3 research outputs found

    Development of a Novel Media-independent Communication Theology for Accessing Local & Web-based Data: Case Study with Robotic Subsystems

    Get PDF
    Realizing media independence in today’s communication system remains an open problem by and large. Information retrieval, mostly through the Internet, is becoming the most demanding feature in technological progress and this web-based data access should ideally be in user-selective form. While blind-folded access of data through the World Wide Web is quite streamlined, the counter-half of the facet, namely, seamless access of information database pertaining to a specific end-device, e.g. robotic systems, is still in a formative stage. This paradigm of access as well as systematic query-based retrieval of data, related to the physical enddevice is very crucial in designing the Internet-based network control of the same in real-time. Moreover, this control of the end-device is directly linked up to the characteristics of three coupled metrics, namely, ‘multiple databases’, ‘multiple servers’ and ‘multiple inputs’ (to each server). This triad, viz. database-input-server (DIS) plays a significant role in overall performance of the system, the background details of which is still very sketchy in global research community. This work addresses the technical issues associated with this theology, with specific reference to formalism of a customized DIS considering real-time delay analysis. The present paper delineates the developmental paradigms of novel multi-input multioutput communication semantics for retrieving web-based information from physical devices, namely, two representative robotic sub-systems in a coherent and homogeneous mode. The developed protocol can be entrusted for use in real-time in a complete user-friendly manner

    Development of a Highly Flexible and Stretchable Tubular Shape Tactile Sensor Array

    Get PDF
    University of Minnesota M.S.E.E. thesis. August 2016. Major: Electrical Engineering. Advisors: Jing Bai, Debao Zhou. 1 computer file (PDF); viii, 68 pages.Highly flexible skin-like sensors, such as electrical skin (e-skin) sensor for pressure measurement, have the potential to provide quantitative physical contact assessments, when equipped on household and medical devices to benefit human society. One of the promising applications is to monitor the contact pressure of a colonoscope to the colonic wall during a colonoscopy to reduce the possibility of perforation and hemorrhaging.Colon, as the largest intestine, is a long winding tube at end of human's digestive tract. Many disorders affect the colon's ability to work properly, thus the American Cancer Society suggests that citizens over 50 years old should be subject to a colon screen test. However, risks do exist during colonoscopy. A rate of 0.19% perforation occurs in the diagnostic colonoscopy. Many attempts have been made to fabricate highly stretchable electronic devices, but no effort has been made to design or investigate the mechanical behaviors of a tubular-shaped e-skin that meet the need for controlling the risks during colonoscopy. In this project, a high performance three-layer tactile sensor array was designed and fabricated, and a pressure detection system was set up as well. The operating mode was thoroughly investigated and the pressure detection on curved surface, such as a tube was realized. A detailed study about false positive error was performed to improve the sensor’s reliability and accuracy. Based on a tubular-shaped, highly flexible skin-like sensor array we developed, we conducted both modeling and experimental studies on the change of the maximum pressure distribution of a tubular e-skin sensor under various bending conditions with and without external compressive forces. These studies revealed the value of the maximum stress on a tubular shaped e-skin sensor array when bent. The measuring errors due to bending in pressure detection during colonoscopy can be quantified for compensation. Thus, high accuracy diagnose can be achieved. Based on all these work, the pressure detection in the colon-simulator was successfully realized. The results could also be used to address strategies on optimizing the design of tactile sensors for other medical application

    Instrumented shoes for daily activity monitoring in healthy and at risk populations

    Get PDF
    Daily activity reflects the health status of an individual. Ageing and disease drastically affect all dimensions of mobility, from the number of active bouts to their duration and intensity. Performing less activity leads to muscle deterioration and further weakness that could lead to increased fall risk. Gait performance is also affected by ageing and could be detrimental for daily mobility. Therefore, activity monitoring in older adults and at risk persons is crucial to obtain relevant quantitative information about daily life performance. Activity evaluation has mainly been established through questionnaires or daily logs. These methods are simple but not sufficiently accurate and are prone to errors. With the advent of microelectromechanical systems (MEMS), the availability of wearable sensors has shifted activity analysis towards ambulatory monitoring. In particular, inertial measurement units consisting of accelerometers and gyroscopes have shown to be extremely relevant for characterizing human movement. However, monitoring daily activity requires comfortable and easy to use systems that are strategically placed on the body or integrated in clothing to avoid movement hindrance. Several research based systems have employed multiple sensors placed at different locations, capable of recognizing activity types with high accuracy, but not comfortable for daily use. Single sensor systems have also been used but revealed inaccuracies in activity recognition. To this end, we propose an instrumented shoe system consisting of an inertial measurement unit and a pressure sensing insole with all the sensors placed at the shoe/foot level. By measuring the foot movement and loading, the recognition of locomotion and load bearing activities would be appropriate for activity classification. Furthermore, inertial measurement units placed on the foot can perform detailed gait analysis, providing the possibility of characterizing locomotion. The system and dedicated activity classification algorithms were first designed, tested and validated during the first part of the thesis. Their application to clinical rehabilitation of at risk persons was demonstrated over the second part. In the first part of the thesis, the designed instrumented shoes system was tested in standardized conditions with healthy elderly subjects performing a sequence of structured activities. An algorithm based on movement biomechanics was built to identify each activity, namely sitting, standing, level walking, stairs, ramps, and elevators. The rich array of sensors present in the system included a 3D accelerometer, 3D gyroscope, 8 force sensors, and a barometer allowing the algorithm to reach a high accuracy in classifying different activity types. The tuning parameters of the algorithm were shown to be robust to small changes, demonstrating the suitability of the algorithm to activity classification in older adults. Next, the system was tested in daily life conditions on the same elderly participants. Using a wearable reference system, the concurrent validity of the instrumented shoes in classifying daily activity was shown. Additionally, daily gait metrics were obtained and compared to the literature. Further insight into the relationship between some gait parameters as well as a global activity metric, the activity âcomplexityâ, was discussed. Participants positively rated their comfort while using the system... (Please refer to thesis for full abstract
    corecore