51,446 research outputs found

    Anisotropic Dirac fermions in a Bi square net of SrMnBi2

    Get PDF
    We report the highly anisotropic Dirac fermions in a Bi square net of SrMnBi2, based on a first principle calculation, angle resolved photoemission spectroscopy, and quantum oscillations for high-quality single crystals. We found that the Dirac dispersion is generally induced in the (SrBi)+ layer containing a double-sized Bi square net. In contrast to the commonly observed isotropic Dirac cone, the Dirac cone in SrMnBi2 is highly anisotropic with a large momentum-dependent disparity of Fermi velocities of ~ 8. These findings demonstrate that a Bi square net, a common building block of various layered pnictides, provide a new platform that hosts highly anisotropic Dirac fermions.Comment: 5 pages, 4 figure

    Adsorption/desorption and electrically controlled flipping of ammonia molecules on graphene

    Get PDF
    In this paper, we evaluate of the adsorption/ desorption of ammonia molecules on a graphene surface by studying the Fermi level shift. Based on a physically plausible model, the adsorption and desorption rates of ammonia molecules on graphene have been extracted from the measured Fermi level shift as a function of exposure time. An electric field-induced flipping behavior of ammonia molecules on graphene is suggested, based on field effect transistor (FET) measurements

    Total Reflection and Negative Refraction of Dipole-Exchange Spin Waves at Magnetic Interfaces: Micromagnetic Modeling Study

    Get PDF
    We demonstrated that dipole-exchange spin waves traveling in geometrically restricted magnetic thin films satisfy the same laws of reflection and refraction as light waves. Moreover, we found for the first time novel wave behaviors of dipole-exchange spin waves such as total reflection and negative refraction. The total reflection in laterally inhomogeneous thin films composed of two different magnetic materials is associated with the forbidden modes of refracted dipole-exchange spin waves. The negative refraction occurs at a 90 degree domain-wall magnetic interface that is introduced by a cubic magnetic anisotropy in the media, through the anisotropic dispersion of dipole-exchange spin waves.Comment: 13 pages, 5 figure

    Genetic noise control via protein oligomerization

    Get PDF
    Gene expression in a cell entails random reaction events occurring over disparate time scales. Thus, molecular noise that often results in phenotypic and population-dynamic consequences sets a fundamental limit to biochemical signaling. While there have been numerous studies correlating the architecture of cellular reaction networks with noise tolerance, only a limited effort has been made to understand the dynamic role of protein-protein interactions. Here we have developed a fully stochastic model for the positive feedback control of a single gene, as well as a pair of genes (toggle switch), integrating quantitative results from previous in vivo and in vitro studies. We find that the overall noise-level is reduced and the frequency content of the noise is dramatically shifted to the physiologically irrelevant high-frequency regime in the presence of protein dimerization. This is independent of the choice of monomer or dimer as transcription factor and persists throughout the multiple model topologies considered. For the toggle switch, we additionally find that the presence of a protein dimer, either homodimer or heterodimer, may significantly reduce its random switching rate. Hence, the dimer promotes the robust function of bistable switches by preventing the uninduced (induced) state from randomly being induced (uninduced). The specific binding between regulatory proteins provides a buffer that may prevent the propagation of fluctuations in genetic activity. The capacity of the buffer is a non-monotonic function of association-dissociation rates. Since the protein oligomerization per se does not require extra protein components to be expressed, it provides a basis for the rapid control of intrinsic or extrinsic noise

    Multiply Folded Graphene

    Get PDF
    The folding of paper, hide, and woven fabric has been used for millennia to achieve enhanced articulation, curvature, and visual appeal for intrinsically flat, two-dimensional materials. For graphene, an ideal two-dimensional material, folding may transform it to complex shapes with new and distinct properties. Here, we present experimental results that folded structures in graphene, termed grafold, exist, and their formations can be controlled by introducing anisotropic surface curvature during graphene synthesis or transfer processes. Using pseudopotential-density functional theory calculations, we also show that double folding modifies the electronic band structure of graphene. Furthermore, we demonstrate the intercalation of C60 into the grafolds. Intercalation or functionalization of the chemically reactive folds further expands grafold's mechanical, chemical, optical, and electronic diversity.Comment: 29 pages, 10 figures (accepted in Phys. Rev. B

    Interplay between carrier and impurity concentrations in annealed Ga1x_{1-x}Mnx_{x}As intrinsic anomalous Hall Effect

    Get PDF
    Investigating the scaling behavior of annealed Ga1x_{1-x}Mnx_{x}As anomalous Hall coefficients, we note a universal crossover regime where the scaling behavior changes from quadratic to linear, attributed to the anomalous Hall Effect intrinsic and extrinsic origins, respectively. Furthermore, measured anomalous Hall conductivities when properly scaled by carrier concentration remain constant, equal to theoretically predicated values, spanning nearly a decade in conductivity as well as over 100 K in TC_{C}. Both the qualitative and quantitative agreement confirms the validity of new equations of motion including the Berry phase contributions as well as tunablility of the intrinsic anomalous Hall Effect.Comment: 4 pages, 5 figure

    Rejecting Mathematical Realism while Accepting Interactive Realism

    Get PDF
    Indispensablists contend that accepting scientific realism while rejecting mathematical realism involves a double standard. I refute this contention by developing an enhanced version of scientific realism, which I call interactive realism. It holds that interactively successful theories are typically approximately true, and that the interactive unobservable entities posited by them are likely to exist. It is immune to the pessimistic induction while mathematical realism is susceptible to it

    The Problems of Divine Location and Age

    Get PDF
    I develop two problems, which I call the problem of divine location and the problem of divine age, to challenge the theist belief that God created the universe. The problem of divine location holds that it is not clear where God existed before he created the universe. The problem of divine age holds that it is not clear how old God was when he created the universe. I explore several theist responses to these two problems, and argue that all of them are problematic under the existing conceptions of space and time in physics. The philosophical magnitudes of these two problems are equal to that of the problem of evil

    In Defense of Mathematical Inferentialism

    Get PDF
    I defend a new position in philosophy of mathematics that I call mathematical inferentialism. It holds that a mathematical sentence can perform the function of facilitating deductive inferences from some concrete sentences to other concrete sentences, that a mathematical sentence is true if and only if all of its concrete consequences are true, that the abstract world does not exist, and that we acquire mathematical knowledge by confirming concrete sentences. Mathematical inferentialism has several advantages over mathematical realism and fictionalism

    Alpha-tocopherol exerts protective function against the mucotoxicity of particulate matter in amphibian and human goblet cells

    Get PDF
    Exposure to particulate matter (PM) in ambient air is known to increase the risk of cardiovascular disorders and mortality. The cytotoxicity of PM is mainly due to the abnormal increase of reactive oxygen species (ROS), which damage cellular components such as DNA, RNA, and proteins. The correlation between PM exposure and human disorders, including mortality, is based on long-term exposure. In this study we have investigated acute responses of mucus-secreting goblet cells upon exposure to PM derived from a heavy diesel engine. To this end, we employed the mucociliary epithelium of amphibian embryos and human Calu-3 cells to examine PM mucotoxicity. Our data suggest that acute exposure to PM significantly impairs mucus secretion and results in the accumulation of mucus vesicles in the cytoplasm of goblet cells. RNA-seq analysis revealed that acute responses to PM exposure significantly altered gene expression patterns; however, known regulators of mucus production and the secretory pathway were not significantly altered. Interestingly, pretreatment with alpha-tocopherol nearly recovered the hyposecretion of mucus from both amphibian and human goblet cells. We believe this study demonstrates the mucotoxicity of PM and the protective function of alpha-tocopherol on mucotoxicity caused by acute PM exposure from heavy diesel engines
    corecore