∈ PS , e ≤ a+. From this characterization it follows that if
S is P -fundamental, the same is true for its full, bi-unary subsemigroups. It was also observed
there that, when applied to (the reducts of) regular ∗-semigroups, P -fundamentality coincides
with the usual definition for regular semigroups.

The projection algebra of a P -Ehresmann semigroup (S, ·,+ ,∗ ) is (PS ,×, ?), where for e, f ∈
PS , e × f = efe and e ? f = fef . The projection algebra of a regular ∗-semigroup is that
of its bi-unary reduct. In [13, Section 4], the projection algebras of P -Ehresmann semigroups
(equivalently of P -restriction semigroups, and of regular ∗-semigroups, by [13, Corollary 4.7])
were characterized axiomatically as projection algebras. With any projection algebra (P,×, ?)
is associated a ‘generalized Munn semigroup’ TP . We refer the reader to [13] for the details.
Only the properties of TP and of the representation of S in TPS

are needed in the sequel.
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RESULT 1.3 [13, Theorems 4.5 and 5.2, Corollary 5.3] With any projection algebra (P,×, ?)
there is associated a fundamental regular ∗-semigroup (TP , ?,

−1 ), whose projection algebra
is algebra-isomorphic to P . Further, the induced bi-unary semigroup (TP , ?,

+ ,∗ ) is a P -
fundamental, P -restriction semigroup whose projection algebra is that of (TP , ?,

−1 ) and is thus
again isomorphic to P .

Given any P -restriction semigroup (S, ·,+ ,∗ ), with projection algebra (PS ,×, ?), there is a
bi-unary homomorphism θ ′ of S onto a full subsemigroup of the regular ∗-semigroup TPS

, which
separates the members of PS and induces an isomorphism between the respective projection
algebras. The congruence induced by θ ′ is µ. If, moreover, S is induced from some regular
∗-semigroup (S, ·,−1 ), then θ ′ also preserves the inverse operation from that semigroup.

Observe that since, by Result 1.1, any regular ∗-semigroup is P -full, any full P -restriction
subsemigroup is again P -full. According to Result 1.3, for any P -restriction semigroup S, S/µ
is P -full. In particular, any fundamental P -restriction semigroup has this property.

The P -restriction semigroups S with |PS | = 1 are necessarily restriction semigroups. Fol-
lowing the standard terminology, we call such semigroups reduced . In essence, they are just
the monoids, regarded as P -restriction semigroups by setting a+ = a∗ = 1 for all a. The least
congruence on a P -restriction semigroup S whose quotient is reduced is denoted σ and is just
the least semigroup congruence that identifies all of its projections (since, as noted in [9], for
any a, b ∈ S, a+, b+, a∗, b∗ belong to PS and so are all σ-related.)

If S is a regular ∗-semigroup, then σ is the least group congruence on S. The regular
∗-semigroups whose bi-unary reducts are reduced are just the groups.

The following will be useful in the sequel.

LEMMA 1.4 Let (S, ·,+ ,∗ ) be a P -restriction semigroup that is generated, as a bi-unary semi-
group, by a set X. Then S is generated, as a semigroup, by X ∪ PS.

Proof. Let F denote the free bi-unary semigroup generated by X. Then F is the subsemi-
group of the free semigroup on the set consisting of X itself and the four symbols (, )+, ( and
)∗ that is generated recursively as follows: X ⊂ F ; if u ∈ F , then (u)+, (u)∗ ∈ F ; if u, v ∈ F ,
then uv ∈ F . When interpreted in S, each of the first two operations results in a member of
PS . The result then follows easily by induction. �

2 The P -core

The P -core CS of a [right, left] P -Ehresmann semigroup S is the subsemigroup 〈PS〉 generated
by PS .

PROPOSITION 2.1 The P -core of a left P -Ehresmann semigroup (S, ·,+ ) is a regular,
unary subsemigroup of S. The P -core of a P -Ehresmann semigroup (S, ·,+ ,∗ ) is a regular
∗-semigroup for which the induced unary operations coincide with the restrictions of those on
S. It is therefore a bi-unary subsemigroup of S. The P -core of a regular ∗-semigroup coincides
with its (idempotent-generated) core.
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Proof. First suppose S is left P -Ehresmann. By definition, CS = {e1 · · · en : e1, . . . , en ∈
PS , n ≥ 1}. If x ∈ CS , x = e1 · · · en, say, then by (8), x+ = x(en · · · e1) ∈ CS , so that CS is
a unary subsemigroup and x = x+x = x(en · · · e1)x. Thus CS is regular. Now suppose S is
P -Ehresmann. For x as above, put x−1 = en · · · e1. Then (x−1)−1 = x. Now x∗ = x−1x and
x+ = xx−1. Since x−1 = x−1xx−1 = x∗x−1 = x−1x+, x−1 is an inverse of x in the H-class
Rx∗ ∩ Lx+ of CS . Such an H-class can contain at most one inverse of x [11, Theorem 2.3.4].
It follows that the definition of x−1 is independent of the expression for x as a product of
projections. The now well-defined map x 7→ x−1 is clearly an involution. Finally, in the case
that S is a regular ∗-semigroup, ES = P 2

S and the last statement is evident. �

In the one-sided case, CS may not be a regular ∗-semigroup. For example, any nontrivial
left zero semigroup S becomes a left P -Ehresmann semigroup under the operation e+ = e. Now
CS = S, which clearly is not a regular ∗-semigroup.

A P -Ehresmann semigroup and its P -core share the same projection algebra. This provides
a much simpler path to [13, Corollary 4.7], which used the generalized Munn semigroup to show
that the projection algebras of P -Ehresmann semigroups form the same class as the projection
algebras of regular ∗-semigroups.

3 Varieties of regular ∗-semigroups

The regular ∗-semigroups form a variety RS, under the operations {·,−1 }. In conjunction with
the associativity identity, it is defined by (xy)−1 = y−1x−1, (x−1)−1 = x and xx−1x = x. These
semigroups were introduced by Nordahl and Scheiblich [19]. The following list identifies the
subvarieties of RS that will frequently be encountered in the sequel.

T: trivial ∗-semigroups.
G: groups.
SL: ∗-semilattices (where the involution is just the identity automorphism).
RB: rectangular ∗-bands.
B: ∗-bands. (See [2], where the lattice of varieties of ∗-bands was determined.)
CR: completely regular ∗-semigroups. (See [20].)
I: inverse semigroups.
O: regular ∗-semigroups that are orthodox as regular semigroups, which we term orthodox

∗-semigroups. (The lattice of varieties was first studied by Adair [1].)
ES: regular ∗-semigroups S that are E-solid as regular semigroups, that is, the core of S is

completely regular.

If V is any variety of regular ∗-semigroups, let CV consist of those regular ∗-semigroups
S for which CS belongs to V. It is routinely verified that CV is a subvariety of RS (also see
Proposition 4.1 below) and that the operation V 7→ CV is a closure operation on the lattice of
varieties of regular ∗-semigroups. The following identifications are clear: G = CT, I = CSL,
O = CB and ES = CCR.
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3.1 Free regular ∗-semigroups

Let V be a variety of regular ∗-semigroups and X a nonempty set. Formally, the free (unary)
semigroup in V on X consists of a pair (ιX , FVX), where FVX ∈ V, ιX : X → FVX , and for
any S ∈ V and θ : X → S, there is a unique (unary) homomorphism θ̄ : FVX → S such that
ιX θ̄ = θ. We shall generally omit explicit reference to the map ιX .

Recall that the free involutory semigroup FIX on X is the free semigroup on the set X∪X−1,
where X−1 is a set of formal inverses for the elements of X in the usual way, the inverse
of x1 · · ·xn being x−1n · · ·x−11 . Clearly FRSX is the quotient of FIX by the fully invariant
congruence that identifies w with ww−1w for all w ∈ FIX . More generally, FVX is the
quotient of FIX by a fully invariant congruence, denoted ρV. Solutions to the word problem
for, or structural descriptions of, free semigroups FVX are usually given, either implicitly or
explicitly, with reference to ρV. For example, words u and v in FIX are related under ρG if
and only if ū = v̄, where the ‘bar’ operation produces the reduced word associated with a given
involutorial word.

Polák [22] showed that the word problem is solvable in free regular ∗-semigroups. The
solution does not per se provide structural properties of these semigroups. It is reasonable to
conjecture that they are combinatorial, that is, Green’s relation H is the identical relation. This
is known to be true in the monogenic case (|X| = 1), as a result of the proof by Yamada and
Imaoka [30] that in this case the resulting semigroups are orthodox (and thus combinatorial
by the result of Szendrei [27]). Also see §7 below. Circumstantial support in the general case
comes from another result of Polák [21]: the free ‘regular unary’ semigroups are combinatorial.

Until this conjecture is resolved, we shall settle for proving fundamentality in the case that
X is countably infinite, using a modification of the following construction, which was shown to
the author by T.E. Hall many years ago. Let S be a semigroup and let IL = {`s : s ∈ S} be a set
in one-one correspondence with S. Let SL = S ∪ IL, retaining the product in S, making every
element `s a left zero for S̄L, and defining s`t = `st for s, t ∈ S. Then it is easily verified that
SL is a semigroup that is an ideal extension of the left zero semigroup IL by the semigroup S0.
Clearly it contains S as a subsemigroup. Recall that a semigroup is right reductive if whenever
as = bs holds for all s ∈ S, then a = b. Clearly, every monoid has this property.

PROPOSITION 3.1 If S is a right reductive, regular semigroup, then SL is a fundamental
regular semigroup in which S embeds. In general, S may be embedded in S1

L in this fashion. If
S is orthodox [resp. E-solid], then so is S1

L.

Proof. Observe first that since H restricts to the identical relation on IL, the same is true of
µ. It follows easily that the elements of IL are singleton µ-classes in SL. Now suppose a, b ∈ S
and a µ b in SL. Then for all s ∈ S, a`s = b`s and so as = bs. Since S is right reductive,
this implies that a = b. Since the core of SL is the union of the core of S with the left zero
semigroup IL, the last statement is clear. �

We modify this construction in order to preserve the property of being a regular ∗-semigroup.
Denote by SR = S ∪ IR the semigroup dual to SL, where IR = {rt : t ∈ S} is a right zero
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semigroup. Now let I = IL × IR, a rectangular band. Let S = S ∪ I, retaining the products in
S and I and, for a ∈ S and (`s, rt) ∈ I, putting a(`s, rt) = (`as, rt) and (`s, rt)a = (`s, rta).

PROPOSITION 3.2 Given any semigroup S, S is a semigroup that is isomorphic to the
subsemigroup of SL × SR that comprises {(s, s) : s ∈ S} ∪ I. If S is regular, then so is S.

If S is a regular semigroup that is both left and right reductive, then S is fundamental. In
general, S may be embedded in S1 in this fashion.

Proof. Mapping a ∈ S to (a, a) and mapping I identically clearly takes S onto the indicated
subset of SL × SR. In the latter semigroup, (a, a)(`s, rt) = (a`s, art) = (`as, rt) and dually, so
the map is an isomorphism and the subset is a subsemigroup, which is clearly then a subdirect
product of its factors.

Since S is the union of S with a rectangular band, it is regular if S is regular. On any regular
semigroup, the congruence µ has the property that if φ : S → T is a surjective homomorphism,
then a µS b implies aφ µT bφ. Hence a regular subdirect product of fundamental regular
semigroups is again fundamental. By Proposition 3.1, both SL and SR are fundamental, so S
is likewise. �

PROPOSITION 3.3 Let (S, ·,−1 ) be a regular ∗-semigroup and define S as above. The as-
signment (`s, rt)

−1 = (`t−1 , rs−1) is a regular involution on I. Under the involution that extends
that on S and that on I, (S, ·,−1 ) becomes a regular ∗-semigroup.

Thus any regular ∗-semigroup may be embedded in a fundamental regular ∗-semigroup.
If V is a variety of regular ∗-semigroups that is closed under taking ideal extensions of

rectangular ∗-bands by members of V, then any member of CV is embeddable in a fundamental
member of CV. In particular, the embedding preserves the properties of being orthodox and of
being E-solid.

Proof. The proof of the statements in the first two paragraphs is routine. The next
statement follows from the observation that CS = CS ∪ I is an ideal extension of I by C0

S . The
final statements then hold because O = CB and ES = CCR. �

COROLLARY 3.4 The free regular ∗-semigroup of countably infinite rank is fundamental.
The same is true with respect to any subvariety of the form CV, where V is as in the previous
proposition. In particular, it is true for the variety of E-solid regular ∗-semigroups (and for the
variety of orthodox ∗-semigroups).

Proof. The result follows from universal algebraic principles (cf [3, Theorem 1.12]) and
the fact that fundamentality is inherited by regular subdirect products. For the sake of com-
pleteness, we provide a direct proof. In the usual way, it suffices to prove the statement for the
(relatively) free regular ∗-monoid F on the countably infinite set X. We regard its elements as
members of the free involutorial semigroup FIX on X and so as words in X ∪X−1. Suppose
u, v ∈ FIX and u µF v in F . Let Z be the set of x ∈ X such that either x or x−1 appears in u
or v. Let x ∈ X − Z.
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Let G = F , the countable, fundamental, regular ∗-semigroup (in this case, monoid) con-
structed above. It is clear from the construction that G is generated, as a monoid, by X
together with a single element y, say, of I. Define φ : X −→ X ∪ {y} as follows. Let φ be the
identity map on Z; let xφ = y; and on X − (Z ∪ {x}) let φ be any bijection upon X − Z. By
freedom, φ extends to a homomorphism of F upon G that restricts to the identity map on the
(free ∗-) subsemigroup generated by Z. Now since u µF v, uφ µG vφ, as noted in the proof of
Proposition 3.2, and so uφ = vφ. But then u = v. Hence F itself is fundamental.

The final statement – the case V = CB – is parenthesized because it is already known that
every free orthodox ∗-semigroup is combinatorial [27]. �

We turn now to a brief description of certain free orthodox ∗-semigroups, to which reference
will be made in §6. Kad̆ourek and Szendrei [16] provided a concrete description of FCWX , for
every variety W of ∗-bands that contains SL. Such varieties W are in one-one correspondence
with the self-dual varieties of bands, considered simply as semigroups. (Self-duality in this
context means that if a band satisfies a (semigroup) identity u = w, then it satisfies the
identity obtained by writing u and w in reverse order. Note that free bands themselves have
a natural interpretation as ∗-bands.) The structure of the lattice of varieties of ∗-bands was
found by Adair [2].

The work [16] was actually in the context of ‘bifree’ orthodox semigroups; however in Section
7 of that paper the connection with orthodox ∗-semigroups was made explicit. Their descrip-
tion of FCWX generalized the common descriptions found by Szendrei in [28] for the cases
W = B,NB,SL, (where NB denotes the (self-dual) variety of normal bands) that is for the
free orthodox ∗-semigroups, free generalized inverse ∗-semigroups and free inverse semigroups
respectively. In turn, the free orthodox ∗-semigroups and free generalized inverse semigroups
were originally described, in somewhat more complicated fashion, by Szendrei [27] and Scheib-
lich [26], respectively. As is well known, the first description of free inverse semigroups was
found by Scheiblich [24], and many alternative descriptions may be found in the literature.

We sketch the description of FCWX found in [16]. Let ΓX denote the Cayley graph of
FGX . Its vertex set is the underlying set of FGX and its edge set is EX = FGX ×X, where
(g, x) : g → gx. Informally, such an edge is labelled by x. By adding the set FGX × X−1
of reverse edges, where (gx, x−1) : gx → g is labelled x−1, we may regard ΓX as an involuted
graph.

There is a natural mapping π of FIX into the free involutory semigroup FIEX
on the

edge set of ΓX : for y = y1 · · · yk ∈ FIX , yπ is the (string associated with the) path e1 · · · ek,
where e1 = (1, y1) and for i = 2, . . . , k, ei = (y1 · · · yi−1, yi). Now FGX acts on ΓX by
g · (h, x) = (gh, x), and this action extends to an action of FGX on FIEX

. Moreover, for
any variety W of ∗-bands containing SL, this extended action induces an action of FGX on
FWEX

. Thus the semidirect product FWEX
? FGX is well defined.

RESULT 3.5 [16] Let W be a variety of ∗-bands that contains SL. Then the map wρCW 7→
((wπ)ρ(W,EX), w) is an isomorphism of FCWX into the semidirect product FWEX

? FGX .

Thus the solution to the (involutory) word problem on FCWX is reduced to that on the
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relatively free bands in W (and that on the free group) and is therefore solvable (by [23], cf
the final remarks in [16, Section 2]).

4 Varieties of P -restriction semigroups

Denote by PR the variety of all P -restriction semigroups, under the set {·,+ ,∗ } of operations.
It is defined by the identities (1) – (6) and their duals.

Given a variety V of ∗-regular semigroups, let PCV consist of those P -restriction semigroups
(S, ·,+ ,∗ ) for which CS belongs to V. (Thus PCV = PC(CV), in the notation of the previous
section.) By Proposition 2.1, PC(RS) = PR itself. Denote by R the variety PCSL, which
consists of the P -restriction semigroups S whose projections generate a semilattice: according to
§1, these are just the restriction semigroups, which may be defined within PR by the identity
x+y+ = y+x+. The variety PCT consists of the (P -) restriction semigroups S for which
|PS | = 1, that is, the reduced semigroups defined in §1.

PROPOSITION 4.1 For any variety V of regular ∗-semigroups, PCV is a variety of P -
restriction semigroups that is defined by identities of the form s(x+1 , . . . , x

+
n ) = t(x+1 , . . . , x

+
n )

where s(x1, · · · , xn) = t(x1, · · · , xn) is a semigroup identity. Conversely, any variety of P -
restriction semigroups that is definable by such identities has this form.

An analogous result holds for the variety CV of regular ∗-semigroups, each x+i being inter-
preted as xix

−1
i .

Proof. Let V be a variety of regular ∗-semigroups and u(x1, · · · , xm) = v(x1, . . . , xm) an
identity satisfied in V, where x1, . . . , xm belong to a countably infinite alphabet X. The invo-
lutory words u and v may be regarded as semigroup words over the letters x1, x

−1
1 , . . . , xm, x

−1
m .

Choose a new alphabet, disjoint from X, that contains for each xi an infinite sequence
xi1, xi2, . . .. Consider all the semigroup identities s = t obtained from u(x1, · · · , xm) = v(x1, . . . , xm)
by replacing each xi and x−1i by xi1 · · ·xiki and xiki · · ·xi1, respectively, for some ki ≥ 1. In
view of Proposition 2.1, if (S, ·,+ ,∗ ) is a P -restriction semigroup and ei1, . . . , eiki ∈ PS , then
(ei1 · · · eiki)−1 = eiki · · · ei1 in CS . Thus satisfaction of the original identity by CS is equivalent
to satisfaction of the set of all equations obtained from such identities s = t by replacing each
xij by a projection eij . This is then equivalent to satisfaction by S of the set of identities
obtained by replacing each xij by x+ij .

Conversely, given a P -restriction semigroup S, then since x+ = (x+)+ for all x ∈ S, an
identity s(x+1 , . . . , x

+
m) = t(x+1 , . . . , x

+
m) of the form described is satisfied in S if and only if it

is satisfied in CS , where the latter is regarded as a P -restriction semigroup, and thus if and
only if the identity s(x1x

−1
1 , . . . , xmx

−1
m ) = t(x1x

−1
1 , . . . , xmx

−1
m ) is satisfied in CS , regarded as

a regular ∗-semigroup.
The last statement follows similarly. �

In view of this proposition, if s(x1, · · · , xn) = t(x1, · · · , xn) is a semigroup identity, then the
statement “s(e1, . . . , en) = t(e1, . . . , en), e ∈ PS” represents the bi-unary identity s(x+1 , . . . , x

+
n ) =
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t(x+1 , . . . , x
+
n ), or the corresponding identity for regular ∗-semigroups, according to context. For

example, “ef = fe, e, f ∈ PS” represents the identity that defines the variety of restriction
semigroups, within the variety of P -restriction semigroup, or that defines the variety of inverse
semigroups, within the variety of regular ∗-semigroups. We may simplify expressions such as
s(e1, . . . , en) by use of the operations +, ∗ and/or −1, as appropriate. For instance, the identity
efe = e, e, f ∈ PS may also be expressed as (ef)+ = e, or (fe)∗ = e, e, f ∈ PS .

There is a natural alternative way to associate a variety of P -restriction semigroups with
a given variety V of regular ∗-semigroups: since the (+,∗ )-reduct of any member of V is
a P -restriction semigroup, the class of all such reducts generates a variety of P -restriction
semigroups, which we shall denote by P(V). Note that, since the class of all such reducts is
clearly closed for direct products, P(V) consists of all the P -restriction semigroups that bi-
unarily divide — that is, are bi-unary homomorphic images of bi-unary subsemigroups of —
members of V.

LEMMA 4.2 For any variety V of regular ∗-semigroups, P(CV) ⊆ PCV. In particular,
P(RS) ⊆ PR.

Proof. This follows from CV ⊆ PCV. �

The major questions in this paper fall within the scope of the following.

QUESTION 4.3 For which varieties V of regular ∗-semigroups is it true that P(CV) =
PCV?

Equality holds in case V = T, since any reduced P -restriction semigroup is a bi-unary
homomorphic image of some free monoid, regarded as a semigroup of the same type, and every
free monoid, again regarded as a (reduced) restriction semigroup, embeds in the corresponding
free group.

PROPOSITION 4.4 Let V be a variety of regular ∗-semigroups. If S ∈ PCV, then TPS
∈

CV. Thus any P -fundamental member of PCV belongs to P(CV).
If FPCVX is P -fundamental for a countably infinite set X, then P(CV) = PCV.

Proof. Let S ∈ PCV and put P = PS . The image of S in TP under the representation
θ ′ described in Result 1.3 is a full subsemigroup and so contains CTP . Thus θ ′ restricts to a
homomorphism of CS upon CTP . By assumption, CS ∈ V, so CTP ∈ V, that is, TP ∈ CV. If
S is P -fundamental, then θ ′ is an embedding and so S ∈ P(CV).

Recalling that any variety of algebras is generated by its free members of countably infinite
rank, the final statement follows immediately. �

The final assertion of this proposition provides an important sufficient condition for equality
to hold. It will be shown in Proposition 4.8 that this condition is also necessary in some key
cases. It is not in general necessary since, for example, in the case V = T above, free monoids
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are not P -fundamental, µ being the universal relation. In Proposition 4.6, we will demonstrate
a more general criterion that also provides much more information about FPCVX . We first
prove a very useful property of regular ∗-semigroups.

PROPOSITION 4.5 Let (S, ·,−1 ) be a regular ∗-semigroup that is generated, as such, by
the subset X. Let UX be the P-restriction subsemigroup of the induced P-restriction semigroup
(S, ·,+ ,∗ ) that is generated by X. Then UX is a full subsemigroup of S. Further, UX is generated
as a subsemigroup by X ∪ PS.

Proof. The projections of S have the form w+ = ww−1, where w may be regarded as a
word in FIX , so a proof that they belong to UX may be based on induction on the length of w.
If the length is 1, then w+ = xx−1 = x+ or w+ = x−1x = x∗. In either case, w+ ∈ UX . Now
supposing that w+ ∈ UX for all w of length at most n, suppose u has length n+1. Either u = xw
or u = x−1w, where w has length n. In the former case, u+ = (xw)+ = (xw+)+ ∈ UX , since
xw+ ∈ UX ; in the latter case, u+ = (x−1w)+. In S, (x−1w)+ = x−1ww−1x = (ww−1x)∗ =
(w+x)∗ ∈ UX . Hence UX contains PS . However, by Lemma 1.1, ES = P 2

S in any regular
∗-semigroup, so UX is full.

The last statement is a consequence of Lemma 1.4. �

PROPOSITION 4.6 Let V be a variety of regular ∗-semigroups and let X be a nonempty set.
Then FP(V)X ∼= UX , the P -restriction subsemigroup of FVX generated by X, as described in
Proposition 4.5. Thus FP(V)X is P -full.

Proof. This result is a specialization of a general one from universal algebra. Clearly,
UX ∈ P(V) and so there is a bi-unary homomorphism α, say, of FP(V)X upon UX such
that xα = x for all x ∈ X. Now since FP(V)X ∈ P(V), there exist R ∈ V, a P -restriction
subsemigroup T of R, and a bi-unary surjective homomorphism β : T −→ FP(V)X . For
each x ∈ X, choose an inverse image x̄, say, in T . By freedom, there is a −1-preserving
homomorphism γ : FVX −→ R such that xγ = x̄, for all x ∈ X, the restriction of which
to UX is a bi-unary homomorphism into T , with the same property. Now the composition
αγβ : FP(V)X −→ FP(V)X fixes the elements of X. By freedom, this composition is the
identity map. Therefore α is an isomorphism.

The final statement follows from the remarks on fundamentality in §1. �

THEOREM 4.7 Let V be a variety of regular ∗-semigroups and X be a nonempty set. There
is a P -separating bi-unary homomorphism ψ of FPCVX upon the P -restriction subsemigroup
UX of FCVX generated by X. Hence the projection algebra of FPCVX is isomorphic to that
of FCVX .

The equality P(CV) = PCV holds if and only if ψ is one-one for every X [for any countably
infinite X].

Proof. Put F = FPCVX . Clearly, UX ∈ P(CV) ⊆ PCV. Thus there is a surjective
bi-unary homomorphism ψ, say, from F to UX , taking x to x for all x ∈ X.
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Put P = PF . By freedom, the P -separating homomorphism θ ′ is the unique bi-unary
homomorphism F −→ TP that maps x to θ ′x, for all x ∈ X. As noted in Proposition 4.4,
TP ∈ CV. Now the map x → θ ′x induces a −1-homomorphism ω : FRSX −→ TP . By
uniqueness, θ ′ = ψω and so ψ is P -separating.

Since UX is full in FRSX , ψ induces an algebra isomorphism between the respective pro-
jection algebras. (The restriction is a bijection and the operation ? is defined by e ? f = fef in
each case.)

Turning to the last statement, observe first that the alternative reading stems from the
well-known fact that any variety of algebras is generated by a free member on a countably
infinite set. The statement is then clear from the previous proposition. �

We now prove the promised partial converse to the final assertion of Proposition 4.4.

PROPOSITION 4.8 Suppose a variety V of regular ∗-semigroups is closed under ideal exten-
sions of rectangular ∗-bands by members of V. If P(CV) = PCV, then FPCVX is necessarily
fundamental for any countably infinite set X.

Proof. If V has the stipulated property then, by Corollary 3.4, FCVX is fundamental
for any countably infinite set. From the paragraphs on fundamentality in §1, FCVX is P -
fundamental and so UX also has this property. But FPCVX

∼= UX , by Theorem 4.7. �

The conjecture P(RS) = PR remains open at this point. We summarize.

PROPOSITION 4.9 The following are equivalent:

1. P(RS) = PR, that is, the conjecture P(CV) = PCV holds for V = RS;

2. every P -restriction semigroup divides a regular ∗-semigroup;

3. FPRX is isomorphic with the bi-unary subsemigroup UX of FRSX generated by X, for
any set [any countably infinite set] X;

4. FPRX is P -fundamental for any countably infinite set X.

Section 7 provides some scanty supporting evidence for the conjecture. Apart from semantic
arguments, a possible route to confirmation is to show that the word problem for free P -
restriction semigroups parallels that for free regular ∗-semigroups [22], inducing an isomorphism
of the former with the subsemigroup UX of the latter.

Finally, observe that by virtue of Proposition 2.1, we may also consider varieties of P -
Ehresmann semigroups in a similar, albeit more limited, fashion. Let PE denote the (+,∗ )-
variety of all such semigroups. Once more, for any variety V of regular ∗-semigroups, let PCV
be the subvariety of PE comprising those S for which CS ∈ V. This subvariety is defined by
the same additional identities that may be used in the case of P -restriction semigroups. For
instance, the E-Ehresmann semigroups, originally defined in [17] (and sometimes just termed
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‘Ehresmann’) comprise the subvariety PCSL of PE, in this more general context, defined
by the identity ef = fe, e, f ∈ PS . While some structural results may be found, the tight
connection that is exhibited between regular ∗-semigroups and P -restriction semigroups has no
direct analogue in this context.

5 Orthodox P -restriction semigroups.

The variety O = CB of orthodox ∗-semigroups was introduced in §3. It was first considered
by Nordahl and Scheiblich [19] under the name ∗-orthodox semigroups. In that paper, the
authors provided the following characterization via identities, which we re-interpret in the form
described following Proposition 4.1.

RESULT 5.1 [19] A regular ∗-semigroup (S, ·,−1 ) is orthodox if and only if it satisfies the
identity that may be expressed as (efg)2 = efg, e, f, g ∈ PS.

By analogy, we denote the variety PCB of P -restriction semigroups by PO and also term
its members orthodox . Thus, a P -restriction semigroup is orthodox if the product of any
number of projections is idempotent. (Recall that the product of any two projections is always
idempotent.) We may also use this terminology in the more general context of P -Ehresmann
semigroups, as in the next result (see the final remarks in the preceding section).

PROPOSITION 5.2 A P -Ehresmann semigroup (S, ·,+ ,∗ ) is orthodox if and only if it sat-
isfies efg = (efg)+(efg)∗, e, f, g ∈ PS, in which case CS = P 2

S .

Proof. Suppose S is orthodox. Let e, f, g ∈ PS and let B = 〈e, f, g〉, a subband of CS .
Now, by the equation (8) and its dual, the equation efg = (efg)+(efg)∗ may be restated as
efg = (efgfe)(gfefg), which is satisfied in any band, either by an argument involving content
in the free band on {e, f, g}, or by an argument involving Green’s relations: efgfe R efg L
gfefg and the D-class of efg is a rectangular band.

Conversely, the identity implies that P 3
S = P 2

S and so PnS = P 2
S ⊆ ES for all n ≥ 3. �

In the following, S = (S, ·,+ ,∗ ) will always be an orthodox P -restriction semigroup. Denote
the band CS by BS , or simply B. It is decomposable in the usual way (see [11]) as a semilattice of
rectangular bands, where the semilattice decomposition is provided by Green’s relation JB=DB,
which in this case is a congruence that is described as follows: e DB f if and only if efe = e
and fef = f . Let γ be the relation on S defined by

γ = {(a, b) : a+ DB b+, a∗ DB b∗, and b+a = ba∗}.

Observe that if a γ b, then a+ = a+b+a+, so a = a+b+a. Similarly, a = ab∗a∗ and
b = b+a+b = ba∗b∗. From b+a = ba∗ it then follows that ab∗ = a+b+ab∗ = a+ba∗b∗ = a+b.
That is, γ is symmetric. Also observe that for e, f ∈ P , e γ f if and only if e DB f . Thus if
a γ b, then a+ γ b+ and a∗ γ b∗.
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LEMMA 5.3 If a, b ∈ S, then a γ b if and only if a = a+ba∗ and b = b+ab∗.

Proof. Suppose a γ b. As noted above, a = a+b+a and so a = a+ba∗, the other relation
being similarly proved. Conversely, if a = a+ba∗ and b = b+ab∗, then a = (a+b+)ba∗ implies
a = a+b+a, since a+b+ ∈ ES , and, similarly, b = b+a+b. Thus b+a = b+(a+ba∗) = ba∗. Also,
applying (2), (3) and (4), a+ = (a+b+a)+ = (a+b+a+)+ = a+b+a+; similarly, b+ = b+a+b+,
that is, a+ DB b+; similarly, a∗ DB b∗. Therefore a γ b. �

PROPOSITION 5.4 The relation γ is the least bi-unary congruence on S whose quotient is
a restriction semigroup.

If (S, ·,−1 ) is an orthodox ∗-semigroup, then γ is the least congruence on S whose quotient
is an inverse semigroup (cf [11, Theorem 6.2.5] for orthodox semigroups in general).

Proof. Note first that the definition of γ is self-dual, in the sense used in this paper. Clearly
it is symmetric and reflexive. Suppose a γ b and b γ c. Then a+ DB c+ and a∗ DB c∗. Now
the DB-class containing a+, b+, c+ is a rectangular band, so a+b+c+ = a+c+ and c∗b∗a∗ = c∗a∗.
Applying the lemma above, a = a+(b+cb∗)a∗ = (a+b+c+)c(c∗b∗a∗) = a+ca∗. Similarly, c =
c+ac∗. So γ is transitive.

As a preliminary step toward proving compatibility, we prove that if a γ b and g ∈ PS ,
then ga γ gb. By (12), (ga)∗ ≤ a∗. Thus gb(ga)∗ = g(ba∗)(ga)∗ = g(b+a)(ga)∗ = gb+(a+ga) =
(gb+)a+(ga+)a, where the penultimate equality follows from the generalized ample condition
(6). Now a+ DB b+ and DB is a congruence on B, so gb+ DB ga+. The associated DB-class is
a rectangular band, so (gb+)a+(ga+) = (gb+)(ga+). Again applying (6), gb+g = (gb)+g. Thus
gb(ga)∗ = (gb)+ga+a = (gb)+(ga), as required.

Now suppose a γ b and x ∈ S. Note that (xa)∗ = (x∗a)∗ and (xb)∗ = (x∗b)∗. Since x∗ ∈ PS ,
the previous step of the proof implies that (xa)∗ DB (xb)∗ and x∗a(x∗b)∗ = (x∗a)+x∗b. Thus
(xa)(xb)∗ = x(x∗a)(x∗b)∗ = x(x∗a)+x∗b = x(x∗a+x∗)x∗b = xa+x∗b, where we have applied (2)
and (3); applying (6) then yields xa+x∗b = (xa)+xb. It remains to prove that (xa)+ DB (xb)+.
Here, by (2), (xa)+ = (xa+)+ and (xb)+ = (xb+)+, so it suffices to prove that if e, f ∈ PS
and e DB f , then (xe)+ DB (xf)+. Now since DB is a congruence on B, x∗e DB x∗f ,
that is, x∗ex∗fx∗e = x∗e. Multiplying on the left by x and on the right by x∗, this yields
xex∗fx∗ex∗ = xex∗. Applying (6) once on the right hand side and three times on the left, we
obtain (xe)+(xf)+(xe)+x = (xe)+x. Finally, applying the + operation to both sides, using (2)
and noting that (xe)+ ≤ x+, the required equation (xe)+(xf)+(xe)+ = (xe)+ ensues.

Therefore γ is left compatible. By the self-duality noted above, it is right compatible. As
also noted earlier, it respects the unary operations. So it is a bi-unary congruence on S, which
restricts to DB on B. Such a congruence clearly maps PS onto PS/γ and so PS/γ is a semilattice,
that is, S/γ is a restriction semigroup.

If ρ is any bi-unary congruence on S such that S/ρ is a restriction semigroup, suppose a γ b
in S. Then a+ρ and b+ρ are D-related projections in the semilattice PS/ρ and so are equal.
Similarly, a∗ρ = b∗ρ. Thus bρ = (bb∗)ρ = (ba∗)ρ = (b+a)ρ = aρ and γ ⊆ ρ, completing the
proof of the first assertion of the proposition.
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Finally, if S is actually a regular ∗-semigroup, then as noted in §1, any bi-unary congruence
also respects −1, so γ is the least congruence on S whose quotient is a (regular ∗-semigroup
that is also a) restriction semigroup, that is, an inverse semigroup. �

PROPOSITION 5.5 The congruences γ and µ are disjoint. Hence S embeds in the product
of the restriction semigroup S/γ and the fundamental orthodox ∗-semigroup TPS

.

Proof. Since µ ⊆ H̃P , it suffices to prove that γ ∩ H̃P = ι. But this is obvious from
Lemma 5.3: if a γ b then a = a+ba∗ and from a H̃P b, a = b+bb∗ = b. It follows that S is
isomorphic to a subdirect product of the restriction semigroup S/γ and the P -fundamental,
orthodox P -restriction semigroup S/µ. But, as in the proof of Proposition 4.4, TPS

is an or-
thodox ∗-semigroup in which S/µ embeds. �

We return briefly to the congruence σ: the least semigroup congruence that identifies all
the projections, equivalently, the least bi-unary congruence whose quotient is reduced. On any
P -restriction semigroup, σ is a bi-unary congruence whose quotient is a restriction semigroup
(with the identity as its only projection). On an orthodox P -restriction semigroup, then, γ ⊆ σ.
Thus σ is induced by the analogous congruence on the greatest quotient that is a restriction
semigroup. A description of the latter was given by Gould [9, Lemma 8.1]: (a, b) ∈ σ if and
only if ea = eb for some projection e.

PROPOSITION 5.6 Let a, b ∈ S. The following are equivalent:

(i) a σ b;

(ii) eaf = ebf for some e, f ∈ PS;

(iii) ea = bf for some e, f ∈ P 2
S .

If S is also P -full, that is, ES = P 2
S , then a σ b if and only if ea = bf for some e, f ∈ ES.

Proof. If either (ii) or (iii) holds, then since σ identifies all members of PS , a σ b.
If (i) holds, then, as noted above, aγ σ bγ in S/γ and thus g(aγ) = g(bγ) for some g ∈ PS/γ .

Since γ is a bi-unary congruence, g = kγ for some k ∈ PS . Applying Lemma 5.3, ka =
(ka)+(kb)(ka)∗. By (12), (ka)+ = (ka)+k, so eaf = ebf , where e = (ka)+, f = (ka)∗ ∈ PS .
Thus (ii) holds.

To deduce (iii) from (i), note first that since, in a restriction semigroup, if e is any projection
then eb = b(eb)∗, the equation ea = eb may be rewritten as ea = bf , where f is also a projec-
tion. Thus from aγ σ bγ we instead obtain g(aγ) = (bγ)h, where g = kγ and h = `γ, for some
k, ` ∈ PS . This time applying the definition of γ, ea = bf , where e = (b`)+k, f = `(ka)∗ ∈ P 2

S . �

The last assertion of the proposition applies, in particular, to the least group congruence σ
on an orthodox ∗-semigroup S. In fact the least group congruence on any orthodox semigroup
has this form (attributed to Saito in [29]).

Without the P -full property, that conclusion may fail. For example, in a nontrivial monoid
S with zero, regarded as a reduced P -restriction semigroup, 0a = b0 for all a, b ∈ S, but σ is
the identical relation.
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6 Varieties of orthodox P-restriction semigroups and their free
objects.

We first show that P(CW) = PCW for any variety W of ∗-bands that contains SL, starting
with what turns out to be the exceptional case V = SL. As observed earlier, CSL = I and
PCSL = R. That P(I) = R is already known, as a result of the description of the free
restriction semigroups given by Fountain, Gomes and Gould in [8], as subsemigroups of the
corresponding free inverse semigroups. (From another perspective, the mere consequence that
the free restriction semigroups are P -combinatorial by itself implies the stated equality, by
virtue of Proposition 4.4.) However, we show here that in fact there is a relatively elementary
proof of this equality. In turn, this provides a similarly elementary independent route to an
explicit description of the free restriction semigroups.

The key to the proof is the existence, for any restriction semigroup S, of a proper restriction
semigroup T and a homomorphism of T upon S. A restriction semigroup is proper if R̃P ∩σ =
L̃P ∩ σ = ι. In §9 we will provide a simple proof of both this covering theorem (first proved in
[8]) and its one-sided analogues – in fact, of the stronger one found in [8, Proposition 6.5 and
Lemma 6.6].

PROPOSITION 6.1 The equality P(I) = R holds. In other words, P(CV) = PCV holds
for V = SL.

Proof. Let S be a restriction semigroup. By Theorem 9.1, S is a homomorphic image of
a proper restriction semigroup T , say. Then, on T , µ ∩ σ ⊆ H̃P ∩ σ ⊆ R̃P ∩ σ = ι, so T is
isomorphic to a subdirect product of T/µ and T/σ. But T/µ ∈ P(CSL), by Proposition 4.4;
and T/σ ∈ PCT = P(CT). Thus T ∈ P(CSL) = P(I), whence the same is true of S, as
claimed. �

THEOREM 6.2 The equation P(CW) = PCW holds for any variety W of ∗-bands. In
particular, the variety O of orthodox ∗-semigroups generates the variety PO of orthodox P -
restriction semigroups.

Proof. Let S ∈ PCW. By Proposition 5.5, S is isomorphic to a (bi-unary) subdirect prod-
uct of the restriction semigroup S/γ and the fundamental orthodox P -restriction semigroup S/µ.
On the one hand, by Proposition 4.4, S/µ ∈ P(CW). On the other, S/γ ∈ PCSL ∩PCW ⊆
PC(SL ∩W). Now it is easy to see [2] that either SL ⊆ W or SL ∩W = T. In the
case SL ⊆ W, then S/γ ∈ PCSL = P(CSL), by the last proposition, whence S ∈ P(CW),
as required; otherwise, S/γ ∈ PCT = P(CT), as noted in §4, whence S ∈ P(CW) once more.�

As a consequence of §4, we obtain an explicit description of the free orthodox P -restriction
semigroups FPCWX . Recall from Proposition 4.6 that FP(CW)X ∼= UX , the bi-unary sub-
semigroup of FCWX generated by X, and that by Proposition 4.5, UX is the subsemigroup
generated by X together with the projections of FCWX . In the general situation FCVX ,
membership in UX may not be easy to determine, even should an explicit description of the
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latter be known. In the orthodox case, the following more explicitly useful characterization is
available.

PROPOSITION 6.3 Let V be a variety of orthodox ∗-semigroups that contains G. Then
UX = X∗σ−1.

Proof. It suffices to prove the statement for the variety O. The conclusion is implicit in
the description(s) of FOX in [27, 28] but we present a direct proof. First, by Proposition 4.5,
UX = 〈X ∪ P 〉, where P = PFOX

, and so its image in FGX is simply X∗. Let w ∈ FIX
and suppose w maps to x1 · · ·xn ∈ X+ under the congruence σ on FIX . Based on any of
the well-known descriptions of free inverse semigroups, we may express the image of w in the
free inverse semigroup on X as ww−1x1 · · ·xn. In FOX , then, w γ w+x1 · · ·xn and so, by
Lemma 5.3, w = w+(w+x1 · · ·xn)w∗ ∈ 〈X ∪ P 〉. �

THEOREM 6.4 Let W be any variety of ∗-bands. For any nonempty set X, FPCWX is
isomorphic to the P -restriction subsemigroup UX of the free orthodox ∗-semigroup FCWX over
CW that is generated by X. Moreover, UX is the complete inverse image of the free monoid
on X under the map FCWX → FGX .

Proof. The first assertion was essentially proven in the paragraph before Proposition 6.3,
applying Theorem 6.2. The second follows from that proposition, noting that since T ⊆ W,
G = CT ⊆ CW. �

When Theorem 6.4 is applied to the special case W = SL, each of the many explicit
descriptions of the free inverse semigroups yields an explicit description of the free restriction
semigroups. For instance, if one chooses that used in [11], based on the original of Scheiblich
[24], the result is precisely the (first) description in [8, Theorem 4.4].

COROLLARY 6.5 If SL ⊆W, then in terms of the representation of FCWX in FWEX
?

FGX stated in §3, the image of FPCWX in FCWX under the representation obtained in
Theorem 6.4 comprises the pairs (u, g) for which g ∈ X∗.

Finally, if SL ∩W = T, then either W = RB or W = T (in which case FPCWX
∼= X∗).

In the case W = RB, the following facts are easily established. The members of CRB are
the ‘rectangular ∗-groups’, that is, the rectangular groups over rectangular ∗-bands, and so are
direct products of rectangular ∗-bands with groups. (The rectangular ∗-bands are essentially
just the ‘square’ rectangular bands X ×X, where (i, j)−1 = (j, i), and each of these is actually
free on X.) Thus FCRBX

∼= (X×X)×FGX . From the theorem, FPCRBX
∼= (X×X)×X∗.

Clearly the rectangular ∗-groups are the orthodox completely simple ∗-semigroups. Ex-
tending our consideration outside the orthodox milieu, it is clear that the class V = CS of
completely simple ∗-semigroups is closed under the operation V → CV and one may ask if
the equation P(CV) = PCV also holds true in this case. We have proven that this is indeed
the case, but since the arguments used also apply to classes of general completely simple semi-
groups, this topic will be treated in a future work. The case of CS will also demonstrate that
Proposition 6.3 may no longer hold when V is nonorthodox.
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7 Monogenic P -restriction semigroups

A P -restriction semigroup (S, ·,+ ,∗ ) is monogenic if it is generated, as a bi-unary semigroup,
by a single element. The main result of this section is that every such semigroup is orthodox.
It should be noted that, should the conjectured equation P(RS) = PR hold, then this theorem
would in fact follow from that of Yamada and Imaoka [30], that every monogenic regular ∗-
semigroup is orthodox. Instead, we deduce that theorem from ours.

In the following, (S, ·,+ ,∗ ) is a P -restriction semigroup generated by x, say. For m ≥ 1,
put gm = (xm)+ and hm = (xm)∗. Set GS = {gm, hm : m ≥ 1} and 〈GS〉 the subsemigroup it
generates. By virtue of (8), 〈GS〉 is also closed under the two unary operations.

LEMMA 7.1 The following hold in S.

(i) g1 ≥ g2 ≥ · · · ≥ gn ≥ · · · and h1 ≥ h2 ≥ · · · ≥ hn ≥ · · ·;

(ii) (xgm)+ = gm+1 and xgmx
∗ = gm+1x, for all m ≥ 1;

(iii) xh1 = x and xhn = g1hn−1x for all n > 1.

Proof (i) These follow from the equation (ab)+ ≤ a+ and its dual.
(ii) (xgm)+ = (x(xm)+)+ = (xxm)+ = gm+1; xgmx

∗ = x(xm)+x∗ = (xxm)+x = gm+1x,
applying the generalized ample identity ab+a∗ = (ab)+a to obtain the middle equality.

(iii) The first equation is clear; the second is essentially the dual of the second statement in
(ii). �

It follows from (i) that the members of 〈GS〉 may be written as alternating products of gm’s
and hm’s.

LEMMA 7.2 Every projection in S is a product of projections from GS. Thus PS ⊆ 〈GS〉
and CS = 〈GS〉.

Proof We follow the method of Lemma 1.4. So F denotes the free bi-unary semigroup
generated by x, namely the subsemigroup of the free semigroup, on the set consisting of x itself
and the four symbols (, )+, ( and )∗, that is generated recursively as follows: x ∈ F ; if u ∈ F ,
then (u)+, (u)∗ ∈ F ; if u, v ∈ F , then uv ∈ F . We will use the symbol ≡ to denote equality of
words in F , so the usual equality symbol denotes their equality (more precisely, the equality of
their images) in S.

Proceed by induction on the minimum number of steps required to build a projection e
of S in the above fashion. The base cases, where e = x+ or e = x∗, are clear. In general,
we may assume that e = (w)+, where w is built in one fewer step (the case e = (w)∗ being
similar). If (the image of) w is a projection in S, then the induction hypothesis implies that
e ∈ GS . Otherwise, w ≡ w1w2 for some w1, w2 ∈ F , whence, in S, e = (w1w

+
2 )+, the induction

hypothesis then applying to w+
2 . Now if (the image of) w1 is a projection in S, then once again

the induction hypothesis applies and, applying (3), e = w1(w2)
+w1 ∈ GS .
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Applying this argument repeatedly, it remains to consider the situation whereby w ≡
w1w2 · · ·wk, the first term being neither factoring in F nor representing a projection in S.
Thus w1 = x.

Put v = w2 · · ·wn, so that, as above, e = (xv+)+ and v+ ∈ 〈GS〉. Write v+ as an al-
ternating product of gn’s and hm’s and induct on the length of this expression for v+. We
use the preceding lemma without explicit reference. First suppose v+ = gmu, where either
u = 1 or u starts with some hn. If u = 1 then e = (xgm)+ = gm+1; otherwise, then since
hn = x∗hn, e = (xgmx

∗u)+ = (gm+1xu)+ = gm+1(xu)+gm+1. By the induction hypothesis on
v, (xu)+ ∈ 〈GS〉, whence the same is true for e. Alternatively, v+ = hnu, where either u = 1
or u begins with some gm. In any case, if n = 1, then e = (xh1u)+ = (xu)+ and either e = x+

or the previous case applies. If n > 1 then e = (xhnu)+ = (g1hn−1xu)+ = g1hn−1(xu)+hn−1g1
and, again, the previous case applies. �

As a consequence of Lemma 7.1, GS is generated as a semigroup by two chains (totally
ordered semilattices), each consisting of projections of S.

PROPOSITION 7.3 Let B be a semigroup that is generated by two chains G and H of
idempotents and has the property that gh, hg ∈ EB for all g ∈ G, h ∈ H. Then B is a band.

Proof. We first prove a technical result. Consider a product e1e2e3e4, where the terms al-
ternate between G and H, e1 ≤ e3 and e2 ≥ e4. Then e1e2e3e4 = e1(e3e2e3e2)e4 = e1(e3e2)e4 =
e1e4. Now consider a product e1 · · · e2n, where the terms alternate between G and H, e1 ≤ ek
for each odd k with 1 < k < 2n, and ek ≥ e2n for each even k with 1 < k < 2n. Then
e1 · · · e2n = e1e2n may be proven by induction on n. For the case n = 2 has just been proven.
Then consider products of four successive terms, beginning from the left. The product e1e2e3e4
may be shortened unless e2 < e4, in which event e2e3e4e5 may be shortened unless e3 < e5,
and so on. But e2n−2 ≥ e2n, so at least one of the four-fold products can be shortened and the
induction hypothesis applied.

Now let b ∈ B, b 6∈ G ∪ H. Express b as an alternating product of members of G and
of H, of length at least two. Then, without loss of generality, b = ugvhw, where g ∈ G
is a term in the product that is least among all such terms, h is chosen likewise from H,
and u, v, w ∈ B1. From the technical step above, gvh = gh and (ghw)(ugh) = gh, whence
b2 = (ughw)(ughw) = ughw = ugvhw = b. �

We remark that in fact the band B in the proposition is a regular band, in the sense that
it satisfies the identity axaya = ayaxa. This follows from [12], where it was shown that any
band that is generated by two semilattices is regular.

COROLLARY 7.4 Any monogenic P -restriction semigroup is orthodox. Hence ([30]) any
monogenic regular ∗-semigroup is orthodox.

Proof. Combining Lemma 7.2 with Proposition 7.3, if the P -restriction semigroup S is
generated by x, then CS is a ∗-band. Now consider the homomorphism θ : FPRx → FRSx
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given by Theorem 4.7. The image Ux is also orthodox. But Ux is a full subsemigroup of
FRSx and so the latter semigroup is again also orthodox. Therefore every monogenic regular
∗-semigroup is orthodox. �

THEOREM 7.5 The free monogenic P -restriction semigroup FPRx is orthodox and so it is
also the free monogenic orthodox P -restriction semigroup FPOx, as described in §6. The free
monogenic regular ∗-semigroup FRSx is orthodox and so it is also the free monogenic orthodox
∗-semigroup FOx. Hence the P -separating homomorphism ψ : FPRx → FRSx of Theorem 4.7
is an isomorphism upon UX .

Proof. For each of the first two sentences, the first statement follows from the previous
corollary and the second is then clear. That ψ is one-one now follows from Theorem 6.4. �

8 Left restriction semigroups

In principle, all the generalities of this paper may be repeated in the one-sided situation(s).
That is, given a regular ∗-semigroup (S, ·,−1 ), we may instead consider the reducts (S, ·,+ ) and
(S, ·,∗ ) separately. Respectively, these fall within the realms of left and right P -Ehresmann
semigroups, which were studied extensively in [13]. However, as in the two-sided case, the
respective varieties of unary semigroups generated by the regular ∗-semigroups cannot consist
of all such P -Ehresmann semigroups (since it is not the case even for inverse semigroups).

At the present time, in the one-sided situation there is no known analogue of the P -
restriction semigroups and thus no prospect of addressing the one-sided versions of Question 4.3
in general. However, we can use the analogues of the techniques developed above in order to
provide a quick derivation of the structure theorem for free left (similarly for right) restriction
semigroups. In view of Corollary 9.2, the free left restriction semigroup on a set coincides with
the free left ample semigroup, the structure of which was first determined by J. Fountain [7]. C.
Cornock [5] has already constructed the free left restriction semigroups by different methods.

The left-handed versions (and dually, the right-handed versions) of the general definitions
will use the same notation, without elaboration, unless otherwise stated. In particular, P(V)
now refers to the variety of left P -Ehresmann semigroups generated by the variety V of regular
∗-semigroups.

PROPOSITION 8.1 (cf Proposition 4.6, Theorem 4.7) Let V be a variety of regular ∗-
semigroups and let X be a nonempty set. Then FP(V)X ∼= UX , the +-subsemigroup of FVX

generated by X. The equality P(CV) = PCV holds if and only if FPVX
∼= FP(V)X , for

every X [for any countable set X].

Observe that although the analogue of the homomorphism ψ in Theorem 4.7 exists, it need
not be P -separating, since the analogue of Result 4.4 no longer holds. However, the analogue
of Lemma 1.4 holds. Thus UX is generated, as a semigroup, by X, together with its projections
(which will no longer comprise all the projections of FVX).
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We will prove the analogue of Proposition 6.1. For our purposes, we may use as our definition
of the left ample property the characterization given in [10, Lemma 5.5]: a left restriction
semigroup S is left ample if R̃P coincides with the generalized R-relation R∗, which is defined
by a R∗ b if xa = ya if and only if xb = yb, for all x, y ∈ S1. Only the following fact is needed,
in addition to the covering result in the final section. References to its origin may be found in
the cited paper.

RESULT 8.2 [10, Theorem 4.12, Lemma 5.6] Let (S, ·,+ ) be a left ample semigroup. Then
there is a +-preserving embedding in the symmetric inverse semigroup on the set S, regarded as
a left restriction semigroup.

PROPOSITION 8.3 The variety of left restriction semigroups is generated by the ((·,+ )-
reducts of the members of) the variety of inverse semigroups. That is, in its one-sided inter-
pretation, the equality P(CSL) = PCSL holds.

Proof. As in the proof of the Proposition 6.1, it suffices to show that any left restriction
semigroup (S, ·,+ ) unarily divides an inverse semigroup. But by Corollary 9.2, S is a (unary)
homomorphic image of a left ample, left restriction semigroup, which by Result 8.2 unarily
embeds in an inverse semigroup. �

COROLLARY 8.4 The free left restriction semigroup on a nonempty set X is isomorphic to
the (·,+ )-subsemigroup UX of the free inverse semigroup on X that is generated by X.

Given any concrete description of the free inverse semigroups, it is then not difficult to
identify the members of UX .

One may also view the reduction from inverse semigroups to left restriction semigroups
as a two-step process, via restriction semigroups (the last step entailing ‘forgetting’ the unary
operation ∗). Clearly the variety of restriction semigroups generates the variety of left restriction
semigroups and so, by the same universal algebraic principles as above, the free left restriction
semigroup is necessarily embeddable into the free restriction semigroup (as witnessed by the
ultimate description cited in the previous paragraph).

9 An elementary proof of the existence of proper covers

A proper cover of a restriction semigroup S consists of a proper restriction semigroup T and a
surjective (+,∗ )-homomorphism T → S that separates PT . The one-sided definitions are entirely
analogous. (The definition of ‘proper’ in the left-handed case requires only that R̃P ∩ σ = ι.)

We provide a remarkably elementary simultaneous proof of (1) the existence of proper covers
of restriction semigroups, which was at the heart of the proof of Proposition 6.1, and (2) the
one-sided version of this result, which was at the heart of the proof of Proposition 8.3. The
former statement was first proved in [8, Proposition 6.5 and Lemma 6.6], the proof of which
can easily be adapted to yield a proof of the latter. That the cover can be chosen to be ample
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was not needed in the proof of Proposition 6.1 but, in contrast, was the essential ingredient in
the proof of Proposition 8.3.

It is well known (e.g. see [10]) that the relation on a left restriction semigroup S defined by
a ≤ b if a = eb for some e ∈ PS is a partial order that is compatible with both operations, and
that a ≤ b if and only if a = a+b. If S is a restriction semigroup, then by virtue of the ample
conditions, this relation and its dual coincide, so that also a ≤ b if and only if a = ba∗.

THEOREM 9.1 Let S be a [left] restriction semigroup. Let M = S1, regarded as a reduced
monoid. Then T = {(s,m) ∈ S ×M : s ≤ m in S1} is a proper [left] restriction cover for S,
which is finite if S is finite.

Proof. It is immediate from the properties of the partial order that T is a [left] restriction
subsemigroup of the [left] restriction semigroup S ×M . Clearly PT = PS × {1}, T contains
{(s, s) : s ∈ S}, and projection onto the first factor is a covering of S.

Suppose S is left restriction and that ((s,m), (t, n)) ∈ R̃P ∩ σT in T . Then s+ = t+ and
mσM n in M , that is, m = n, whence s = s+m = t+n = t. So T is proper. The restriction case
follows by duality. �

The parameters in the theorem can be modified so as to strengthen it, albeit at the cost of
preserving finiteness. The left ample property was defined in the previous section. The ‘ample’
property is defined in the obvious way.

COROLLARY 9.2 (to the proof) Let M be any reduced monoid that maps homomorphically
upon the reduced monoid S1, via φ, say. Then T = {(s,m) ∈ S ×M : s ≤ mφ in S1} is again
a proper [left] restriction cover for S. If M is [right] cancellative, then T is [left] ample. In
particular, choosing M to be a free monoid that maps onto S1 yields a proper [left] ample cover
of S.

Proof. As in the first paragraph of the proof of the theorem, T is a [left] restriction
semigroup (surjectivity of φ ensuring that T projects onto S). That T is proper also follows
similarly, the only modification being to replace m and n by mφ and nφ in the equation
s = s+m = t+n = t.

Now suppose M is right cancellative, the two-sided case then following easily. It is easily
seen (cf [9]) that T is left ample if and only if xa = ya implies xa+ = ya+, for all x, y, a ∈ T .
Let x = (u, p), y = (v, q) and a = (s,m). If xa = ya, then us = vs in S and pm = qm in M ,
whereby p = q.

Now xa+ = (us+, p) and so us+ ≤ pφ, that is, us+ = (us+)+pφ = (us)+pφ. Applying the
same calculation to ya+ yields xa+ = ya+, as required. �

The existence of a proper ample cover was proven in [8, Proposition 6.5 and Lemma 6.6] in
the two-sided case and, in essence, in [7] in the one-sided case. Note that finiteness cannot in
general be preserved in this result, as a result of the following.
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LEMMA 9.3 Suppose that the finite monoid M , regarded as a (reduced) restriction semigroup,
has a finite, left ample cover. Then M is a group.

Proof. Let T be the cover. Then M is a quotient of T/σ. But it is well known, and easily
demonstrated, that if a left restriction semigroup T is left ample, then necessarily PT = ET and
so T/σ is a unipotent monoid, that is, the identity element is its only idempotent. If, further,
T/σ is finite, then it must be a group (since its completely simple kernel must be a group, which
in turn must be the entire semigroup). Thus M itself is a group. �
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