2,229 research outputs found

    Analog hardware for delta-backpropagation neural networks

    Get PDF
    This is a fully parallel analog backpropagation learning processor which comprises a plurality of programmable resistive memory elements serving as synapse connections whose values can be weighted during learning with buffer amplifiers, summing circuits, and sample-and-hold circuits arranged in a plurality of neuron layers in accordance with delta-backpropagation algorithms modified so as to control weight changes due to circuit drift

    Origin of multi-level switching and telegraphic noise in organic nanocomposite memory devices.

    Get PDF
    The origin of negative differential resistance (NDR) and its derivative intermediate resistive states (IRSs) of nanocomposite memory systems have not been clearly analyzed for the past decade. To address this issue, we investigate the current fluctuations of organic nanocomposite memory devices with NDR and the IRSs under various temperature conditions. The 1/f noise scaling behaviors at various temperature conditions in the IRSs and telegraphic noise in NDR indicate the localized current pathways in the organic nanocomposite layers for each IRS. The clearly observed telegraphic noise with a long characteristic time in NDR at low temperature indicates that the localized current pathways for the IRSs are attributed to trapping/de-trapping at the deep trap levels in NDR. This study will be useful for the development and tuning of multi-bit storable organic nanocomposite memory device systems

    Study of memory elements having two resistance states final report, 26 jun. - 17 dec. 1963

    Get PDF
    Bistable silver sulfide resistive memory element

    Nonpolar resistive switching in Cu/SiC/Au non-volatile resistive memory devices

    No full text
    Amorphous silicon carbide (a-SiC) based resistive memory (RM) Cu/a-SiC/Au devices were fabricated and their resistive switching characteristics investigated. All four possible modes of nonpolar resistive switching were achieved with ON/OFF ratio in the range 10 6-10 8. Detailed current-voltage I-V characteristics analysis suggests that the conduction mechanism in low resistance state is due to the formation of metallic filaments. Schottky emission is proven to be the dominant conduction mechanism in high resistance state which results from the Schottky contacts between the metal electrodes and SiC. ON/OFF ratios exceeding 10 7 over 10 years were also predicted from state retention characterizations. These results suggest promising application potentials for Cu/a-SiC/Au RM

    Efficient resistive memory effect on SrTiO3 by ionic-bombardment

    Full text link
    SrTiO3 is known to exhibit resistive memory effect either with cation-doping or with high-temperature thermal reduction. Here, we add another scheme, ionic-bombardment, to the list of tools to create resistive memory effect on SrTiO3 (STO). In an Ar-bombarded STO crystal, two orders of resistance difference was observed between the high and low resistive states, which is an order of magnitude larger than those achieved by the conventional thermal reduction process. One of the advantages of this new scheme is that it can be easily combined with lithographic processes to create spatially-selective memory effect.Comment: 14 pages, 4 figure
    corecore